通信第三章 常见函数的傅里叶变换

合集下载

第三章 傅里叶变换

第三章 傅里叶变换

2 T
t0 T t0
f
(t) sin(nw1t)dt
令 An
an2 bn2
,n
arctan
bn an
,则:
An :称为n次谐波分量的振幅,是n的偶函数。
n :称为n次谐波分量的相位,是n的奇函数。
一、三角形式
3.1 周期信号的傅里叶级数
f
(t)
a0 2
n1
An
cos(nw1t
n )
A0 2
1.5
1.5
1
1
1
1
1
1
0.4
0.4
0.4
0.2
0.2
0.4
0.2
0.2
- 6- 5 - 4- 3- 2 - o 2 3 4 5 6
- 6- 5 - 4- 3- 2 - o 2 3 4 5 6
(a)
相位谱:
(a) n 45° n
45°
45° 45°
30°
30°
30°
20°
30°
20°
15° 10°
(2)时域非周期信号,造成频域连续的谱。
连续 非周期
3.2 非周期信号的傅里叶变换
二、典型非周期信号的频谱函数
(1) g (t)
Sa( w )
2
解: F(w)
g
(t
)e
jwt
dt
2
1
e
jwt
dt
2
e jwt 2
2
jw
jw
jw
e 2 e 2
jw
2sin( w )
2
w
sin( w )
性质中所对应的原函数都是乘以 (-jt)。

傅里叶变换性质及常见函数傅里叶变换总结,表格打印版

傅里叶变换性质及常见函数傅里叶变换总结,表格打印版
(实偶函数)
(为虚、奇函数)
7
奇偶性
(为实、偶函数)
(为实、偶函数)
(为实、奇函数)
(为虚、奇函数)
8
尺度展缩

9
时域延迟

10
频移
▲初值:
(条件:)
(条件:)
(条件: )
11
时域微分
▲ 函数的性质
·
·


·
·
* ;

·
·


·
12
时域积分
பைடு நூலகம்13
频域微分
14
频域积分
15
时域卷积
16
频域卷积
17
时域抽烟
序号
性质名称
▲信号功率:
(直流分量+各次谐波分量)
▲能量信号:
1.一个信号只能是功率信号或
能量信号二者之一,但也可
以两者都不是。
2.直流信号与周期信号为功率
信号;收敛和有界的非周期
信号为能量信号。
3.功率信号能量为∞,能量信
号功率为0.
1
唯一性
2
齐次性
3
叠加性
4
线性
5
折叠性
6
对称性
(一般函数)
(为实、偶函数)
18
频域抽样
常用时间信号傅里叶变换
常用非周期信号的傅里叶变换
周期信号的傅里叶变换
序号

1
1

2

3
单位直流信号1

4
5
6
一般周期信号

其中
或,
或 ,

常用的傅里叶变换

常用的傅里叶变换

常用的傅里叶变换1. 引言傅里叶变换是一种重要的数学工具,用于将一个函数或信号从时域转换到频域。

它在信号处理、图像处理、通信等领域广泛应用。

本文将介绍傅里叶变换的基本概念、性质和常见应用。

2. 傅里叶级数傅里叶级数是傅里叶变换的基础,它将周期函数表示为一系列正弦和余弦函数的和。

对于周期为T 的函数f(t),其傅里叶级数表示为:f (t )=a 0+∑(a n cos (2πnt T )+b n sin (2πnt T ))∞n=1 其中,a 0、a n 和b n 是系数,可以通过函数f(t)在一个周期内的积分得到。

傅里叶级数展开了周期函数在频域上的频谱分布。

3. 傅里叶变换傅里叶变换是将非周期函数表示为连续频谱的一种方法。

对于函数f(t),其傅里叶变换表示为:F (ω)=∫f ∞−∞(t )e −jωt dt其中,F (ω)是函数f(t)的频谱,ω是频率。

傅里叶变换的逆变换为:f (t )=12π∫F ∞−∞(ω)e jωt dω 傅里叶变换将函数从时域转换到频域,可以将信号分解为不同频率的成分,从而方便分析和处理。

4. 傅里叶变换的性质傅里叶变换具有许多重要的性质,其中一些常用的性质包括:•线性性质:傅里叶变换是线性的,即对于常数a 和b ,有F(af (t )+bf (t ))=aF(f (t ))+bF(g (t ))。

• 平移性质:如果f (t )的傅里叶变换为F (ω),那么f (t −t 0)的傅里叶变换为e −jωt 0F (ω)。

•尺度性质:如果f(t)的傅里叶变换为F(ω),那么f(at)的傅里叶变换为1 |a|F(ωa)。

•对称性质:如果f(t)是实函数,并且其傅里叶变换为F(ω),那么F(−ω)为F(ω)的共轭。

这些性质使得傅里叶变换更加灵活和方便,在实际应用中能够简化计算和分析过程。

5. 傅里叶变换的应用傅里叶变换在信号处理、图像处理、通信等领域有广泛的应用。

以下是一些常见的应用:•频谱分析:傅里叶变换可以将信号从时域转换到频域,可以分析信号的频谱分布,帮助理解信号的频率成分和特征。

通信常见函数的傅里叶变换

通信常见函数的傅里叶变换

式中,n
arctan
bn an
cn
an2bn2
Opposite Hypotenuse
为n次谐波初始相位。 为n次谐波振幅。
! 并非任意周期信号都能进行傅里叶级数展开!
f ( t ) 可展开为傅里叶级数的条件:
(1)f ( t 绝) 对可积,即: t2 f (t) dt t1
(2)f ( t 在) 区间内有有限个间断点;
第3章 傅里叶变换
重点:
1.傅里叶级数定义及适用条件 2.常见周期信号的频谱,非周期性信号的频谱 3.傅里叶变换的定义及适用条件及性质 4.周期信号的傅里叶变换 5.抽样定理 6.功率频谱与能量频谱 7.系统频域分析法 8.希尔伯特变换
3.1 傅里叶变换的产生
傅里叶1768年生于法国,1807年提 出“任何周期信号都可用正弦函数 级数表示”, 1822年在“热的分析 理论”一书中再次提出。1829年 狄里赫利给出傅里叶变换收敛条件。 傅里叶变换得到大规模的应用,则 是到了上世纪60年代之后。
T0 2
T0 2
(t)ejn0tdt1 T0
T0
(t)
1 T0
ejn0t
n
a0
1 T0

anT20 T2 T020(t)cosn0tdtT20
bn 0
T 0 ( t )
的三角傅里叶级数为:T0(t)T10 T20
cosn0t
n1
例 求下图中三角波的三角傅里叶级数。
解 (1)将周期函数 f ( t ) 在 t [0,T0]内的函数记为
第一个过零点为n =4 。 F&n 在2π/有4值1(谱线)
f (t)
1
T
2
o

常用傅里叶变换表

常用傅里叶变换表

常用傅里叶变换表在数学和工程领域中,傅里叶变换是一种极其重要的工具,它能够将复杂的时域信号转换为频域表示,从而帮助我们更好地理解和分析各种信号的特性。

而常用傅里叶变换表则为我们提供了一系列常见函数的傅里叶变换结果,方便我们在实际应用中快速查找和使用。

首先,让我们来了解一下什么是傅里叶变换。

简单来说,傅里叶变换是一种数学变换,它将一个函数从时域(以时间为变量)转换到频域(以频率为变量)。

通过这种转换,我们可以将一个信号分解为不同频率的正弦和余弦波的组合,从而揭示出信号中所包含的频率成分。

在常用傅里叶变换表中,有一些基本的函数及其对应的傅里叶变换值得我们熟悉。

单位冲激函数(也称为狄拉克δ函数)是一个非常特殊的函数。

它在某一时刻有一个无限大的值,而在其他时刻的值都为零。

其傅里叶变换是常数 1。

这意味着单位冲激函数包含了所有频率的成分,且各个频率成分的幅度相同。

单位阶跃函数,它在 t < 0 时取值为 0,在t ≥ 0 时取值为 1。

其傅里叶变换是 1 /(jω) +πδ(ω) ,其中 j 是虚数单位,ω 是角频率,δ(ω) 是狄拉克δ函数。

正弦函数sin(ω₀t) 的傅里叶变换是jπδ(ω ω₀) δ(ω +ω₀) 。

这表明正弦函数只包含两个频率成分,即±ω₀。

余弦函数cos(ω₀t) 的傅里叶变换是πδ(ω ω₀) +δ(ω +ω₀) 。

指数函数 e^(jω₀t) 的傅里叶变换是2πδ(ω ω₀) 。

矩形脉冲函数,即在某个时间段内取值为 1,其他时间段为 0 的函数,其傅里叶变换是一个 sinc 函数。

这些常见函数的傅里叶变换在信号处理、通信、控制工程等领域有着广泛的应用。

例如,在通信系统中,我们需要对信号进行调制和解调。

调制过程可以看作是将原始信号与一个高频载波信号相乘,而解调过程则需要通过傅里叶变换将调制后的信号转换到频域,然后提取出原始信号的信息。

在图像处理中,傅里叶变换可以用于图像的滤波、增强和压缩等操作。

014第三章-5常用信号的傅里叶变换

014第三章-5常用信号的傅里叶变换

jct
jc t
F ( j( c ))
相乘,等效于在
频域中将整个频谱向频率增加方向搬移c
F f (t )e

jct
f (t )e

jct jt
e
dt dt F j jc



f (t )e
j c t
例:已知 f (t ) F ( j ) 求 f (t ) cosc t 的频谱。 解:
四、尺度变换特性(时域频域成反比)
1 若:f (t ) F ( j ) 则 f (at) F ( j ) a a
扩展
压缩
压缩
扩展
2 A Sa( )
ASa (

2
)
A Sa ( ) 2 4
四、尺度变换特性(时域频域成反比)
1 若:f (t ) F ( j ) 则 f (at) F ( j ) a a
t
记 f1 (t ) e (t )
1 F f1 (t ) j
则 f (t ) e
|t|
t f1 (t ) f1 (t )
F ( j) F[ f1 (t )] F[ f1 (t )]
F1 ( j) F ( j)
* 1
F f at


f at e
若不符合绝对可积条件则不能直接计算, 但可通过其它变换对推出,并且一般含有 冲激函数。
常用信号的傅氏变换—8 8、周期性冲激序列δT(t)
间隔为T的均匀冲激序列, 以符号δT(t)表示
δT(t)是一个周期函数,可以展开成傅里叶级数:
1 jnt T (t ) (t nT ) An e 2 n n

详解傅里叶变换公式

详解傅里叶变换公式

详解傅里叶变换公式傅里叶变换(Fourier Transform)是一种将时域信号转换到频域信号的数学方法。

它可以将一个信号分解为不同频率的正弦波之和,从而揭示信号的频率结构。

傅里叶变换在信号处理、图像处理、通信、物理学等领域具有广泛的应用。

首先,我们要理解时域(Time Domain)和频域(Frequency Domain)的概念。

1. 时域:在时域中,信号表示为时间轴上的函数,例如:```f(t) = A * cos(2 * π* t) + B * sin(2 * π* t)```在这个例子中,f(t) 是一个正弦波函数,t 是时间。

2. 频域:在频域中,信号表示为频率轴上的函数,例如:```F(ω) = A * cos(2 * π* ω) + B * sin(2 * π* ω)```在这个例子中,F(ω) 是一个正弦波函数,ω是频率。

傅里叶变换可以将时域信号转换为频域信号,公式如下:```F(ω) = ∫_{-∞}^{∞} f(t) e^(-jωt) dt```其中,F(ω) 是频域信号,ω是频率,t 是时间,j 是虚数单位,e 是自然对数的底数。

傅里叶变换的逆变换公式如下:```f(t) = ∫_{-∞}^{∞} F(ω) e^(jωt) dω```现在,我们来通过一个简单的例子来说明傅里叶变换。

假设我们有一个正弦波信号,如下所示:f(t) = A * sin(2 * π* t) + B * sin(2 * π* t + π/4)```我们可以使用傅里叶变换将其转换为频域信号,如下所示:```F(ω) = A * cos(2 * π* ω) + B * cos(2 * π* ω+ π/2)```通过傅里叶变换,我们可以看到信号中包含的主要频率成分。

例如,在这个例子中,我们可以看到信号主要包含两个频率成分:一个是A = 1,ω= π/2 的正弦波,另一个是B = 1,ω= π/4 的正弦波。

傅里叶变换知识点总结

傅里叶变换知识点总结

傅里叶变换知识点总结本文将从傅里叶级数、傅里叶变换和离散傅里叶变换三个方面来介绍傅里叶变换的知识点,并且着重介绍它们的原理、性质和应用。

一、傅里叶级数1. 傅里叶级数的定义傅里叶级数是一种将周期函数表示为正弦和余弦函数的线性组合的方法。

它可以将任意周期为T的函数f(x)分解为如下形式的级数:f(x)=a0/2+Σ(an*cos(2πnfx / T) + bn*sin(2πnfx / T))其中an和bn是傅里叶系数,f为频率。

2. 傅里叶级数的性质(1)奇偶性:偶函数的傅里叶级数只包含余弦项,奇函数的傅里叶级数只包含正弦项。

(2)傅里叶系数:通过欧拉公式和傅里叶系数的计算公式可以得到an和bn。

(3)傅里叶级数的收敛性: 傅里叶级数在满足柯西收敛条件的情况下可以收敛到原函数。

二、傅里叶变换1. 傅里叶变换的定义傅里叶变换是将信号从时间域转换到频率域的一种数学工具。

对于非周期函数f(t),它的傅里叶变换F(ω)定义如下:F(ω)=∫f(t)e^(-jwt)dt其中ω为频率,j为虚数单位。

2. 傅里叶变换的性质(1)线性性质:傅里叶变换具有线性性质,即对于任意常数a和b,有F(at+bs)=aF(t)+bF(s)。

(2)时移性质和频移性质:时域的时移对应频域的频移,频域的频移对应时域的时移。

(3)卷积定理:傅里叶变换后的两个函数的乘积等于它们的傅里叶变换之卷积。

3. 傅里叶逆变换傅里叶逆变换是将频域的信号反变换回时域的一种操作,其定义如下:f(t)=∫F(ω)e^(jwt)dω / 2π其中F(ω)为频域信号,f(t)为时域信号。

三、离散傅里叶变换1. 离散傅里叶变换的定义对于离散序列x[n],其离散傅里叶变换X[k]的定义如下:X[k]=Σx[n]e^(-j2πnk / N)其中N为序列长度。

2. 快速傅里叶变换(FFT)FFT是一种高效计算离散傅里叶变换的算法,它能够在O(NlogN)的时间复杂度内完成计算,广泛应用于数字信号处理和通信系统中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(t)

-T0 O T0 2T0 t
求T0 (t) 的指数傅里叶级数和三角傅里叶级数。

Fn
1 T0
T0 2
T0 2
(t)e jn0tdt
1 T0
T0 (t)
1 T0
e jn0t
n
a0
1 T0

an
2 T0
T0 2
T0 2
(t) cos
n0tdt
2 T0
bn 0
T0 (t)
的三角傅里叶级数为:T0
第3章 傅里叶变换
重点:
1.傅里叶级数定义及适用条件 2.常见周期信号的频谱,非周期性信号的频谱 3.傅里叶变换的定义及适用条件及性质 4.周期信号的傅里叶变换 5.抽样定理 6.功率频谱与能量频谱 7.系统频域分析法 8.希尔伯特变换
3.1 傅里叶变换的产生
傅里叶1768年生于法国,1807年提 出“任何周期信号都可用正弦函数 级数表示”, 1822年在“热的分析 理论”一书中再次提出。1829年 狄里赫利给出傅里叶变换收敛条件。 傅里叶变换得到大规模的应用,则 是到了上世纪60年代之后。
nT0 )
n
[ A
A T0
(t
nT0 )][u(t
nT0 )
u(t
(n
1)T0 )]
将 f (t) 去除直流分量,则仅剩交流分量 fAC (t)
fAC (t)
f
(t)
A [u(t
T n 0
nT0 ) u(t
(n 1)T0 )]
n
[
A
A T0
(t
nT0
)]{
(t
nT0
)
(2)利用直接法求解
10 A
A
a0 T0
tdt
T T0
0
2
an 0
bn
2 T0
0 T0
A T0
t
sin
n0tdt
A nπ

f (t) A A sin n0t
2 π n1 n
3.2.3 傅里叶级数的MATLAB仿真实现
常称为f(t)的截断傅里叶级数表示式。
N
N
N
f (t)
1 2
[cne j(n1t n ) ]
n
1 2
[ Ane j(n1t ) ]
n
式中
An cne jn an2 bn2 (cosn jsinn ) 复指数
幅度 cn an2 bn2
n
arctan( bn an
)
相位
An 的具体求法如下:
2
An an jbn T
t2 t1
设周期矩形脉冲:脉宽为,脉冲幅度为E,周期为T1
f (t)
E
T1
/ 2 o / 2
T1 t
f (t) E[u(t ) u(t )], T1 t T1
2
2
2
2
f (t)是偶函数
a0
E
T1
,
bn 0,
an
E1 Sa( n1 )
π
2
cn
a0
E
, T1
cn
E1 Sa( n1 )
E 2
T1 t 2
f (t) E
2
f (t) E 2
T1
o
2
E
sin 21t 2
T1 t 2
T1
o
T1
t
2
E2
cos 21t
2
3.4 常见周期信号的频谱
3.4.1 频谱的概念
振幅频谱
频 (幅频特性图) 谱 图
相位频谱
(相频特性图)
表示信号含有的各个频率分量 的幅度值。其横坐标为频率 (单位为赫兹),纵坐标对应各 频率分量的幅度值 。Fn
其中
1
2π T
2π t2 t1
三角函数集也可表示为:
周期的终点
周期的起点 周期 基频
{cos(n1t),sin(n1t) n 0,1, 2, }
满足: (1)正交性:函数集中的任意函数两两相正交,有
t2 t1
cos(n1t) sin(m1t)dt
0
t2
t1
t2
t1
cos(n1t) cos(m1t)dt 0 sin(n1t) sin(m1t)dt 0
偶谐函数
满足 f (t T / 2) f (t) 的周期为T 的 函数;即平移半个周期后信号与原信 号重合。
2.横轴对称性 (1)奇谐函数的傅里叶级数中只有奇次谐波分量。 (2)偶谐函数的傅里叶级数中只有偶次谐波分量。
如果原信号既不是奇谐函数也不是偶谐函数,那 么其傅里叶级数展开式中就会既包含有奇次谐波分 量也包含有偶次谐波分量。
(t
(n
1)T0
)}
A T0
A
n
(t
nT0
)
A T0
A( 1 T0
2 T0
cos n0t)
n1
2A T0
cos n0t
n1
fAC (t)
2A T0
n1
t
cos n0 d
A π
n1
sin n0t
n
fD A / 2

f (t) A A sin n0t
2 π n1 n

第一个过零点再增加一倍
结论
• 由大变小,Fn 第一过零点频率增大,即
所以
称为信号的带宽, 确定了带宽。
• 由大变小,频谱的幅度变小。
• 由于 T 不变,谱线间隔不变,即 2π /T 不变。
2)脉冲宽度不变, 周期T变化
情况 1:
时,谱线间隔
第一个过零点
谱线间隔 2π π
T 2
f (t) 1
f (t)
Fn e j(n1t )
n
式中
Fn
t2 f (t)(e jn1t )* dt
t1
t2 (e jn1t )(e jn1t )* dt
1 T
t1
t2 f (t)e jn1tdt
t1
Fn
Fn
e jn
An 2
例 已知冲激序列

T0 (t) (t kT0 )
k
T0 (t) (t T0 )
f (t )cos(n1t )dt
j2 T
t2 t1
f (t )sin(n1t )dt
2 T
t2 t1
f (t)[cos(n1t ) jsin(n1t)]dt
2 T
t2 f (t )e jn1tdt
t1
2. 直接从复变正交函数集推导 将原函数 f (t)在复变正交函数空间
{ej(n1t) n 1, 2, }中展开,有
表示信号含有的各个频率分量 的相位。其横坐标为频率;纵坐 标对应各频率分量的相位 (n 单 位常用度或弧度)。

f
(t
)
1,
kT t kT
2
2
,求频谱
0,
其它
f (t) 1
T
2
o 2
T
t
解 (1)单边频谱:
An
4
n1T
sin( n1
2
),
2 ,
T
n 0
n0
2
T
Sa( n1
2
)
(2)双边频谱:
1
Fn T
/2
e jn1 tdt
1
e jn1 t
/2
2
sin
n1 2
b
b2 4ac
/ 2
T jn1 / 2 T n1
2a
T
sin
n1 2
n1
2
T
Sa( n1
2
),
n 0, 1, 2,
包络线
频谱图随参数的变化规律: 1)周期T不变,脉冲宽度变化
情况1:
T 4
3.4.2 常见周期信号的频谱
典型周期信号的频谱分析,可利用傅里叶级数或傅 里叶变换。典型周期信号如下:
1. 周期矩形脉冲信号 2. 周期对称方波信号 3. 周期锯齿脉冲信号 4. 周期三角脉冲信号 5. 周期半波余弦信号 6. 周期全波余弦信号
1. 周期矩形脉冲信号 (1) 周期矩形脉冲信号的傅里叶级数求解
备正交函数的三个条件:
1. 归一化:
t2 t1
fi (t) fi*(t)dt
1
2. 归一正交化:
t2 t1
fi
(t)
f
* j
(t
)dt
0,
i
j
3. 归一化完备性:可以用其线性组合表示任意信号
3.2.1 傅里叶级数的三角形式
设三角函数的完备函数集为:
{1, cos1t,sin 1t, cos 21t,sin 21t, , cos k1t,sin k1t, }
,
Fn
T
Sa( n
T
)
1 4
Sa( n
4
)
第一个过零点为n =4 。 Fn 在 2π/ 有 4值1(谱线)
T
f (t)
1
2
o
2
谱线间隔 2π T
1 Fn
4
2
O
T
t
第一个过零点:
Sa(
2
)
0
π 2

情况2:
T 8
,
Fn
T
Sa( n
T
)
1 8
Sa( n
8
)
第一个过零点n=8
脉冲宽度缩小一倍
3.3 周期信号的对称性
相关文档
最新文档