北京市高考文科数学试题及答案

合集下载

2020年普通高等学校招生全国统一考试文科数学(北京卷)(含解析)

2020年普通高等学校招生全国统一考试文科数学(北京卷)(含解析)

2020年普通高等学校招生全国统一考试(北京卷)文科数学一、选择题共8小题,每小题5分,共40分.1、(2020•北京)已知集合A={x|-1<x<2},B={x|x>1},则AUB=( ) A. (-1,1) B. (1,2) C. (-1,+∞) D. (1,+∞) 【答案】C【解析】【解答】因为{}{}12,1,A x x B x x =-<<=> 所以{}1,A B x x =>-U 故答案为:C.【分析】本题考查了集合的并运算,根据集合A 和B 直接求出交集即可. 2、(2020•北京)已知复数z=2+i ,则·z z =( )【答案】D【解析】【解答】根据2z i =+,得2z i =-, 所以(2)(2)415z z i i ⋅=+⋅-=+=, 故答案为:D.【分析】根据z 得到其共轭,结合复数的乘法运算即可求解.3、(2020•北京)下列函数中,在区间(0,+∞)上单调递增的是( )A. 12y x = B. y=2-xC.12log y x = D. 1y x= 【答案】A【解析】【解答】A :12y x =为幂函数,102α=>,所以该函数在()0,+∞上单调递增; B:指数函数x x1y 22-⎛⎫== ⎪⎝⎭,其底数大于0小于1,故在()0,+∞上单调递减; C :对数函数12log y x =,其底数大于0小于1,故在()0,+∞上单调递减; D :反比例函数1y x=,其k=1>0,故在()0,+∞上单调递减; 故答案为:A.【分析】根据幂函数、指数函数、对数函数及反比例函数的单调性逐一判断即可. 4、(2020•北京)执行如图所示的程序框图,输出的s 值为( )A. 1B. 2C. 3D. 4 【答案】B【解析】【解答】k=1,s=1, s=2212312⨯=⨯-,k<3,故执行循环体k=1+1=2,2222322s ⨯==⨯-; 此时k=2<3,故继续执行循环体k=3,2222322s ⨯==⨯-,此时k=3,结束循环,输出s=2. 故答案为:B.【分析】根据程序框图,依次执行循环体,直到k=3时结束循环,输出s=2即可.5、(2020•北京)已知双曲线2221x y a-=(a>05a=( )6 B. 4 C. 2 D. 12【答案】D【解析】【解答】双曲线的离心率215c a e a a+===, 故2251,a a =+解得211,42a a ==, 故答案为:D.【分析】根据双曲线的标准方程,表示离心率,解方程,即可求出a 的值.6、(2020•北京)设函数f (x )=cosx+bsinx (b 为常数),则“b=0”是“f (x )为偶函数”的( ) A. 充分而不必要条件 B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】C【解析】【解答】若b=0,则()cos f x x =为偶函数, 若()cos sin f x x b x =+为偶函数,则()()()cos sin cos sin ()cos sin f x x b x x b x f x x b x -=-+-=-==+, 所以2sin 0,b x =B=0,综上,b=0是f (x )为偶函数的充要条件. 故答案为:C.【分析】根据偶函数的定义,结合正弦函数和余弦函数的单调性,即可确定充分、必要性. 7、(2020•北京)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 1-m 2=125lg 2E E ,其中星等为m k 的星的亮度为E k (k=1,2).己知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A. 1010.1B. 10.1C. lg10.1D. 10-10.1【答案】A【解析】【解答】解:设太阳的亮度为1E ,天狼星的亮度为2E , 根据题意1251.45(26.7)lg 2E E ---=, 故122g25.2510.15E l E =⨯=, 所以10.11210E E =; 故答案为:A.【分析】根据已知,结合指数式与对数式的转化即可求出相应的比值.8、(2020•北京)如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,∠APB 是锐角,大小为β.图中阴影区域的面积的最大值为( )A. 4β+4cos βB. 4β+4sin βC. 2β+2cos βD. 2β+2sin β 【答案】B【解析】【解答】设圆心为O ,根据,APB β∠=可知AB 所对圆心角2,AOB β∠=故扇形AOB 的面积为22242πββπ⋅⋅=,由题意,要使阴影部分面积最大,则P 到AB 的距离最大,此时PO 与AB 垂直,故阴影部分面积最大值4,AOB PAB S S S β=-+V V 而2sin 22cos 4sin cos 2AOB S ββββ⨯⨯==V ,()2sin 222cos 4sin 4sin cos 2PABS βββββ⨯⨯+==+V ,故阴影部分面积最大值444sin ,AOB PAB S S S βββ=-+=+V V 故答案为:B.【分析】根据圆周角得到圆心角,由题意,要使阴影部分面积最大,则P 到AB 的距离最大,此时PO 与AB 垂直,结合三角函数的定义,表示相应三角形的面积,即可求出阴影部分面积的最大值. 二、填空题共6小题,每小题5分,共30分,9、(2020•北京)已知向量a r =(-4.3),b r =(6,m ),且a b ⊥r r,则m= . 【答案】8【解析】【解答】根据两向量垂直,则数量积为0,得()4630,m -⨯+= 解得m=8. 故答案为8.【分析】根据两向量垂直,数量积为0,结合平面向量的数量积运算即可求解.10、(2020•北京)若x ,y 满足214310x y x y ≤⎧⎪≥-⎨⎪-+≥⎩.则y-x 的最小值为 ,最大值为 . 【答案】-3|1【解析】【解答】作出可行域及目标函数相应的直线,平移该直线,可知在经过(2,-1)时取最小值-3,过(2,3)时取最大值1. 故答案为-3;1.【分析】作出可行域和目标函数相应的直线,平移该直线,即可求出相应的最大值和最小值. 11、(2020•北京)设抛物线y 2=4x 的焦点为F ,准线为l.则以F 为圆心,且与l 相切的圆的方程为 .【答案】()2214x y -+=【解析】【解答】由题意,抛物线的焦点坐标F (1,0),准线方程:x=-1, 焦点F 到准线l 的距离为2, 故圆心为(1,0),半径为2, 所以圆的方程为()2214x y -+=;故答案为()2214x y -+=.【分析】根据抛物线方程求出焦点坐标和准线方程,即可得到圆心和半径,写出圆的标准方程即可. 12、(2020•北京)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为 .【答案】40【解析】【解答】根据三视图,可知正方体体积31464V ==,去掉的四棱柱体积()22424242V +⨯=⨯=,故该几何体的体积V=64-24=40. 故答案为40.【分析】根据三视图确定几何体的结构特征,求出相应的体积即可.13、(2020•北京)已知l ,m 是平面α外的两条不同直线.给出下列三个论断: ①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题: . 【答案】若②③,则①【解析】【解答】若l α⊥,则l 垂直于α内任意一条直线, 若m αP ,则l m ⊥; 故答案为若②③,则①.14、(2020•北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 . 【答案】130|15【解析】【解答】①草莓和西瓜各一盒,总价60+80=140元, 140>120,故顾客可少付10元,此时需要支付140-10=130元;②要保证每笔订单得到的金额均不低于促销前总价的七折,则最低消费满足条件即可, 根据题意,买草莓两盒,消费最低,此时消费120元, 故实际付款(120-x )元,此时李明得到()12080%x -⨯, 故()12080%1200.7x -⨯≥⨯,解得15x ≤; 故最大值为15. 故答案为①130;②15.【分析】①根据已知,直接计算即可;②根据题意,要保证每笔订单得到的金额均不低于促销前总价的七折,则最低消费满足条件即可,因此选最低消费求解,即可求出相应的最大值. 三、解答题共6小题,共80分.15、(2020•北京)在△ABC 中,a=3,b-c=2,cosB=-12. (I )求b ,c 的值:(II )求sin (B+C )的值.【答案】解:(I )根据余弦定理2222cos b a c ac B =+-, 故()22129232c c c ⎛⎫+=+-⨯⨯-⎪⎝⎭,解得c=5,B=7;(II )根据1cos 2B =-,得sin 2B =,根据正弦定理,sin sin b cB C=,5sin 2C=,解得sin 14C =,所以11cos 14C =,所以()111sin sin cos cos sin 21421414B c BC B C ⎛⎫+=+=+-⨯=⎪⎝⎭【解析】【分析】(I )根据余弦定理,解方程即可求出c 和b ;(II )根据同角三角函数的平方关系,求出sinB ,结合正弦定理,求出sinC 和cosC ,即可依据两角和的正弦公式,求出sin (B+C ).16、(2020•北京)设{a n }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(I )求{a n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求S n 的最小值. 【答案】解:(I )根据三者成等比数列, 可知()()()23248106a a a +=++,故()()()2102810101036d d d -++=-++-++, 解得d=2,故()1021212n a n n =-+-=-; (Ⅱ)由(I )知()210212112n n n S n n -+-⋅==-,该二次函数开口向上,对称轴为n=5.5, 故n=5或6时,n S 取最小值-30.【解析】【分析】(I )根据等比中项,结合等差数列的通项公式,求出d ,即可求出n a ;(Ⅱ)由(1),求出n S ,结合二次函数的性质,即可求出相应的最小值.17、(2020•北京)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用(I )估计该校学生中上个月A ,B 两种支付方式都使用的人数;(II )从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率; (III )已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中,随机抽查1人,发现他本月的支付金额大于2000元,结合(II )的结果,能否认为样本仅使用B 的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】解:(I )据估计,100人中上个月A 、B 两种支付方式都使用的人数为100-5-27-3-24-1=40人,故该校学生中上个月A 、B 两种支付方式都使用的人数为400人;(II )该校学生上个月仅使用B 支付的共25人,其中支付金额大于2000的有一人,故概率为125; (III )不能确定人数有变化,因为在抽取样本时,每个个体被抽到法机会是均等的,也许抽取的样本恰为上个月支付抄过2000的个体,因此不能从抽取的一个个体来确定本月的情况有变化. 【解析】【分析】(I )根据题意,结合支付方式的分类直接计算,再根据样本估计总体即可; (II )根据古典概型,求出基本事件总数和符合题意的基本事件数,即可求出相应的概率; (III )从统计的角度,对事件发生的不确定性进行分析即可.18、(2020•北京)如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,底面ABCD 为菱形,E 为CD 的中点.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若∠ABC=60°,求证:平面PAB ⊥平面PAE ;(Ⅲ)棱PB 上是否存在点F ,使得CF ∥平面PAE ?说明理由. 【答案】(Ⅰ)证明:因为ABCD 为菱形,所以BD AC ⊥, 又因为PA ABCD ⊥平面,所以BD PA ⊥,而PA AC A =I , 故BD PAC ⊥平面;(Ⅱ)因为60ABC ∠=︒,所以60ADC ∠=︒,故ADC V 为等边三角形, 而E 为CD 的中点,故AE CD ⊥,所以AE AB ⊥, 又因为PA ABCD ⊥平面,所以AB PA ⊥, 因为PA AE A =I ,所以AB PAE ⊥平面,又因为AB PAB ⊂平面,所以PAB PAE ⊥平面平面; (Ⅲ)存在这样的F ,当F 为PB 的中点时,CF PAE P 平面;取AB 的中点G ,连接CF 、CG 和FG ,因为G 为AB 中点,所以AE 与GC 平行且相等,故四边形AGCE 为平行四边形,所以AE GC P ,故GC PAE P 平面 在三角形BAP 中,F 、G 分别为BP 、BA 的中点,所以FG PA P , 故FG PAE P 平面,因为GC 和FG 均在平面CFG 内,且GC FG G =I , 所以CGF PAE P 平面平面,故CF PAE P 平面.【解析】【分析】(Ⅰ)根据线面垂直的判定定理,证明直线与平面内两条相交直线垂直即可; (Ⅱ)根据面面垂直的判定定理,证明直线与平面垂直,即可得到面面垂直;(Ⅲ)根据面面平行的判定定理,证明面面平行,即可说明两平面没有公共点,因此,一个平面内任意一条直线与另一平面均无公共点,即可说明线面平行.19、(2020•北京)已知椭圆C :22221x y a b+=的右焦点为(1.0),且经过点A (0,1).(I )求椭圆C 的方程;(II )设O 为原点,直线l :y=kx+t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,|OM|·|ON|=2,求证:直线l 经过定点. 【答案】解:(I )根据焦点为(1,0),可知c=1, 根据椭圆经过(0,1)可知b=1,故2222a b c =+=,所以椭圆的方程为2212x y +=; (II )设()()1122,,,P x y Q x y , 则直线111:1y AP y x x -=+,直线221:1y AQ y x x -=+, 解得1212,0,,011x x M N y y ⎛⎫⎛⎫⎪ ⎪--⎝⎭⎝⎭,故()1212121212111x x x x OM ON y y y y y y ⋅=⋅=---++, 将直线y=kx+t 与椭圆方程联立, 得()222124220kxktx t +++-=,故2121222422,1212kt t x x x x k k --+==++,所以22221212228282,1212k t t k t k t y y y y k k+-++==++, 故()2121t OM ON t +⋅==-,解得t=0,故直线方程为y=kx ,一定经过原点(0,0).【解析】【分析】(I )根据焦点坐标和A 点坐标,求出a 和b ,即可得到椭圆的标准方程; (II )设出P 和Q 的坐标,表示出M 和N 的坐标,将直线方程与椭圆方程联立,结合韦达定理,表示OM 与ON ,根据2OM ON ⋅=,解得t=0,即可确定直线恒过定点(0,0). 20、(2020•北京)已知函数f (x )=14x 3-x 2+x. (I )求曲线y=f (x )的斜率为1的切线方程; (II )当x ∈[-2,4]时,求证:x-6≤f (x )≤x ;(Ⅲ)设F (x )=|f (x )-(x+a )|(a ∈R ),记F (x )在区间[-2,4]上的最大值为M (a ).当M (a )最小时,求a 的值. 【答案】解(I )()23'214f x x x =-+,令()'1f x =, 则1280,3x x ==, 因为()8800,327f f ⎛⎫==⎪⎝⎭, 故斜率为1的直线为y=x 或88273y x -=-, 整理得,斜率为1的直线方程为x-y=0或64027x y --=; (II )构造函数g (x )=f (x )-x+6, 则()23'24g x x x =-,令()'0g x =,则1280,3x x ==, 故g (x )在[-2,0]上单调递增,在80,3⎡⎤⎢⎥⎣⎦上单调递减,在8,43⎡⎤⎢⎥⎣⎦上单调递增,故g (x )的最小值为g (-2)或83g ⎛⎫ ⎪⎝⎭,而g (-2)=0,8980327g ⎛⎫=> ⎪⎝⎭,故()min (2)0g x g =-=⎡⎤⎣⎦, 所以()0g x ≥,故在[-2,4]上,()6x f x -≤; 构造函数h (x )=f (x )-x , 则()23'24h x x x =-,令()'0h x =,则1280,3x x ==, 故h (x )在[-2,0]上单调递增,在80,3⎡⎤⎢⎥⎣⎦上单调递减,在8,43⎡⎤⎢⎥⎣⎦上单调递增,故h (x )的最大值为h (0)或h (4),因为h (0)=0,h (4)=0,所以()0h x ≤,故在[-2,4]上,()f x x ≤, 综上在[-2,4]上,()6x f x x -≤≤;(Ⅲ)令()()()3214x f x x a x x a ϕ=-+=--, 则()23'24x x x ϕ=-,令()'0x ϕ=,则1280,3x x ==, 故ϕ(x )在[-2,0]上单调递增,在80,3⎡⎤⎢⎥⎣⎦上单调递减,在8,43⎡⎤⎢⎥⎣⎦上单调递增, 所以ϕ(x )的最小值为ϕ(-2)=-6-a 或864327a ϕ⎛⎫=-- ⎪⎝⎭, 最大值为ϕ(0)=-a 或ϕ(4)=12-a ,故()()F x x ϕ=其最大值()12,36,3a a M a a a -≤⎧=⎨+>⎩, 故当a=3时,M (a )有最小值9.【解析】【分析】(I )求导数,根据导数的几何意义,结合斜率为1,求出切点坐标,利用点斜式,即可求出相应的切线方程;(II )构造函数,要证()6x f x x -≤≤,只需要证在[-2,4]上6()0f x x g x -≥+=()和()()0h x f x x =-≤即可,求导数,利用导数确定函数单调性,求出函数极值即可证明;(Ⅲ)求导数,利用导数确定函数单调性,求出函数的最值,确定M (a )的表达式,即可求出M (a )取最小值时相应的a 值.。

2024年北京市高考数学卷含答案 .

2024年北京市高考数学卷含答案 .

2024年北京市高考数学卷一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合M ={x|−4<x ≤1} N ={x|−1<x <3} 则M ∪N =( )。

A .{x|−4<x <3}B .{x|−1<x ≤1}C .{0,1,2}D .{x|−1<x <4}2.已知zi =i −1,则z =( )。

A .1−iB .−iC .−1−iD .13.求圆x 2+y 2−2x +6y =0的圆心到x −y +2=0的距离( )。

A .2√3B .2C .3√2D .√64.(x −√x)4的二项展开式中x 3的系数为( )。

A .15B .6C .−4D .−13 5.已知向量a ⃗ 和b ⃗ ,则(a +b ⃗ )·(a −b⃗ )=0是a ⃗ =b ⃗ 或a ⃗ =−b ⃗ 的( )条件。

A .必要而不充分条件 B .充分而不必要条件 C .充分且必要条件D .既不充分也不必要条件6.已知f(x)=sinωx(ω>0) f(x 1)=−1 f(x 2)=1 |x 1−x 2|min =π2则ω=( )。

A .1 B .2 C .3 D .47.记水的质量为d =S−1lnn并且d 越大水质量越好。

若S 不变 且d 1=2.1 d 2=2.2 则n 1与n 2的关系为( )。

A .n 1<n 2 B .n 1>n 2C .若S <1,则n 1<n 2;若S >1,则n 1>n 2;D .若S <1,则n 1>n 2;若S >1,则n 1<n 2;8.已知以边长为4的正方形为底面的四棱锥。

四条侧棱分别为4 4 2√2 2√2。

则该四棱锥的高为( )。

A .√22B .√32C .2√3D .√39.已知(x 1,y 1),(x 2,y 2)是函数y =2x 图象上不同的两点,则下列正确的是( )。

北京市高考数学文科试卷及答案解析

北京市高考数学文科试卷及答案解析

C.8
B .4
D. 16
C.

6
B.必要而不充分条件 D.既不充分也不必要条件
5.如图. ∠ACB=90º,CD⊥AB于点D,以BD为直径的圆与BC交于点E.则( )
A. CE·CB=AD·DB
C. ADAAB CD2
B. CE·CB=AD·AB
D. CEAEB CD2
6.从0,2中选一个数字.从1.3.5中选两个数字,组成无重复数字的三位数.其中奇数的个数为(
15.(本小题共13分)已知函数 f (x) (sin x cos x) sin 2x 。(1)求f(x)的定义域及最小正周期; sin x
(2)求f(x)的单调递增区间。
16. (本小题共14分)
如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上
的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使 A1C⊥CD,如图2.
x 3cos

y

3
sin
a1


1 2
(

为参数)的交点个数为
S2
12.在直角坐标系xOy中,直线 l 过抛物线 y2 4x 的焦点F,且与该抛物线相交于A、B两点,其中点A在x轴 上方,若直线 l 的倾斜角为60º.则 AOAF 的面积为
13.己知正方形ABCD的边长为1,点E是AB边上的动点.则 DEACB 的值为
4
D.
4
开始 k=0,S=1
k=k+1
S=S· 2k
是 k<3
否 输出 S
结束 (第 4 题图)
)
二.填空题共6小题。每小题5分。共30分.

2020年北京市高考文科数学试卷(含解析版)

2020年北京市高考文科数学试卷(含解析版)

绝密★本科目考试启用前2020 年普通高等学校招生全国统一考试(北京卷)数学本试卷共5 页,150 分,考试时长120 分钟.考试务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40 分)一、选择题10 小题,每小题4 分,共40 分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A = {-1, 0,1, 2} ,B = {x | 0 <x< 3} ,则A B =().A.{-1, 0,1}B.{0,1}C. {-1,1, 2}D. {1, 2} 【答案】D【解析】【分析】根据交集定义直接得结果.【详解】A I B = {-1, 0,1, 2}I(0, 3) = {1, 2},故选:D.【点睛】本题考查集合交集概念,考查基本分析求解能力,属基础题.2.在复平面内,复数z 对应的点的坐标是(1, 2) ,则i ⋅z =().D. -2 -iA.1+ 2iB.-2 +iC.1- 2i【答案】B【解析】【分析】先根据复数几何意义得z ,再根据复数乘法法则得结果.【详解】由题意得z =1+ 2i ,∴iz =i - 2 .故选:B.【点睛】本题考查复数几何意义以及复数乘法法则,考查基本分析求解能力,属基础题.33 35-rrrr +15 53.在( x - 2)5 的展开式中, x 2 的系数为( ).A. -5 【答案】CB. 5C. -10D. 10【解析】 【分析】首先写出展开式的通项公式,然后结合通项公式确定 x 2 的系数即可. 【详解】( - 2) 展开式的通项公式为: T= C r( x ) (-2) = (-2)C rx2,令5 - r = 2 可得: r = 1 ,则 x 2 的系数为: (-2)1C 1 = (-2)⨯ 5 = -10 .25故选:C.【点睛】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中 n 和 r 的隐含条件,即 n ,r 均为非负整数,且 n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.4. 某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为().A. 6 +B. 6 + 2C. 12 +D.12 + 2【答案】D5-r x 35【解析】【分析】首先确定几何体的结构特征,然后求解其表面积即可.【详解】由题意可得,三棱柱的上下底面为边长为2 的等边三角形,侧面为三个边长为2 的正方形,则其表面积为:S = 3⨯(2⨯ 2)+ 2⨯⎛1⨯ 2⨯ 2⨯sin 60︒⎫=12 + 2 3 .2 ⎪⎝⎭故选:D.【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.5.已知半径为1 的圆经过点(3, 4) ,则其圆心到原点的距离的最小值为().A. 4B. 5C. 6D. 7【答案】A【解析】【分析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1 可得答案.【详解】设圆心C (x, y ),则化简得(x - 3)2 +(y - 4)2 =1,=1,所以圆心C 的轨迹是以M (3, 4) 为圆心,1 为半径的圆,(x -3)2 +(y - 4)2所以| OC | +1 ≥| OM | == 5 ,所以| OC |≥ 5 -1 = 4 ,32+ 42当且仅当C 在线段OM 上时取得等号,故选:A.【点睛】本题考查了圆的标准方程,属于基础题.6.已知函数f (x) = 2x-x -1 ,则不等式f (x) > 0 的解集是().(1, +∞) A.(-1,1) B. (-∞, -1)C. (0,1)D. (-∞, 0) ⋃(1, +∞)【答案】D【解析】【分析】作出函数y = 2x和y =x +1 的图象,观察图象可得结果.【详解】因为f (x)= 2x -x -1,所以f (x)> 0 等价于2x>x +1 ,在同一直角坐标系中作出y = 2x和y =x + 1 的图象如图:两函数图象的交点坐标为(0,1),(1, 2) ,不等式2x>x +1 的解为x < 0 或x > 1 .所以不等式f (x)> 0 的解集为:(-∞, 0)⋃(1, +∞).故选:D.【点睛】本题考查了图象法解不等式,属于基础题.7.设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ ⊥l 于Q ,则线段FQ 的垂直平分线().A. 经过点OC. 平行于直线OP B. 经过点PD. 垂直于直线OP【答案】B【解析】【分析】依据题意不妨作出焦点在x 轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段FQ 的垂直平分线经过点P ,即求解.【详解】如图所示:.因为线段FQ 的垂直平分线上的点到F ,Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ = PF ,所以线段FQ 的垂直平分线经过点P .故选:B.【点睛】本题主要考查抛物线的定义的应用,属于基础题.8.在等差数列{a n}中,a1=-9 ,a3=-1 .记T n=a1a2…a n(n =1, 2,…) ,则数列{T n}().A.有最大项,有最小项B. 有最大项,无最小项C. 无最大项,有最小项D. 无最大项,无最小项【答案】B【解析】【分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项.【详解】由题意可知,等差数列的公差d =a5-a1 =-1+ 9= 2 ,5 -1 5 -1则其通项公式为:a n=a1+(n -1)d=-9 +(n -1)⨯2 = 2n -11 ,注意到a1 <a2 <a3 <a4 <a5 < 0 <a6 = 1 <a7 <,且由T5< 0 可知T i< 0(i ≥ 6, i ∈N ),Ti 由Ti-1 =ai>1(i ≥ 7, i ∈N )可知数列{T n}不存在最小项,由于a1 =-9, a2 =-7, a3 =-5, a4 =-3, a5 =-1, a6 =1,故数列{T n}中的正项只有有限项:T2 = 63 ,T4 = 63⨯15 = 945 .故数列{T n}中存在最大项,且最大项为T4.故选:B.【点睛】本题主要考查等差数列通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.9.已知α, β∈R ,则“存在k ∈Z 使得α=kπ+ (-1)kβ”是“sin α= sin β”的().A.充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】【分析】根据充分条件,必要条件的定义,以及诱导公式分类讨论即可判断.【详解】(1)当存在k ∈Z 使得α=kπ+ (-1)kβ时,若k 为偶数,则sin α= sin (kπ+β)= sin β;若k 为奇数,则sinα= sin (kπ-β)= sin ⎡⎣(k -1)π+π-β⎤⎦= sin (π-β)= sin β;(2)当sin α= sin β时,α=β+ 2mπ或α+β=π+ 2mπ,m ∈Z ,即α=kπ+(-1)k β(k = 2m)或α=kπ+(-1)k β(k = 2m +1),亦即存在k ∈Z 使得α=kπ+ (-1)kβ.所以,“存在k ∈Z 使得α=kπ+ (-1)kβ”是“ sin α= sin β”的充要条件.故选:C.【点睛】本题主要考查充分条件,必要条件的定义的应用,诱导公式的应用,涉及分类讨论思想的应用,属于基础题.10.2020 年3 月14 日是全球首个国际圆周率日(πD ay).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是().⎛30︒ 30︒⎫ ⎛30︒ 30︒⎫A.3n sinn +tan ⎪n B. 6n sin n+tan ⎪n⎝⎭⎝⎭⎛60︒ 60︒⎫ ⎛60︒ 60︒⎫C.3n sinn +tan ⎪n D. 6n sin n+tan⎪n⎝⎭⎝⎭【答案】A【解析】【分析】计算出单位圆内接正6n 边形和外切正6n 边形的周长,利用它们的算术平均数作为2π的近似⎩y 值可得出结果.【详解】单位圆内接正 6n 边形的每条边所对应的圆周角为360︒ = 60︒, 每条边长为 n ⨯ 6 n2 s in 30︒ ,n所以,单位圆的内接正6n 边形的周长为12n sin 30︒ ,n单位圆的外切正6n 边形的每条边长为2 tan30︒ ,其周长为12n tan30︒ ,nn12n sin 30︒ +12n tan 30︒∴2π = n n = 6n ⎛sin 30︒ + tan 30︒ ⎫ , 2 n n ⎪⎝ ⎭则π = 3n ⎛sin30︒+ tan 30︒ ⎫ . n n ⎪ ⎝ ⎭故选:A.【点睛】本题考查圆周率π 的近似值的计算,根据题意计算出单位圆内接正6n 边形和外切正6n 边形的周长是解答的关键,考查计算能力,属于中等题.第二部分(非选择题 共 110 分)二、填空题共 5 小题,每小题 5 分,共 25 分.11. 函数 f (x ) =1x +1+ ln x 的定义域是 .【答案】(0, +∞)【解析】【分析】根据分母不为零、真数大于零列不等式组,解得结果.⎧ 【详解】由题意得 x > 0 ,∴ x > 0⎨x +1 ≠ 0 故答案为: (0, +∞)【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题.12. 已知双曲线C :x 2- = 1,则 C 的右焦点的坐标为 ;C 的焦点到其渐近线的距6 3离是 .26 3 3 3 PD |= 【答案】(1). (3, 0)(2).【解析】【分析】根据双曲线的标准方程可得出双曲线C 的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.【详解】在双曲线C 中,a = ,b = ,则c = 为(3, 0) , = 3 ,则双曲线C 的右焦点坐标双曲线C 的渐近线方程为 y =±2 x ,即 x ± 2所以,双曲线C 的焦点到其渐近线的距离为2 y = 0 ,= .故答案为: (3, 0) ; .【点睛】本题考查根据双曲线的标准方程求双曲线的焦点坐标以及焦点到渐近线的距离,考查计算能力,属于基础题.13. 已知正方形 ABCD 的边长为2,点 P 满足 AP = 1( AB + AC ) ,则| ;2PB ⋅ PD =.【答案】(1).(2). -1【解析】【分析】以点 A 为坐标原点, AB 、 AD 所在直线分别为 x 、 y 轴建立平面直角坐标系,求得点 P 的坐标,利用平面向量数量积的坐标运算可求得 以及 PB ⋅ PD 的值.【详解】以点 A 为坐标原点, AB 、 AD 所在直线分别为 x 、 y 轴建立如下图所示的平面直角坐标系,3a 2 +b 2 3 12+ 25PD5cos 2 ϕ + (sin ϕ +1)2( )则点 A (0, 0) 、 B (2, 0) 、C (2, 2) 、 D (0, 2) ,AP = 1 AB + AC = 1 (2, 0) + 1(2, 2) = (2,1) ,2 2 2则点 P (2,1) ,∴ PD = (-2,1) , PB = (0, -1) ,因此,故答案为:; -1.= ,PB ⋅ PD = 0 ⨯(-2) +1⨯ (-1) = -1.【点睛】本题考查平面向量的模和数量积的计算,建立平面直角坐标系,求出点 P 的坐标是解答的关键,考查计算能力,属于基础题.14. 若函数 f (x ) = sin(x + ϕ) + cos x 的最大值为 2,则常数ϕ 的一个取值为.【答案】 π (2k π + π, k ∈ Z 均可) 22【解析】【分析】根据两角和的正弦公式以及辅助角公式即可求得 f ( x ) =( x +θ ) ,可得 = 2 ,即可解出.【详解】因为 f ( x ) = cos ϕ sin x + (sin ϕ +1)cos x =sin ( x +θ ) ,所以 = 2 ,解得sin ϕ = 1 ,故可取ϕ = π . 2故答案为: π ( 2k π + π, k ∈ Z 均可). 2 2【点睛】本题主要考查两角和的正弦公式,辅助角公式的应用,以及平方关系的应用,考查学生的数学运算能力,属于基础题.15. 为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业PD =(-2)2 +125 cos 2 ϕ + (sin ϕ +1)2cos 2 ϕ + (sin ϕ +1)2cos 2ϕ + (sin ϕ +1)2要限期整改、设企业的污水摔放量W 与时间t 的关系为W =f (t) ,用-f (b) -f (a)的大小评b -a价在[a, b] 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[t1 ,t2 ]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0, t1],[t1, t2],[t2, t3]这三段时间中,在[0, t1]的污水治理能力最强.其中所有正确结论的序号是.【答案】①②③【解析】【分析】根据定义逐一判断,即可得到结果【详解】-f (b) -f (a)表示区间端点连线斜率的负数,b -a在[t1 ,t2 ]这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[0, t1 ],[t1, t2 ],[t2 , t3 ]这三段时间中,甲企业在[t1 ,t2 ]这段时间内,甲的斜率最小,其相反数最大,即在[t1 ,t2 ]的污水治理能力最强.④错误;在t2时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在t3时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确;故答案为:①②③【点睛】本题考查斜率应用、切线斜率应用、函数图象应用,考查基本分析识别能力,属中档题.三、解答题共6 小题,共85 分,解答应写出文字说明,演算步骤或证明过程.16.如图,在正方体ABCD -A1B1C1D1中,E 为BB1的中点.(I)求证:BC1 // 平面AD1E ;(II)求直线AA1与平面AD1E 所成角的正弦值.【答案】(Ⅰ)证明见解析;(Ⅱ)2 .3【解析】【分析】(I)证明出四边形ABC1D1为平行四边形,可得出BC1 //AD1,然后利用线面平行的判定定理可证得结论;(I I)以点A 为坐标原点,AD 、AB 、AA1 所在直线分别为x 、y 、z 轴建立空间直角坐标系A -xyz ,利用空间向量法可计算出直线AA1与平面AD1E 所成角的正弦值.【详解】(Ⅰ)如下图所示:⎩⎩在正方体 ABCD - A 1B 1C 1D 1 中, AB //A 1B 1 且 AB = A 1B 1 , A 1B 1 //C 1D 1 且 A 1B 1 = C 1D 1 ,∴ AB //C 1D 1 且 AB = C 1D 1 ,所以,四边形 ABC 1D 1 为平行四边形,则 BC 1 //AD 1 ,BC 1 ⊄ 平面 AD 1E , AD 1 ⊂ 平面 AD 1E ,∴ BC 1 // 平面 AD 1E ;(Ⅱ)以点 A 为坐标原点, AD 、 AB 、 AA 1 所在直线分别为 x 、 y 、 z 轴建立如下图所示的空间直角坐标系 A - xyz ,设正方体 ABCD - A 1B 1C 1D 1 的棱长为2 ,则 AD 1 = (2, 0, 2) , AE = (0, 2,1) ,A (0, 0, 0) 、A 1 (0, 0, 2) 、D 1 (2, 0, 2) 、E (0, 2,1),设平面 AD E 的法向量为n = (x , y , z ) ,由⎧n ⋅ AD 1 = 0 ,得⎧2x + 2z = 0 ,1⎨n ⋅ AE = 0 ⎨2 y + z = 0令 z = -2 ,则 x = 2 , y = 1,则n = (2,1, -2).cos < =-2 . 3因此,直线AA 与平面AD E 所成角的正弦值为2 .113【点睛】本题考查线面平行的证明,同时也考查了利用空间向量法计算直线与平面所成角的正弦值,考查计算能力,属于基础题.17.在ABC 中,a +b = 11,再从条件①、条件②这两个条件中选择一个作为己知,求:(Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:c = 7, cos A =-1 ;7条件②:cos A =1, cos B =9.816注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】选择条件①(Ⅰ)8(Ⅱ)sin C =3, S = 6 3 ;2选择条件②(Ⅰ)6(Ⅱ)sin C =7, S =157.4 4【解析】【分析】选择条件①(Ⅰ)根据余弦定理直接求解,(Ⅱ)先根据三角函数同角关系求得sin A ,再根据正弦定理求sin C ,最后根据三角形面积公式求结果;选择条件②(Ⅰ)先根据三角函数同角关系求得sin A, sin B ,再根据正弦定理求结果,(Ⅱ)根据两角和正弦公式求sin C ,再根据三角形面积公式求结果.【详解】选择条件①(Ⅰ) c = 7, cos A =-17a +b =11∴a= 8 +c2- 2bc cos A∴a2= (11-a)2+ 72- 2(11-a) ⋅7 ⋅(-1)7(Ⅱ)cos A =-1,A∈(0,π)∴sin A = =4 3 7 7n, AA >=1n ⋅AA1n ⋅AA1=-43⨯ 2a2=b21- cos2A1- cos 2 B a 由正弦定理得: sin A = c ∴8 sin C 4 3 7= 7 sin C ∴sin C = 3 2S = 1 ba sin C = 1 (11- 8) ⨯8⨯ 3 = 6 2 2 2 选择条件②(Ⅰ) cos A = 1 , cos B = 9,A , B ∈(0,π )∴sin A 8 16 = 3 7, s in B == 5 7 8 16a =b ∴a = 11- a ∴ a = 6 由正弦定理得: sin A sin B 3 7 5 78 16(II ) sin C = sin( A + B ) = sin A cos B + sin B cos A =3 7 ⨯ 9 + 5 7 ⨯ 1 =7S = 1 ba sin C = 1(11- 6) ⨯ 6⨯7 = 15 78 16 16 8 42 2 4 4【点睛】本题考查正弦定理、余弦定理,三角形面积公式,考查基本分析求解能力,属中档题.18. 某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:假设所有学生对活动方案是否支持相互独立.(I ) 分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(II ) 从该校全体男生中随机抽取 2 人,全体女生中随机抽取 1 人,估计这 3 人中恰有 2 人支持方案一的概率;31- cos 2 A 男生女生支持不支持支持不支持 方案一 200 人 400 人 300 人 100 人 方案二 350 人250 人150 人250 人(III)将该校学生支持方案的概率估计值记为p0,假设该校年级有500 名男生和300 名女生,除一年级外其他年级学生支持方案二的概率估计值记为p1,试比较p0与p1的大小.(结论不要求证明)1【答案】(Ⅰ)该校男生支持方案一的概率为33 ,该校女生支持方案一的概率为;4(Ⅱ)13,(Ⅲ)p <p 3610【解析】【分析】(I)根据频率估计概率,即得结果;(II)先分类,再根据独立事件概率乘法公式以及分类计数加法公式求结果;(III)先求p0,再根据频率估计概率p1,即得大小.2001【详解】(Ⅰ)该校男生支持方案一的概率为=,200+40033003该校女生支持方案一的概率为=;300+1004(Ⅱ)3 人中恰有2 人支持方案一分两种情况,(1)仅有两个男生支持方案一,(2)仅有一个男生支持方案一,一个女生支持方案一,所以3 人中恰有2 人支持方案一概率为:(1)2 (1-3) +C1(1)(1-1)3=13;(III)p1 <p34233436【点睛】本题考查利用频率估计概率、独立事件概率乘法公式,考查基本分析求解能力,属基础题.19.已知函数f (x) = 12 -x2.(I)求曲线y =f (x) 的斜率等于-2 的切线方程;(II)设曲线y =f (x) 在点(t, f (t)) 处的切线与坐标轴围成的三角形的面积为S (t) ,求S (t)的最小值.【答案】(Ⅰ)2x +y -13 = 0 ,(Ⅱ)32 .【解析】【分析】12)⋅ ,( ) (I ) 根据导数的几何意义可得切点的坐标,然后由点斜式可得结果;(II ) 根据导数的几何意义求出切线方程,再得到切线在坐标轴上的截距,进一步得到三角形的面积,最后利用导数可求得最值.【详解】(Ⅰ)因为 f (x ) = 12 - x 2 ,所以 f '( x ) = -2x , 设切点为( x 0 ,12 - x 0 ) ,则-2x 0 = -2 ,即 x 0 = 1 ,所以切点为(1,11) ,由点斜式可得切线方程 : y -11 = -2 ( x -1) ,即2x + y - 13 = 0 . (Ⅱ)显然t ≠ 0 ,因为 y = f (x ) 在点(t ,12 - t 2 ) 处的切线方程为: y - (12 - t 2 )= -2t ( x - t ) ,令 x = 0 ,得 y = t 2 +12 ,令 y = 0 t 2 +12 ,得x = ,2t所以S (t ) = 1⨯(t 2 + t 2 +12 22 | t |不妨设t > 0 (t < 0 时,结果一样) ,t 4 + 24t 2 + 1441 则 S t == (t 3+ 24t + 144) , 4t4 t所以 S '(t ) = 1(3t 2 + 24 - 144 3(t 4 + 8t 2 - 48)) = 4t 2 4t 23(t 2 - 4)(t 2 + 12)3(t - 2)(t + 2)(t 2 + 12)==,4t 24t 2由 S '(t ) > 0 ,得t > 2 ,由 S '(t ) < 0 ,得0 < t < 2 ,所以 S (t ) 在(0, 2) 上递减,在(2, +∞) 上递增, 所以t = 2 时, S (t ) 取得极小值, 也是最小值为 S (2) =16 ⨯16 = 32 .8【点睛】本题考查了利用导数的几何意义求切线方程,考查了利用导数求函数的最值,属于中档题.20. 已知椭圆C :x 2+y 2= 过点 A (-2, -1) ,且a = 2b .a 2b21y + ⎨ 2 y y2 (I ) 求椭圆 C 的方程:(II ) 过点 B (-4, 0) 的直线 l 交椭圆 C 于点 M , N ,直线 MA , NA 分别交直线 x = -4 于点P , Q .求| PB |的值.| BQ |【答案】(Ⅰ) x 2+ = 1;(Ⅱ)1.82【解析】【分析】(Ⅰ)由题意得到关于 a ,b 的方程组,求解方程组即可确定椭圆方程;(Ⅱ)首先联立直线与椭圆的方程,然后由直线 MA ,NA 的方程确定点 P ,Q 的纵坐标,将线段长度的比值转化为纵坐标比值的问题,进一步结合韦达定理可证得 y P + y Q = 0 ,从而可得两线段长度的比值.【详解】(1)设椭圆方程为: x 2 y = 1(a > b > 0),由题意可得:⎧ 4 + 1 = 1a b⎧a 2 = 8 ⎪ a2⎪⎩b 2 a = 2b ,解得: ⎨ , ⎩b = 2故椭圆方程为: x 2+ = 1.82(2)设 M (x 1, y 1 ) , N ( x 2 , y 2 ) ,直线 MN 的方程为: y = k ( x + 4) ,与椭圆方程 x 2 + = 1联立可得: x 2 + 4k 2 ( x + 4)2 = 8 ,8 2即:(4k 2 +1) x 2 + 32k 2 x + (64k 2 - 8) = 0 ,-32k 2 则: x 1 + x 2 =4k 2+1, x 1x 2 =64k 2 - 8 .4k 2+1直线 MA 的方程为: y +1 =y 1 +1( x + 2) ,x 1 + 2令 x = -4 可得: y = -2⨯ y 1 +1 -1 = -2⨯ k ( x 1 + 4) +1 - x 1 + 2 = -(2k +1)( x 1 + 4) , P x + 2 x + 2 x + 2 x + 21 1 1 12 2 22 2= ⨯= ,a n n a同理可得: y = -(2k +1)( x 2 + 4) . x 2 + 2很明显 y P y Q < 0 ,且:=,注意到:y + y = -(2k +1)⎛ x 1 + 4 + x 2 + 4 ⎫ = -(2k +1)⨯ ( x 1 + 4)( x 2 + 2) + ( x 2 + 4)( x 1 + 2) , P Qx + 2 x + 2 ⎪ ( x + 2)( x + 2) ⎝ 1 2 ⎭ 1 2而: ( x 1 + 4)( x 2 + 2) + ( x 2 + 4)( x 1 + 2) = 2 ⎡⎣x 1x 2 + 3( x 1 + x 2 ) + 8⎤⎦= ⎡ 64k 2 - 8 ⎛ -32k 2 ⎫ ⎤ 2 ⎢ 4k 2 +1+ 3⨯ 4k 2 +1 ⎪ + 8⎥⎣⎝ ⎭ ⎦ (64k 2 - 8) + 3⨯(-32k 2 ) + 8(4k 2 +1)2 0 4k 2+1故 y P + y Q = 0, y P = - y Q .从而= = 1 .【点睛】解决直线与椭圆的综合问题时,要注意:(1) 注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2) 强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21. 已知{a n } 是无穷数列.给出两个性质:2①对于{a }中任意两项a i , a j (i > j ) ,在{a } 中都存在一项a ,使 i= a ;n n mm ja 2②对于{a n }中任意项a n (n …3) ,在{a n } 中都存在两项a k , a l (k > l ) .使得a n(I) 若a n = n (n = 1, 2,) ,判断数列{a n } 是否满足性质①,说明理由;= k .a l(II) 若a = 2n -1(n = 1, 2, ) ,判断数列{a }是否同时满足性质①和性质②,说明理由; (III) 若{a n }是递增数列,且同时满足性质①和性质②,证明:{a n } 为等比数列.【答案】(Ⅰ)详见解析;(Ⅱ)详解解析;(Ⅲ)证明详见解析.【解析】PBPQy Py Q PB PQ y Py QQa 2 a a ma 【分析】(I) 根据定义验证,即可判断;(II) 根据定义逐一验证,即可判断;a 2 (III) 解法一:首先,证明数列中的项数同号,然后证明a 3 = 2,最后,用数学归纳法证明数a 1列为等比数列即可.解法二:首先假设数列中的项数均为正数,然后证得a 1, a 2 , a 3 成等比数列,之后证得a 1, a 2 , a 3, a 4 成等比数列,同理即可证得数列为等比数列,从而命题得证.a 29 【详解】(Ⅰ)Q a = 2, a = 3, 3 = ∉ Z ∴{a } 不具有性质①; 2 3 n2a 2 a 2(Ⅱ) Q ∀i , j ∈ N *, i > j , i = 2(2i - j )-1, 2i - j ∈ N * ∴ i = a∴{a }具有性质①; a j a ja 22i - j nQ ∀n ∈ N *, n ≥ 3, ∃k = n -1,l = n - 2, k = 2(2k -l )-1 = 2n -1 = a ,∴{a } 具有性质②;n nl(Ⅲ)【解法一】首先,证明数列中的项数同号,不妨设恒为正数:显然a n ≠ 0 (n ∉ N *),假设数列中存在负项,设N 0 = max {n | a n < 0} ,第一种情况:若 N 0 = 1,即a 0 < 0 < a 1 < a 2 < a 3 <,由①可知:存在m 1 ,满足a a 2 = 2 < 0 ,存在m 2 ,满足aa 2 = 3 < 0 , m 1 m 21 1a 2 a 2由 N 0 = 1可知 2= 3 ,从而a 2 = a 3 ,与数列的单调性矛盾,假设不成立. a 1 a 1a 2第二种情况:若 N ≥ 2 ,由①知存在实数m ,满足a = N 0< 0 ,由 N 的定义可知:m ≤ N ,0 012 2另一方面, a m = N 0> N 0 = aa a N 0 ,由数列 单调性可知: m > N 0 ,1N 0这与 N 0 的定义矛盾,假设不成立.同理可证得数列中的项数恒为负数.aaa 1a 1 1 1a 综上可得,数列中的项数同号.a 2 其次,证明a 3 = 2:a 1利用性质②:取n = 3 ,此时a 32= k (k > l ) , a l由数列的单调性可知a k > a l > 0 ,而 a 3 = a k ⋅ a ka l> a k ,故 k < 3 ,2 此时必有k = 2, l = 1 ,即a3 = 2,a 1最后,用数学归纳法证明数列为等比数列:假设数列{a n }的前k (k ≥ 3) 项成等比数列,不妨设a s= a q s -1(1 ≤ s ≤ k ) ,其中a 1 > 0, q > 1,( a 1 < 0, 0 < q < 1 情况类似)由①可得:存在整数m ,满足 a a2= k = a q k > a,且a = a q k ≥ a(*)a k -1a 2 am 1 k +1由②得:存在 s > t ,满足: a = s = a ⋅ s > a ,由数列的单调性可知: t < s ≤ k +1, k +1 a s a ss -1t t22s -t - - 由 a = a q (1 ≤ s ≤ k ) 可得: a = s= a q 1 > a = a q k 1 (**)s 1 k +1 1 k 1t 由(**)和(*)式可得: a q k ≥ a q 2s -t -1 > a q k -1,结合数列的单调性有: k ≥ 2s - t -1 > k -1, 注意到 s , t , k 均为整数,故k = 2s - t -1, 代入(**)式,从而a= a q k .k +11总上可得,数列{a }的通项公式为: a = a q n -1 .nn1即数列{a n }为等比数列.【解法二】假设数列中的项数均为正数:m1 kaa 1 4 1 4 1 4 1 4 1 首先利用性质②:取n = 3 ,此时 a 3由数列的单调性可知a k > a l > 0 ,2= k (k > l ) , a l而 a 3 = a k ⋅ a ka l> a k ,故 k < 3 ,2 此时必有k = 2, l = 1 ,即a3 = 2,a 1即 a , a , a 成等比数列,不妨设a = a q , a = a q 2(q > 1) ,1232 13 1a 2 a 2q 4然后利用性质①:取i = 3, j = 2 ,则a = 3 = 1 = a q 3 , a 2 a 1q即数列中必然存在一项的值为a q 3 ,下面我们来证明a = a q 3,否则,由数列的单调性可知 a < a q 3 ,在性质②中,取n = 4 ,则a a 2 = k = a a k > a,从而k < 4 ,4 a k a kl l与前面类似的可知则存在{k , l } ⊆ {1, 2, 3}(k > l ) ,满足a 4a 2a 2= k ,a l若 k = 3, l = 2 ,则: a = k = a q 3,与假设矛盾;1la 2 若 k = 3, l = 1,则: a = k = a q 4 > a q 3 ,与假设矛盾; 1 1la 2若 k = 2, l = 1 ,则: a = k = a q 2= a ,与数列的单调性矛盾;1 3l即不存在满足题意的正整数 k , l ,可见a < a q 3 不成立,从而a = a q 3,同理可得:a = a q 4 , a = a q 5 , ,从而数列{a } 为等比数列,5161n同理,当数列中的项数均为负数时亦可证得数列为等比数列.由推理过程易知数列中的项要么恒正要么恒负,不会同时出现正数和负数.从而题中的结论得证,数列{a n } 为等比数列.m 14a 4 a 4a【点睛】本题主要考查数列的综合运用,等比数列的证明,数列性质的应用,数学归纳法与推理方法、不等式的性质的综合运用等知识,意在考查学生的转化能力和推理能力.。

2019年北京卷文科数学高考真题(原卷 答案)

2019年北京卷文科数学高考真题(原卷 答案)

绝密★启用前2019年普通高等学校招生全国统一考试(北京卷)文科数学本试卷共20题,共150分。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={x|–1<x<2},B={x|x>1},则A∪B=(A)(–1,1)(B)(1,2)(C)(–1,+∞)(D)(1,+∞)(2)已知复数z=2+i,则z z⋅=(A)3(B)5(C)3 (D)5(3)下列函数中,在区间(0,+∞)上单调递增的是(A)12y x=(B)y=2x−(C)12logy x=(D)1yx=(4)执行如图所示的程序框图,输出的s值为(A)1 (B)2 (C)3 (D)4(5)已知双曲线2221xya−=(a>0)的离心率是5,则a=(A)6(B)4 (C)2 (D)1 2(6)设函数f(x)=cos x+b sin x(b为常数),则“b=0”是“f(x)为偶函数”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(7)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为k m 的星的亮度为k E (k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为 (A )1010.1(B )10.1(C )lg10.1(D )10.110−(8)如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为(A )4β+4cos β (B )4β+4sin β (C )2β+2cos β (D )2β+2sin β第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2019年北京市高考数学试卷(文科)(解析版)

2019年北京市高考数学试卷(文科)(解析版)

2019年北京市高考数学试卷(文科)(解析版)绝密★本科目考试启用前2019年普通高等学校招生全国统一考试数 学(文)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B =A. (–1,1)B. (1,2)C. (–1,+∞)D. (1,+∞)【答案】C【解析】【分析】根据并集的求法直接求出结果.【详解】∵{|12},{|1}A x x B x =-<<=> ,∴(1,)A B ⋃=+∞ ,故选C.【点睛】考查并集的求法,属于基础题.2.已知复数z =2+i ,则z z ⋅=A. B. C. 3 D. 5【答案】D【解析】【分析】 题先求得z ,然后根据复数的乘法运算法则即得. 【详解】∵z 2i,z z (2i)(2i)5=+⋅=+-= 故选D.【点睛】本题主要考查复数的运算法则,共轭复数的定义等知识,属于基础题..3.下列函数中,在区间(0,+∞)上单调递增的是 A. 12y x = B. y =2x - C. 12log y x = D. 1y x= 【答案】A【解析】【分析】由题意结合函数的解析式考查函数的单调性即可..【详解】函数122,log x y y x -==, 1y x= 在区间(0,)+∞ 上单调递减, 函数12y x = 在区间(0,)+∞上单调递增,故选A .【点睛】本题考查简单的指数函数、对数函数、幂函数的单调性,注重对重要知识、基础知识的考查,蕴含数形结合思想,属于容易题.4.执行如图所示的程序框图,输出的s 值为A. 1B. 2C. 3D. 4 【答案】B【解析】根据程序框图中的条件逐次运算即可.【详解】运行第一次, =1k ,2212312s ⨯==⨯- , 运行第二次,2k = ,2222322s ⨯==⨯- , 运行第三次,3k = ,2222322s ⨯==⨯- , 结束循环,输出=2s ,故选B .【点睛】本题考查程序框图,属于容易题,注重基础知识、基本运算能力的考查.5.已知双曲线2221x y a-=(a >0则a =A. B. 4 C. 2 D. 12【答案】D【解析】【分析】本题根据根据双曲线的离心率的定义,列关于a 的方程求解.【详解】 ∵双曲线的离心率c e a==,c =,=, 解得12a =, 故选D.【点睛】本题主要考查双曲线的离心率的定义,双曲线中a,b,c 的关系,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.6.设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【解析】【分析】根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -进行判断.【详解】0b = 时,()cos sin cos f x x b x x =+=, ()f x 为偶函数;()f x 为偶函数时,()=()f x f x -对任意的x 恒成立,()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=- ,得0bsinx =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.【点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查.7.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为m 1的星的亮度为E 2(k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为A. 1010.1B. 10.1C. lg10.1D. 10–10.1 【答案】A【解析】【分析】由题意得到关于12,E E 的等式,结合对数的运算法则可得亮度的比值. 【详解】两颗星的星等与亮度满足12125lg 2E m m E -=,令211.45,26.7m m =-=-, ()10.111212222lg ( 1.4526.7)10.1,1055E E m m E E =⋅-=-+==. 故选:A【点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及指数对数运算.8.如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,APB是锐角,大小为β.图中阴影区域的面积的最大值为A. 4β+4cosβB. 4β+4sinβC. 2β+2cosβD.2β+2sinβ【答案】B【解析】【分析】阴影部分的面积S=S△P AB+ S1- S△OAB.其中S1、S△OAB的值为定值.当且仅当S△P AB取最大值时阴影部分的面积S取最大值.【详解】观察图象可知,当P为弧AB的中点时,阴影部分的面积S取最大值,此时∠BOP=∠AOP=π-β, 面积S的最大值为βr2+S△POB+ S△POA=4β+12|OP||OB|s in(π-β)+12|OP||OA|Sin(π-β)=4β+2Sinβ+2Sinβ=4β+4 Sinβ,故选B.【点睛】本题主要考查阅读理解能力、数学应用意识、数形结合思想及数学式子变形和运算求解能力,有一定的难度.关键观察分析区域面积最大时的状态,并将面积用边角等表示.第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

完整word版北京高考数学文科试题及答案

完整word版北京高考数学文科试题及答案

绝密★启封并使用完毕前2021年普通高等学校招生全国统一考试数学〔文〕〔北京卷〕本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一局部〔选择题共40分〕一、选择题:共8个小题,每题5分,共40分。

在每题的四个选项中,选出符合题目要求的一项。

〔1〕假设集合A x 5 x 2,B x 3 x 3,那么A B 〔〕(A) x 3 x 2 (B) x 5 x 2 (C) x 3 x 3 (D) x 5 x 3〔2〕圆心为〔1,1〕且过原点的圆的方程是〔〕A〕x1(C〕x1222y12 y11〔B〕x11222y12 y12〔D〕x12〔3〕以下函数中为偶函数的是〔〕〔A〕y x2sinx〔B〕y x2cosx〔C〕y lnx〔D〕y2x〔4〕某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,那么该样本的老年人数为〔〕A〕90〔B〕100〔C〕180〔D〕300类别人数老年教师900中年教师1800青年教师1600合计4300〔5〕执行如下图的程序框图,输出的k值为〔〕A〕3〔B〕4(C)5(D)6〔6〕设a,b是非零向量,“ab ab〞是“a//b〞的〔〕(〔A〕充分而不必要条件〔B〕必要而不充分条件C〕充分必要条件D〕既不充分也不必要条件〔7〕某四棱锥的三视图如下图,该四棱锥最长棱的棱长为〔〕(A)1〔B〕错误!未找到引用源。

〔B〕错误!未找到引用源。

(D)2〔8〕某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况。

在这段时间内,该车每100千米平均耗油量为〔〕加油时间加油量〔升〕加油时的累计里程〔千米〕2021年5月1日12350002021年5月15日4835600注:“累计里程〞指汽车从出厂开始累计行驶的路程〔A〕6升〔B〕8升〔C〕10升〔D〕12升第二局部〔非选择题共110分〕二、填空题〔共6小题,每题5分,共30分〕〔9〕复数i1i的实部为.1〔10〕23,32,log25三个数中最大数的是.〔11〕在ABC中,a3,b6,A2,那么B.3〔12〕2,0是双曲线x2y21b0的一个焦点,那么bb2.〔13〕如图,ABC及其内部的点组成的集合记为D Px,y为D中任意一点,那么z2x3y的最大值,为.14〕高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如以下图所示,甲、乙、丙为该班三位学生。

普通高等学校招生全国统一考试文科数学(北京卷)(含答案全解析)

普通高等学校招生全国统一考试文科数学(北京卷)(含答案全解析)

2015年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)1.(2015北京,文1)若集合A={x|-5<x<2},B={x|-3<x<3},则A∩B=()A.{x|-3<x<2}B.{x|-5<x<2}C.{x|-3<x<3}D.{x|-5<x<3}答案:A解析:在数轴上将集合A,B表示出来,如图所示.由交集的定义可得,A∩B为图中阴影部分,即{x|-3<x<2}.2.(2015北京,文2)圆心为(1,1)且过原点的圆的方程是()A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2答案:D解析:由题意可得圆的半径为r=√2,则圆的标准方程为(x-1)2+(y-1)2=2.3.(2015北京,文3)下列函数中为偶函数的是()A.y=x2sin xB.y=x2cos xC.y=|ln x|D.y=2-x答案:B解析:根据偶函数的定义f(-x)=f(x),A选项为奇函数,B选项为偶函数,C选项定义域为(0,+∞)不具有奇偶性,D选项既不是奇函数也不是偶函数.故选B.4.(2015北京,文4)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,)A.90B.100C.180D.300答案:C解析:方法一:由题意,总体中青年教师与老年教师的比例为1 600900=169.设样本中老年教师的人数为x,由分层抽样的性质可得总体与样本中青年教师与老年教师的比例相等,即320x =169,解得x=180.故选C.方法二:由已知分层抽样中青年教师的抽样比为3201 600=15,由分层抽样的性质可得老年教师的抽样比也等于15,所以样本中老年教师的人数为900×15=180.故选C.5.(2015北京,文5)执行如图所示的程序框图,输出的k值为()A.3B.4C.5D.6 答案:B解析:初值为a=3,k=0.进入循环体后,a=32,k=1;a=34,k=2;a=38,k=3;a=316,k=4,此时a<14,退出循环,故k=4.6.(2015北京,文6)设a,b是非零向量,“a·b=|a||b|”是“a∥b”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:A解析:a·b=|a||b|cos <a,b>,若a·b=|a||b|,则cos <a,b>=1,即<a,b>=0,a∥b.而当a∥b时,<a,b>还可能是π,此时a·b=-|a||b|,故“a·b=|a||b|”是“a∥b”的充分而不必要条件,选A.7.(2015北京,文7)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1B.√2C.√3D.2答案:C解析:四棱锥的直观图如图所示.由三视图可知,SB⊥平面ABCD,SD是四棱锥最长的棱,SD=√SB2+BD2=√SB2+AB2+BC2=√3. 8.(2015北京,文8).注:“累计里程”指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为()A.6升B.8升C.10升D.12升答案:B解析:因为第一次油箱加满,所以第二次的加油量即为该段时间内的耗油量,故耗油量V=48升.而这段时间内行驶的里程数s=35 600-35 000=600(千米).所以在这段时间内,该车每100千米平均耗油量为48600×100=8(升).故选B.第二部分(非选择题 共110分)二、填空题(共6小题,每小题5分,共30分)9.(2015北京,文9)复数i(1+i)的实部为 . 答案:-1解析:复数i(1+i)=i -1=-1+i,其实部为-1.10.(2015北京,文10)2-3,312,log 25三个数中最大的数是 . 答案:log 25解析:2-3=18<1,312=√3,log 25>log 24=2>√3,所以log 25最大.11.(2015北京,文11)在△ABC 中,a=3,b=√6,∠A=2π3,则∠B= . 答案:π4解析:由正弦定理,得a sinA=b sinB,即3√32=√6sinB,所以sin B=√22.所以∠B=π4.12.(2015北京,文12)已知(2,0)是双曲线x 2-y 2b2=1(b>0)的一个焦点,则b= .答案:√3解析:由题意知c=2,a=1,b 2=c 2-a 2=3.又b>0,所以b=√3.13.(2015北京,文13)如图,△ABC 及其内部的点组成的集合记为D ,P (x ,y )为D 中任意一点,则z=2x+3y 的最大值为 .答案:7解析:由题图可知,目标函数y=-23x+z 3,因此当x=2,y=1,即过点A 时z 取最大值为7.14.(2015北京,文14)高三年级267位学生参加期末考试,某班37位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是 ; ②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是 . 答案:①乙 ②数学解析:①由图可知,甲的语文成绩排名比总成绩排名靠后;而乙的语文成绩排名比总成绩排名靠前.故填乙.②由图可知,比丙的数学成绩排名还靠后的人比较多;而总成绩的排名中比丙排名靠后的人数比较少,所以丙的数学成绩的排名更靠前.故填数学.三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程)15.(本小题13分)(2015北京,文15)已知函数f (x )=sin x-2√3sin 2x2. (1)求f (x )的最小正周期; (2)求f (x )在区间[0,2π3]上的最小值. 解:(1)因为f (x )=sin x+√3cos x-√3=2sin (x +π3)−√3,所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3,所以π3≤x+π3≤π.当x+π3=π,即x=2π3时,f (x )取得最小值.所以f (x )在区间[0,2π3]上的最小值为f (2π3)=-√3.16.(本小题13分)(2015北京,文16)已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7.问:b 6与数列{a n }的第几项相等? 解:(1)设等差数列{a n }的公差为d.因为a 4-a 3=2,所以d=2.又因为a 1+a 2=10,所以2a 1+d=10,故a 1=4. 所以a n =4+2(n-1)=2n+2(n=1,2,…). (2)设等比数列{b n }的公比为q. 因为b 2=a 3=8,b 3=a 7=16, 所以q=2,b 1=4.所以b 6=4×26-1=128. 由128=2n+2得n=63.所以b 6与数列{a n }的第63项相等.17.(本小题13分)(2015北京,文17)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解:(1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2. (2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3. (3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2, 顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.18.(本小题14分)(2015北京,文18)如图,在三棱锥V-ABC 中,平面VAB ⊥平面ABC ,△VAB 为等边三角形,AC ⊥BC ,且AC=BC=√2,O ,M 分别为AB ,VA 的中点.(1)求证:VB ∥平面MOC ;(2)求证:平面MOC ⊥平面VAB ; (3)求三棱锥V-ABC 的体积.解:(1)因为O ,M 分别为AB ,VA 的中点,所以OM ∥VB.又因为VB ⊄平面MOC , 所以VB ∥平面MOC.(2)因为AC=BC ,O 为AB 的中点, 所以OC ⊥AB.又因为平面VAB ⊥平面ABC ,且OC ⊂平面ABC , 所以OC ⊥平面VAB ,所以平面MOC ⊥平面VAB.(3)在等腰直角三角形ACB 中,AC=BC=√2, 所以AB=2,OC=1.所以等边三角形VAB 的面积S △VAB =√3. 又因为OC ⊥平面VAB ,所以三棱锥C-VAB 的体积等于13OC ·S △VAB =√33.又因为三棱锥V-ABC 的体积与三棱锥C-VAB 的体积相等, 所以三棱锥V-ABC 的体积为√33.19.(本小题13分)(2015北京,文19)设函数f (x )=x 22-k ln x ,k>0. (1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,√e ]上仅有一个零点. 解:(1)由f (x )=x 22-k ln x (k>0)得f'(x )=x-k x=x 2−kx. 由f'(x )=0解得x=√k .f (x )与f'(x )在区间(0,+∞)所以,f (x )的单调递减区间是(0,√k ),单调递增区间是(√k ,+∞);f (x )在x=√k 处取得极小值f (√k )=k(1−lnk)2. (2)由(1)知,f (x )在区间(0,+∞)上的最小值为f (√k )=k(1−lnk)2. 因为f (x )存在零点,所以k(1−lnk)2≤0,从而k ≥e .当k=e 时,f (x )在区间(1,√e )上单调递减,且f (√e )=0, 所以x=√e 是f (x )在区间(1,√e ]上的唯一零点.当k>e 时,f (x )在区间(0,√e )上单调递减,且f (1)=12>0,f (√e )=e−k2<0, 所以f (x )在区间(1,√e ]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,√e ]上仅有一个零点.20.(本小题14分)(2015北京,文20)已知椭圆C :x 2+3y 2=3,过点D (1,0)且不过点E (2,1)的直线与椭圆C 交于A ,B 两点,直线AE 与直线x=3交于点M. (1)求椭圆C 的离心率;(2)若AB 垂直于x 轴,求直线BM 的斜率;(3)试判断直线BM 与直线DE 的位置关系,并说明理由. 解:(1)椭圆C 的标准方程为x 23+y 2=1.所以a=√3,b=1,c=√2. 所以椭圆C 的离心率e=c a=√63.(2)因为AB 过点D (1,0)且垂直于x 轴,所以可设A (1,y 1),B (1,-y 1). 直线AE 的方程为y-1=(1-y 1)(x-2). 令x=3,得M (3,2-y 1). 所以直线BM 的斜率k BM =2−y 1+y 13−1=1. (3)直线BM 与直线DE 平行.证明如下:当直线AB 的斜率不存在时,由(2)可知k BM =1. 又因为直线DE 的斜率k DE =1−02−1=1, 所以BM ∥DE.当直线AB 的斜率存在时,设其方程为y=k (x-1)(k ≠1). 设A (x 1,y 1),B (x 2,y 2),则直线AE 的方程为y-1=y 1−1x 1−2(x-2). 令x=3,得点M (3,y 1+x 1−3x 1−2). 由{x 2+3y 2=3,y =k(x −1)得(1+3k 2)x 2-6k 2x+3k 2-3=0. 所以x 1+x 2=6k21+3k2,x 1x 2=3k 2−31+3k2,直线BM 的斜率k BM =y 1+x 1−3x 1−2−y 23−x 2.因为k BM -1=k(x 1−1)+x 1−3−k(x 2−1)(x 1−2)−(3−x 2)(x 1−2)(3−x 2)(x 1−2)=(k−1)[−x 1x 2+2(x 1+x 2)−3](3−x 2)(x 1−2)=(k−1)(−3k 2+31+3k 2+12k21+3k2−3)(3−x 2)(x 1−2)=0.所以k BM =1=k DE ,所以BM ∥DE. 综上可知,直线BM 与直线DE 平行.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2016年普通高等学校招生全国考试数学(文)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本市卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合{|24},{|3>5}A x x B x x x =<<=<或,则A B =(A ){|2<<5}x x (B ){|<45}x x x >或 (C ){|2<<3}x x (D ){|<25}x x x >或 (2)复数12i=2i+- (A )i (B )1+i (C )i - (D )1i -(3)执行如图所示的程序框图,输出的s 值为 (A )8 (B )9 (C )27(D )36 (4)下列函数中,在区间(1,1)- 上为减函数的是 (A )11y x=- (B )cos y x = (C )ln(1)y x =+ (D )2x y -= (5)圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为(A )1 (B )2 (C )2 (D )22(6)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为(A )15 (B )25(C )825 (D )925(7)已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x ?y 的最大值为(A )?1 (B )3 (C )7 (D )8(8)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.学生序号12345678910立定跳远(单位:米) 1.96 1.92 1.82 1.80 1.78 1.76 1.74 1.72 1.68 1.60 30秒跳绳(单位:次) 63a 75 60 63 72 70 a ?1b 65在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则(A )2号学生进入30秒跳绳决赛 (B )5号学生进入30秒跳绳决赛 (C )8号学生进入30秒跳绳决赛 (D )9号学生进入30秒跳绳决赛 第二部分(非选择题共110分)二、填空题(共6小题,每小题5分,共30分)(9)已知向量=(1,3),(3,1)=a b ,则a 与b 夹角的大小为_________. (10)函数()(2)1xf x x x =≥-的最大值为_________. (11)某四棱柱的三视图如图所示,则该四棱柱的体积为___________.(12) 已知双曲线22221x y a b-= (a >0,b >0)的一条渐近线为2x +y =0,一个焦点为(5 ,0),则a =_______;b =_____________.(13)在△ABC 中,23A π∠= ,a=3c ,则bc=_________.(14)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有______种; ②这三天售出的商品最少有_______种.三、解答题(共6题,共80分.解答应写出文字说明,演算步骤或证明过程) (15)(本小题13分)已知{a n }是等差数列,{b n }是等差数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (Ⅰ)求{a n }的通项公式;(Ⅱ)设c n = a n + b n ,求数列{c n }的前n 项和. (16)(本小题13分)已知函数f (x )=2sin ωx cos ωx + cos 2ωx (ω>0)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求f (x )的单调递增区间. (17)(本小题13分)某市民用水拟实行阶梯水价,每人用水量中不超过w 立方米的部分按4元/立方米收费,超出w 立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(I )如果w 为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w 至少定为多少?(II )假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费. (18)(本小题14分)如图,在四棱锥P-ABCD 中,PC ⊥平面ABCD ,,AB DC DC AC ⊥∥ (I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III)设点E 为AB 的中点,在棱PB 上是否存在点F ,使得PA CEF ⊥平面?说明理由.(19)(本小题14分)已知椭圆C :22221x y a b+=过点A (2,0),B (0,1)两点.(I )求椭圆C 的方程及离心率;(II )设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值. (20)(本小题13分) 设函数()32.f x x ax bx c =+++(I )求曲线().y f x =在点()()0,0f 处的切线方程;(II )设4a b ==,若函数()f x 有三个不同零点,求c 的取值范围; (III )求证:230a b ->是().f x 有三个不同零点的必要而不充分条件.2016年普通高等学校招生全国统一考试数学(文)(北京卷)参考答案一、选择题(共8小题,每小题5分,共40分)(1)C (2)A (3)B (4)D (5)C (6)B (7)C (8)B 二、填空题(共6小题,每小题5分,共30分)(9)6π (10)2 (11)32 (12)1 2(13)1 (14)16 29 三、解答题(共6小题,共80分) (15)(共13分)解:(I )等比数列{}n b 的公比32933b q b ===, 所以211b b q==,4327b b q ==. 设等差数列{}n a 的公差为d . 因为111a b ==,14427a b ==, 所以11327d +=,即2d =.所以21n a n =-(1n =,2,3,⋅⋅⋅). (II )由(I )知,21n a n =-,13n n b -=. 因此1213n n n n c a b n -=+=-+. 从而数列{}n c 的前n 项和2312n n -=+.(16)(共13分)解:(I )因为()2sin cos cos2f x x x x ωωω=+2sin 24x πω⎛⎫=+ ⎪⎝⎭,所以()f x 的最小正周期22ππωωT ==. 依题意,ππω=,解得1ω=. (II )由(I )知()2sin 24f x x π⎛⎫=+ ⎪⎝⎭.函数sin y x =的单调递增区间为2,222k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z ).由222242k x k πππππ-≤+≤+,得388k x k ππππ-≤≤+. 所以()f x 的单调递增区间为3,88k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z ). (17)(共14分)解:(I )由用水量的频率分布直方图知,该市居民该月用水量在区间[]0.5,1,(]1,1.5,(]1.5,2,(]2,2.5,(]2.5,3内的频率依次为0.1,0.15,0.2,0.25,0.15.所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%. 依题意,w 至少定为3.(II )由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表: 组号 1 2 3 4 5 6 7 8 分组 频率 根据题意,该市居民该月的人均水费估计为:10.5=(元). (18)(共13分) 解:(I )因为C P ⊥平面CD AB , 所以C DC P ⊥. 又因为DC C ⊥A , 所以DC ⊥平面C PA .(II )因为//DC AB ,DC C ⊥A , 所以C AB ⊥A .因为C P ⊥平面CD AB , 所以C P ⊥AB .所以AB ⊥平面C PA .所以平面PAB ⊥平面C PA .(III )棱PB 上存在点F ,使得//PA 平面C F E .证明如下: 取PB 中点F ,连结F E ,C E ,CF . 又因为E 为AB 的中点, 所以F//E PA .又因为PA ⊄平面C F E , 所以//PA 平面C F E . (19)(共14分) 解:(I )由题意得,2a =,1b =.所以椭圆C 的方程为2214x y +=.又223c a b =-=, 所以离心率32c e a ==. (II )设()00,x y P (00x <,00y <),则22044x y +=. 又()2,0A ,()0,1B ,所以, 直线PA 的方程为()0022y y x x =--.令0x =,得0022y y x M =--,从而002112y y x M BM =-=+-. 直线PB 的方程为0011y y x x -=+. 令0y =,得001x x y N =--,从而00221x x y N AN =-=+-.所以四边形ABNM 的面积2=.从而四边形ABNM 的面积为定值. (20)(共13分)解:(I )由()32f x x ax bx c =+++,得()232f x x ax b '=++. 因为()0f c =,()0f b '=,所以曲线()y f x =在点()()0,0f 处的切线方程为y bx c =+. (II )当4a b ==时,()3244f x x x x c =+++, 所以()2384f x x x '=++.令()0f x '=,得23840x x ++=,解得2x =-或23x =-.()f x 与()f x '在区间(),-∞+∞上的情况如下:所以,当0c >且32027c -<时,存在()14,2x ∈--,222,3x ⎛⎫∈-- ⎪⎝⎭,32,03x ⎛⎫∈- ⎪⎝⎭,使得()()()1230f x f x f x ===.由()f x 的单调性知,当且仅当320,27c ⎛⎫∈ ⎪⎝⎭时,函数()3244f x x x x c =+++有三个不同零点.(III )当24120a b ∆=-<时,()2320f x x ax b '=++>,(),x ∈-∞+∞, 此时函数()f x 在区间(),-∞+∞上单调递增,所以()f x 不可能有三个不同零点. 当24120a b ∆=-=时,()232f x x ax b '=++只有一个零点,记作0x .当()0,x x ∈-∞时,()0f x '>,()f x 在区间()0,x -∞上单调递增; 当()0,x x ∈+∞时,()0f x '>,()f x 在区间()0,x +∞上单调递增. 所以()f x 不可能有三个不同零点.综上所述,若函数()f x 有三个不同零点,则必有24120a b ∆=->. 故230a b ->是()f x 有三个不同零点的必要条件.当4a b ==,0c =时,230a b ->,()()232442f x x x x x x =++=+只有两个不同 零点,所以230a b ->不是()f x 有三个不同零点的充分条件. 因此230a b ->是()f x 有三个不同零点的必要而不充分条件.。

相关文档
最新文档