调研考试试卷

合集下载

黄冈市2024-2025学年高三上学期9月调研考试 历史 含答案

黄冈市2024-2025学年高三上学期9月调研考试 历史 含答案

黄冈市2024年高三年级9月调研考试历史本试卷共6页,19题。

全卷满分100分。

考试用时75分钟。

祝考试顺利注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并认真核准准考证号条形码上的以上信息,将条形码粘贴在答题卡上的指定位置。

2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑:非选择题用黑色签字笔在答题卡上作答:字体工整,笔迹清楚。

4.考试结束后,请将试卷和答题卡一并上交。

一、选择题:本题共15小题,每小题3分,共45分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.考古发现,二里头遗址中心区有多条道路和墙垣,把都邑分为多个方正、规整的网格区域,祭祀区、宫城区和作坊区恰好在中路,且宫城区居于中心,其它重要遗存拱卫在宫城区的周围。

这主要反映出当时A.礼制文化走向成熟B.城市布局凸显专制色彩C.具备王朝国家特征D.交通改善助推经济发展2.甘肃武威磨咀子六号汉墓出土了大量简牍,其中一简背后有“河平(成帝年号)口年四月四日,诸文学弟子出谷五千余斛”一语。

学者认为“本简之墓主人深通礼经,应为西汉末年武威郡之文学官”。

据此可知,西汉后期A.人才选拔促进民族交往B.政府重视边疆地区的社会治理C.厚葬之风契合主流思想D.中央推行因俗而治的民族政策3.《论语》记载,孔子曾赞许曾点对“谦”的领悟和积极向上的生活态度。

但魏晋士人对“谈”的解读聚焦于孔子可能怀有的豁达隐逸之情,并将曾点类化成一位超然脱俗的世外高人。

这一现象出现的主要原因是A.文学自觉和审美观念的更新B.人生态度和价值取向转变C.门阀政治消解士人参政热情D.政治环境和社会思想变化4.下表为刘宋至隋初岭南地区人口数变化情况统计表。

这反映岭南地区省区刘宋时期人口数(公元464年)阶代初期人口数(公元609年)人口效密度(人/平方公里占全国人口%人口数密度(人/平方公里占全国人口%广东375744 1.7 1.25659889 2.99 1.28广西2283600.990.76956345 4.14 1.86合计604104 2.011616234 3.14A.土地兼并程度日益加深B.地域经济差别缩小C.农业生产条件得到改善D.人地矛盾日益突出5.封建和郡县之争实际上处处都和政治现实息息相关。

2024年江苏省高二学业水平调研考试地理试卷试题(含答案详解)

2024年江苏省高二学业水平调研考试地理试卷试题(含答案详解)

江苏省2024年学业水平调研考试地理注意事项:考生在答题前请认真阅读本注意事项及各题答题要求。

1.本试卷共8页,满分为100分,考试时间为75分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案。

作答非选择题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需作图,必须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。

一、单项选择题:共22题,每题2分,共44分。

每题只有一个选项最符合题意。

紫云格凸河最美的景观莫过于绚丽的天地神光,吸引了大量的“追光者”。

每年4月中下旬至9月上旬地神光出现,9月中下旬至来年4月上旬天神光出现。

下图为追光者拍摄的格凸河天神光图。

完成下面小题。

1.北京时间2023年9月15日早上8:30至8:48,格凸河天神光已出现。

当日,一名“追光者”来到了贵州紫云格凸河,拍摄天神光并进行网络直播。

远在纽约(西五区)的小明想要同步观看天神光出现的全过程,他打开网络直播的时间不能晚于当地()A.9月14日8:30B.9月15日8:30C.9月14日19:30D.9月15日19:302.2023年9月15日,天神光消失时,与安顺处于同一日期的范围占全球范围的比例()A.小于1/3B.约为1/2C.约为3/4D.大于4/53.每年格凸河地神光出现期间()A.地球公转速度先快后慢B.安顺日出方位由东北转向东南C.北京昼长逐渐变长D.上海正午太阳高度先变大后变小四川岷江上游流域位于青藏高原东缘,河谷两侧与支流沟道内存在碎屑物质。

这些碎屑物质通常进入河道,部分堵塞河道形成堰塞湖,影响山区河流地貌长期演化。

江苏省南京市2024-2025学年高三9月学情调研考试 数学 含答案

江苏省南京市2024-2025学年高三9月学情调研考试 数学 含答案

南京市2025届高三年级学情调研数 学 2024.09.19 注意事项:1.本试卷考试时间为120分钟,试卷满分150分.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填涂在答题卡相应位置上.1.已知集合A ={x |x -3>0},B ={x |x 2-5x +4>0},则A ∩B =A .(-∞,1)B .(-∞,3)C .(3,+∞)D .(4,+∞)2.已知a x =4,log a 3=y ,则a x +y =A .5B .6C .7D .123.已知|a |=3,|b |=1.若(a +2b )⊥a ,则cos<a ,b >=A .-32B .-33C .33D .324.已知数列{a n }为等差数列,前n 项和为S n .若S 3=6,S 6=3,则S 9=A .-18B .-9C .9D .185.若a 是第二象限角,4sin2α=tan α,则tan α= A .-7 B .-77 C .77D .7 6.甲、乙、丙、丁共4名同学参加某知识竞赛,已决出了第1名到第4名(没有并列名次).甲、乙、丙三人向老师询问成绩,老师对甲和乙说:“你俩名次相邻”,对丙说:“很遗憾,你没有得到第1名”.从这个回答分析,4人的名次排列情况种数为A .4B .6C .8D .127.若正四棱锥的高为8,且所有顶点都在半径为5的球面上,则该正四棱锥的侧面积为A .24B .32C .96D .1288.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,点P 在C 上,点Q 在l 上.若PF =2QF ,PF ⊥QF ,则△PFQ 的面积为A .254B .25C .552D .55二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数z ,下列命题正确的是A .若z +1∈R ,则z ∈RB .若z +i ∈R ,则z 的虚部为-1C .若|z |=1,则z =±1D .若z 2∈R ,则z ∈R10.对于随机事件A ,B ,若P (A )=25,P (B )=35,P (B |A )=14,则 A .P (AB )=320 B .P (A |B )=16 C .P (A +B )=910 D .P (―AB )=1211.设函数f (x )=1|sin x |+8|cos x |,则 A .f (x )的定义域为{x |x ≠k π2,k ∈Z } B .f (x )的图象关于x =π4对称 C .f (x )的最小值为5 5 D .方程f (x )=12在(0,2π)上所有根的和为8π三、填空题:本题共3小题,每小题5分,共15分.请把答案填写在答题卡相应位置上.12.(2x +1x)4展开式中的常数项是 ▲ . 13.与圆柱底面成45°角的平面截圆柱得到如图所示的几何体.截面上的点到圆柱底面距离的最大值为4,最小值为2,则该几何体的体积为 ▲ .(第13题图)14.已知椭圆C 的左、右焦点分别为F 1,F 2,上顶点为B ,直线BF 2与C 相交于另一点A .当cos ∠F 1AB 最小时,C 的离心率为 ▲ .四、解答题;本大题共5小题,共77分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤.15.(本小题满分13分)小王早晨7:30从家出发上班,有A ,B 两个出行方选择,他统计了最近100天分别选择A ,B 两个出行方案到达单位的时间,制成如下表格:(1)判断并说明理由:是否有95%的把握认为在8点前到单位与方案选择有关;(2)小王准备下周一选择A方案上班,下周二至下周五选择B方案上班,记小王下周一至下周五这五天中,8点前到单位的天数为随机变量X.若用频率估计概率,求P(X=3).附:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d,16.(本小题满分15分)如图,在四面体ABCD中,△ACD是边长为3的正三角形,△ABC是以AB为斜边的等腰直角三角形,E,F分别为线段AB,BC的中点,→AM=2→MD,→CN=2→ND.(1)求证:EF∥平面MNB;(2)若平面ACD⊥平面ABC,求直线BD与平面MNB所成角的正弦值.(第16题图)已知数列{a n },{b n },a n =(-1)n +2n ,b n =a n +1-λa n (λ>0),且{b n }为等比数列.(1)求λ的值;(2)记数列{b n ⋅n 2}的前n 项和为T n .若T i ⋅T i +2=15T i +1(i ∈N *),求i 的值.18.(本小题满分17分)已知 F 1,F 2是双曲线线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,F 1F 2=26,点T (26,10)在C 上.(1)求C 的方程;(2)设直线l 过点D (1,0),且与C 交于A ,B 两点.①若→DA =3→DB ,求△F 1F 2A 的面积;②以线段AB 为直径的圆交x 轴于P ,Q 两点,若|PQ |=2,求直线l 的方程.已知函数f(x)=e x-a+ax2-3ax+1,a∈R.(1)当a=1时,求曲线y=f(x)在x=1处切线的方程;(2)当a>1时,试判断f(x)在[1,+∞)上零点的个数,并说明理由;(3)当x≥0时,f(x)≥0恒成立,求a的取值范围.。

2024-2025年武汉市部分学校高三年级九月调研考试语文试卷[含答案]

2024-2025年武汉市部分学校高三年级九月调研考试语文试卷[含答案]

2024-2025年武汉市部分学校高三年级九月调研考试语文试卷2024.9.4本试题卷共10页,23题。

全卷满分150分。

考试用时150分钟。

祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试卷和答题卡一并上交。

一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5 小题,19分)阅读下面的文字,完成1~5题。

材料一:联对、匾额,在中国园林中,正如人之有须眉,为不能少的一件重要点缀品。

苏州又为人文荟萃之区,当时园林建造复有文人画家的参与,用人工构成诗情画意,将平时所见真山水、古人名迹、诗文歌赋所表达的美妙意境,撷其精华而总合之,加以突出。

因此山林岩壑、一亭一榭,莫不用文学上极典雅美丽而适当的辞句来形容它,使游者入其地,览景而生情。

例如拙政园的远香堂与留听阁,同样是一个赏荷的地方,前者出自于周敦颐《爱莲说》“香远益清”句,后者出自于李商隐《宿骆氏亭寄怀雀雍崔衮》“留得残荷听雨声”句。

留园的闻木樨香轩、拙政园的海棠春坞,又都是根据该处所种的树木来命名的。

有些游者至此,能回忆起许多文学艺术的好作品,这不能不说是中国园林的一个特色了。

我希望今后在许多旧园林中,联对、匾额里如果无封建意识的文字,仅是描写风景的,就应该将它们好好保存下来。

苏州诸园皆有好的题辞,而怡园诸联集宋词佳句,与各处景观配合尤为相得益彰,可惜实物皆不存了。

联对、區额所用材料,因园林风大,故十之八九用银杏木阴刻,填以石绿;或用木阴刻后裂漆敷色,不过色彩都是冷色。

亦有用砖刻的,雅洁可爱。

字体以篆、隶、行书为多,罕用正楷,取其古朴与自然。

广东省2025届高三第一次调研考试语文试题及答案

广东省2025届高三第一次调研考试语文试题及答案

广东省2025届普通高中毕业班第一次调研考试语文本试卷共10页,考试用时150分钟,满分150分。

注意事项:1.答卷前,考生务必将自己所在的市(县、区)、学校、班级、姓名、考场号和座位号填写在答题卡上,将条形码横贴在每张答题卡左上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上将对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先画掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成1-5题。

材料一:“道德物化”是指把抽象的道德理念通过恰当的技术设计,使之在人工物的结构和功能中得以体现,从而对人的行为产生道德意义上的引导和规范作用。

传统的道德教化途径是从人的角度着手,使道德规范内化于人心;而“道德物化”则是从外在环境着手,把道德规范外化到人工物的构造之中。

其实,“道德物化”思想的萌芽在历史上很早就出现了,并且在后来以不同的形态在一些学者的思想中不断出现,比如中国古代的“藏礼于器”思想和后现代思想家福柯的“微观权力”思想中都包含有“道德物化”的成分,只不过尚没有形成一个明确的、系统化的表述,也没有引起人们足够的重视。

关于“物化”一词本身,也需要做一点讨论。

提到“物化”,人们往往会习惯性地想到卢卡奇的“物化”概念,从而直觉地产生一种抵触心理。

卢卡奇的“物化”概念指的是,现代社会中人被外物所奴役,人与人的关系变成物与物的关系。

这种“物化”是需要被克服和超越的。

但是,道德的“物化”强调将抽象的道德理念在具体的人工物构造中得以体现,从而对人的行为产生积极的引导,此处的“物化”具有正面的意义。

惠州市2024-25届高三年级第一次调研考试(地理)

惠州市2024-25届高三年级第一次调研考试(地理)

惠州市2024-25届高三年级第一次调研考试地理本试卷6页,19小题,满分100分。

考试用时75分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其它答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将答题卡交回。

一、选择题:本大题共16小题,每小题3分,共48分。

在每小题列出的四个选项中,只有一项符合题目要求。

广东大鹏LNG(液化天然气)接收站进口来自全球25个国家和地区的液化天然气,用户包括燃气电厂、城市燃气管网和工业企业,惠及约7000万人口。

LNG气化过程与海水进行热交换,释放冷能,产生大量无菌、溶氧能力强的低温海水。

广东大鹏LNG接收站回收冷排海水开展冷水养殖项目,主要养殖高经济价值的鱼类以及虾、蟹、鲍鱼等海产品。

据此完成1~3题。

1.增加进口LNG的供应,优化能源结构,有利于广东A.减少能源消耗B.减少碳排放量C.降低发电压力D.降低能源成本2.大鹏LNG接收站回收冷排海水开展养殖项目主要为了A.增加水产供应B.促进产业升级C.提高资源利用率D.提高区域就业率3.与普通水产养殖相比,大鹏LNG接收站冷水养殖的水产品A.价格更低B.种类更多C.产量更高D.品质更好兰州市(图1所示)不同时段、不同地域的人口增长差异显著。

2010年甘肃省设立兰州新区,兰州人口出现从中心城区向远郊区的“跳跃式”扩散。

表1示意2000~2020年兰州市各地区人口增长情况。

据此完成4~5题。

4.2000-2010年,兰州市人口空间变化反映出A.中心城区人口密度增大B.近郊区人口增长速度最慢C.中心城区自然增长率高D.远郊区人口向近郊区迁移5.2010-2020年,兰州市人口出现“跳跃式”扩散,主要影响因素是A.自然资源B.环境质量C.生活成本D.政府政策空铁联运是指航空与铁路联合运输的一种运输模式。

2025届广东省高三毕业班调研考试(一)数学试卷(解析)

2025届广东省高三毕业班调研考试(一)数学试卷(解析)

2025届广东省普通高中毕业班调研考试(一)数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{Z |8150},{|5}A x x x B x x =Î-+£=<,则A B =I ( )A. {}3 B. {}3,4 C. {}4,5 D. {}3,4,5【答案】B 【解析】【分析】先解不等式求得集合A ,进而求得A B Ç.【详解】集合()(){}2{Z |8150}{Z |350}3,4,5A x x x x x x =Î-+£=Î--£=.而{|5}B x x =<,故{}3,4A B Ç=.故选:B2. 已知1z ,2z 是两个虚数,则“1z ,2z 均为纯虚数”是“12z z 为实数”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】设12i,i(,R z b z c b c ==Î且,0)b c ¹,可得12R z z Î,如121i 12+2i 2z z +==,可得结论.【详解】若12,z z 均为纯虚数,设12i,i(,R z b z c b c ==Î且,0)b c ¹,则12i R i z b bz c c ==Î,所以“12,z z 均为纯虚数”是12z z 是实数充分条件,当121i,22i z z =+=+,121i 12+2i 2z z +==,所以“12,z z 均为纯虚数”是12z z 是实数的不必要条件,的综上所述:“12,z z 均为纯虚数”是12z z 是实数的充分不必要条件.故选:A.3. 已知a r和b r 的夹角为150°()2a b b +×=r r r ( )A. 9-B. 3- C. 3 D. 9【答案】C 【解析】分析】根据向量数量积运算求得正确答案.【详解】()222a b b a b b +×=×+r r r r rr 2cos1502a b b=××°+r rr 2223æ=+×=ççè故选:C4. 已知 π2sin sin 33a a æö+-=ç÷èø,则 πcos 23a æö+=ç÷èø( )A. 59-B. 19-C.19D.59【答案】B 【解析】【分析】利用两角和差公式以及倍角公式化简求值可得答案.【详解】由题干得2π1sin sin sin sin 332a a a a a æö=+-=+-ç÷èø1πsin cos 26a a a æö=-=+ç÷èø所以 22ππ21cos 22cos 1213639a a æöæöæö+=+-=´-=-ç÷ç÷ç÷èøèøèø,故选:B.5. 已知等比数列 {}n a 为递增数列,n nnb a =. 记 ,n n S T 分别为数列 {}{},n n a b 的前n 项和,若 2133312a a a S T =+=,,则 n S =( )【A. 141n --B.()11414n --C.()14112n- D. 24n -【答案】C 【解析】【分析】利用等比数列的通项公式及前n 项和公式求解q 的值,再由数列的单调性进一步判断即可.【详解】2131133141122312a a a a q a S T q q q=Þ=Þ=+=Þ++=,,则 ()()2121294214042q q q q q q -+=--=Þ==,.由于 {a n }为递增数列,则 1144q a ==,,所以 {a n }的通项公式为 24n n a -=所以 ()()11414411412nn n S -==--,故选:C.6. 已知体积为的球O 与正四棱锥的底面和4个侧面均相切,已知正四棱锥的底面边长为则该正四棱锥体积值是( )A.B.C.D.【答案】A 【解析】【分析】设正四棱锥P ABCD -的内切球的半径为R ,H 为底面中心,取CD 的中点F ,设O 点在侧面PCD 上的投影为Q 点,则Q 点在PF 上,利用∽V V POQ PFH 求出球心到四棱锥顶点的距离h ,再由棱锥的体积公式计算可得答案.【详解】设正四棱锥P ABCD -的内切球的半径为R ,H 为底面中心,由体积为34π3R得R =连接PH ,PH ^平面ABCD ,球心O 在PH 上,OH R =,取CD 的中点F ,连接,HF PF ,设O 点在侧面PCD 上的投影为Q 点,则Q 点在PF 上,且OQ PF ^,∽V V POQ PFH ,h,所以=PQ PHOQ FHh=,所以1133==´=ABCDV S PH故选:A.7. 斐波那契数列因数学家斐波那契以兔子繁殖为例而引入,又称“兔子数列”. 这一数列如下定义:设{}n a为斐波那契数列,()*12121,1,3,Nn n na a a a an n--===+³Î,其通项公式为n nnaéùêú=-êúëû,设n是2log1(14(xx xéùë-û-<+的正整数解,则n的最大值为()A. 5B. 6C. 7D. 8【答案】A【解析】【分析】利用给定条件结合对数的性质构造42na<,两侧同时平方求最值即可.【详解】由题知n是2log1(14(xx xéùëû+-<+的正整数解,故2log(1(14n n néùëû+-<+,取指数得((4112nn n+<+-,同除2n得,42n n-<,42n nùú-<úû,即42na<,根据{}n a是递增数列可以得到{}2n a也是递增数列,于是原不等式转化为2812525n a <´<.而565,8a a ==可以得到满足要求的n 的最大值为5,故A 正确.故选:A8. 函数()ln f x x =与函数()212g x mx =+有两个不同的交点,则m 的取值范围是( )A. 21,e æö-¥ç÷èø B. 21,2e æö-¥ç÷èø C. 210,e æöç÷èøD. 210,2e æöç÷èø【答案】D 【解析】【分析】利用参变分离将函数图象有两个交点问题转化为y m =和()21ln 2x h x x -=的图象有两个交点,由导数求得ℎ(x )的单调性并求得最大值即可得出结论.【详解】由()21ln 02mx x x +=>得22ln 1m x x -=,则问题转化为y m =和()21ln 2x h x x -=的图象有两个交点,而()()()2232112ln 21ln 2x x x x x h x x xæö×--ç÷-¢èø==,令ℎ′(x )>0,解得0e x <<,令ℎ′(x )<0,解得e x >,故ℎ(x )在()0,e 上单调递增,在()e,¥+单调递减,则()()2max 1e 2e h x h ==,ℎ(x )大致图象如下所示:结合图象可知,m 的取值范围是210,2e æöç÷èø故选:D二、选择题:本题共3小题,每题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 现有十个点的坐标为 ()()()1210,0,,0,,,0x x x L ,它们分别与 ()()()1210,10,,10,,,10y y y L 关于点(3,5)对称.已知 1210,,,x x x L 的平均数为a ,中位数为 b ,方差为c ,极差为d ,则 1210,,,y y y L 这组数满足( )A. 平均数为 6a - B. 中位数为 6b -C. 方差为c D. 极差为d【答案】ABCD 【解析】【分析】根据对称知识可得()6Z 110i i y x i i =-Σ£,,结合平均数、中位数、方差、极差的性质,即可判断出答案.【详解】由于 ()()()1210,0,,0,,,0x x x L ,它们分别与 ()()()1210,10,,10,,,10y y y L 关于点(3,5)对称,则有()6Z 110i i x y i i +=Σ£,,即有 ()6Z 110i i y x i i =-Σ£,.则由平均数的性质可得1210,,,y y y L 这组数的平均数为 6a -,结合中位数性质可知中位数为 6b -,结合方差性质可得方差为c ,极差非负,所以极差为d .故选:ABCD10. 设 123,,z z z 是非零复数,则下列选项正确的是( )A. 2211z z =B. 1212z z z z +=+C. 若122i 2z --=,则116i z +-最小值为3D. 若22i i 4z z ++-=,则2z的最小值为【答案】CD 【解析】【分析】利用共轭复数的概念和加减运算性质判断A ,举反例判断B ,利用复数模的性质得到轨迹方程,结合圆的性质判断C ,利用复数模的性质得到轨迹方程,结合椭圆的性质判断D 即可.【详解】对于A.,设1i z a b =+,则1i z a b =-,所以22221(i)2i z a b a b ab =+=-+,22221(i)2i z a b a b ab =-=--,的当,a b 有1个为0或全为0时,2211z z =,当,a b 均不为0时,2211,z z 无法比较大小,故A 错误,对于B ,当1i z =,2i z =-时,120z z +=,此时120z z +=,122z z +=,故1212z z z z +=+不成立,故B 错误,对于C ,设1i z a b =+,因为122i 2z --=,所以i 22i 2a b +--=,故有2(2)i 2a b -+-=,可得22(2)(2)4a b -+-=,所以1z 的轨迹是以()2,2为圆心,2为半径的圆,而116i i 16i 1(6)i z a b a b +-=++-=++-=,故116i z +-表示点(),a b 到定点()1,6-的距离,由圆的性质可知,1min16i 23z +-=-=,故C 正确,对于D ,设2z a bi =+,所以2i i i (1)i z a b a b +=++=++=,2i i i (1)i z a b a b -=+-=+-=,而22i i 4z z ++-=4=,所以得到点(),a b 到两定点()0,1-,()0,1的距离之和为4,故2z 的轨迹是以()0,1-,()0,1为焦点的椭圆,故轨迹方程为22143y x +=,而2z 表示(),a b 到原点的距离,由椭圆的几何性质可得当点B 在椭圆的左右顶点时,2z 取得最小值,此时2z =,故2min z =D 正确.故选:CD .11. 已知定义在R 上的函数()f x 的图象连续不间断,当()()0e e e 0x f x f x ³+--=,,且当x >0时,()()e e 0f x f x ¢¢++->,则下列说法正确的是()A. ()e 0f =B. ()f x 在(),e -¥上单调递增,在()e,+¥上单调递减C. 若()()1212,x x f x f x <>,则212ex x +<D. 若12,x x 是()()()2e 2g xf x x =+--在()0,2e 内的两个零点,且12x x <,则()()211ef x f x <<【答案】ACD 【解析】【分析】A 选项,令x =0,可求()e f ;B 选项,对()()e e e 0f x f x +--=两边求导,结合()()e e 0f x f x ¢¢++->得()e 0f x ¢-<,()e 0f x ¢+>,可判断()f x 单调性;C 选项,12e x x ,,的大小关系进行分类讨论,利用函数单调性,证明不等式;D 选项,证明212e x x +<,利用函数单调性,证明()()12f x f x <且()()21e f x f x <,可得结论.【详解】A 选项,令x =0,则有()()()()e e e 1e e 0f f f -=-=,所以()e 0f =,故A 正确.B 选项,对()()e e e 0f x f x +--=两边求导,得()()e e e 0f x f x ¢++-=¢,所以()()e e e f x f x +=-¢-¢,代入()()e e 0f x f x ¢¢++->,得当x >0时,()()1e e 0f x ¢-->,所以()e 0f x ¢-<.又因为()()e e 0f x f x ¢¢++->,所以,()e 0f x ¢+>.因此,当e x <时,()0f x ¢<,()f x 在(),e -¥上单调递减;当e x >时,()0f x ¢>,()f x 在()e,+¥上单调递增.故B 错误.C 选项,对12e x x ,,的大小关系进行分类讨论:①当12e x x <£时,()f x 在(),e -¥上单调递减,所以()()12f x f x >,显然有212e x x +<;②当12e x x £<时,()f x 在()e,+¥上单调递增,不符合题意;③当12e x x <<时,当0x ³时,()()e e e f x f x +=-.令()()()()()()122e e,e 2e e 2e t x f t f t f x f x f x ¥=+Î+=->=-,,,又因为()()e 0f x f ³=,所以()22e 0f x ->,因此()()()()1222e 2e 2e f x f x f x f x >=->-.因为12e 2e e x x <-<,,由()f x 的单调性得,212e x x +<.故C 正确.D 选项,因为()()()()()()2200e 202e 2e e 20e e 220g f g f g f =+->=+->=-=-<,,,所以120e 2e x x <<<<.先证212e x x +<,即证122e x x ->,即()12e 0g x ->,只需证()2112e (2e e)20f x x -+--->,即证()211e (e )20f x x +-->.事实上,()()()()()2211111e e 2e 20f x x f x x g x +-->+--==,因此212e x x +<得证.此时有1210e 2e 2e x x x <<<<-<.因为()()()()()22211122e 22e e 2e 2f x x x x f x =--+=---+<--+=,又()10f x ¹,所以()()211f x f x <,因为()()()2112e e f x f x f x <-=,又()10f x ¹,所以()()21e f x f x <.综上,()()211e f x f x <<,故D 正确故选:ACD.【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.证明不等式,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.三、填空题:本题共3题,每小题5分,共15分.12. 已知等差数列{}n a 的首项12a =,公差3d =,求第10项10a 的值为__.【答案】29【解析】【分析】根据等差数列的通项公式求得正确答案.【详解】依题意101922729a a d =+=+=..故答案为:2913. 若 ()554325432102x a x a x a x a x a x a +=+++++,则531420a a a a a a ++=++____________.【答案】121122【解析】【分析】利用赋值法令1x =,1x =-,联立方程组求解即可.【详解】令1x =,得 ()554321012243a a a a a a +==+++++,令1x =-,得 ()5543210121a a a a a a -+==-+-+-+,则 ()()543210543210531243112122a a a a a a a a a a a a a a a +++++--+-+-+-++===,且 ()()543210543210420243112222a a a a a a a a a a a a a a a ++++++-+-+-++++===,故531420121122a a a a a a ++=++.故答案为:121122.14. 如图,在矩形ABCD 中,8,6,,,,,AB BC E F G H ==分别是矩形四条边的中点,点Q 在直线HF 上,点N 在直线BC 上,,,R OQ kOH CN kCF k ==Îuuu r uuur uuu r uuu r,直线EQ 与直线GN 相交于点R ,则点R 的轨迹方程为_______________.【答案】()221,3916y x y -=¹-【解析】【分析】以HF 所在直线为x 轴,GE 所在直线为y 轴建立平面直角坐标系,求出直线EQ 的方程与直线GN 的方程,联立求解即可.【详解】以HF 所在直线为x 轴,GE 所在直线为y 轴建立平面直角坐标系.因为8,6AB BC ==,所以 ()()()()()()0,0,4,0,4,0,0,3,0,3,4,3O H F E G C --,所以 ()4,0OH =-uuur ()()0,3,4,3CF OC =-=uuu r uuu r ,又因为 ,OQ kOH CN kCF ==uuu r uuur uuu r uuu r ,所以 ()()4,0,0,3OQ k CN k =-=-uuu r uuu r,所以()()4,0,4,33Q k N k --.因为 ()()0,3,4,0E Q k --,所以直线EQ 的方程为 334y x k =--①,因为 ()()0,3,4,33G N k -,所以直线GN 的方程为 334ky x =-+②.由①可得 ()()3043x k x y =-¹+,代入②化简可得 ()2210916y x x -=¹,,结合图象易知点R 可到达 ()0,3G ,但不可到达 ()0,3E -,所以点R 的轨迹方程为 ()221,3916y x y -=¹-,故答案为:()221,3916y x y -=¹-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 在△ABC 中,角A B C ,,的对边分别为a b c ,,,已知 2cos2cos22sin 2sin sin B A C B C -=-(1)求 A ;(2)若 23b c P Q ==,,,分别为边 a b ,上的中点,G 为 ABC V 的重心,求 PGQ Ð的余弦值.【答案】(1)π3(2)【解析】【分析】(1)根据二倍角公式将已知条件变形转化,再根据正弦定理边角互化,带入到余弦定理即可求得;(2)根据已知设 AB c AC b ==uuu r uuu r rr ,,表达出AP BQ uuu r uuu r ,,再根据余弦定理可求得结果.【小问1详解】因为2cos2cos22sin 2sin sin B A C B C -=-,所以()()22212sin 12sin 2sin 2sin sin B A C B C ---=-,即222sin sin sin sin sin A B C B C =+-由正弦定理得 222a c b bc =+-,由余弦定理得 1cos 2A =,因为()π0π3A A Î=,,【小问2详解】设 AB c AC b ==uuu r uuu r r r ,,1cos 2332b c b c A ×=×=´´=r r r r 依题意可得()1122AP b c BC b c BQ b c =+=-=-uuu r uuu r uuu r r r r r r r,,所以AP ===uuu rBQ ===uuu r ()221111143917224424424AP BQ b c b c b b c c æö×=+-=-×-=--=-ç÷èøuuu r uuu r r rr r r r r r 所以cos AP BQ PGQ AP BQ×Ð==×uuu r uuu r uuu r uuu r .16. 设A B ,两点的坐标分别为()),. 直线AH BH ,相交于点H ,且它们的斜率之积是13-.设点H 的轨迹方程为C .(1)求C ;(2)不经过点A 的直线l 与曲线C 相交于E 、F 两点,且直线AE 与直线AF 的斜率之积是13-,求证:直线l 恒过定点.【答案】(1)(2213x y x +=¹(2)证明见解析【解析】【分析】(1)设点H 的坐标为(),x y ,然后表示出直线,AH BH 的斜率,再由它们的斜率之积是13-,列方程化简可得点H 的轨迹方程;(2)设()()1122,,,E x y F x y ,当直线l 斜率不存在时,求得直线l 为 x =0,当直线l 斜率存在时,设直线:l y kx b =+,由13AE AFk k ×=-13=-,将直线方程代入椭圆方程化简利用根与系数的关系,代入上式化简可得20b =,从而可求得直线恒过的定点.【小问1详解】设点H 的坐标为(),x y ,因为点A 的坐标是(),所以直线 AH的斜率AH k x =¹,同理,直线 BH的斜率BH k x=¹,(13x =-¹,化简,得点H 的轨迹方程为(2213x y x +=¹,即点H 的轨迹是除去()),两点的椭圆.【小问2详解】证明:设()()1122,,,E x y F x y ①当直线l 斜率不存在时,可知 1221,x x y y ==-,且有22111313AE AF x y k k ì+=ïïíï×==-ïî,解得1101x y ==±,,此时直线l 为 x =0,②当直线l 斜率存在时,设直线 :ly kx b =+,则此时有:13AE AFk k ×====-联立直线方程与椭圆方程 2213y kx b x y =+ìïí+=ïî,消去 y 可得: ()222316330k x kbx b +++-=,根据韦达定理可得: 122631kb x x k -+=+,21223331b x x k -=+,13=-,13=-,1=-所以20b =,则0b =或b =,当b=时,则直线 (:l y k x =恒过A 点与题意不符,舍去,故0b =,直线l 恒过原点()0,0,结合①,②可知,直线l 恒过原点 ()0,0,原命题得证.【点睛】关键点点睛:此题考查椭圆的轨迹方程,考查直线与椭圆的位置关系,考查椭圆中直线过定点问题,解题的关键是设出直线方程代入椭圆方程化简,利用根与系数的关系结合已知条件求解,考查计算能力,属于较难题.17. 如图所示,四边形ABCD 是圆柱底面的内接四边形,AC 是圆柱的底面直径,PC 是圆柱的母线,E 是AC 与BD 的交点,608AB AD BAD ACÐ===o ,,.(1)记圆柱的体积为1V ,四棱锥P ABCD -的体积为 2V ,求12V V ;(2)设点F 在线段AP 上,且存在一个正整数k ,使得PA kPF PC kCE ==,,若已知平面FCD 与平面PCDk 的值.【答案】(1(2)4k =【解析】【分析】(1)利用圆柱以及棱锥的体积公式,即可求得答案.(2)建立空间直角坐标系,求出相关点坐标,利用空间角的向量求法,结合平面FCD 与平面PCD 的夹角的正弦值,即可求得答案.【小问1详解】在底面ABCD 中,因为 AC 是底面直径,所以 90ABC ADC Ð=Ð=,又 AB AD =,故 ACB △≌ACD V ,所以13042BAC DAC BAD BC CD AB AD ÐÐÐ=======o ,,.因为PC 是圆柱的母线,所以PC ^面ABCD ,所以 211π()16π2V AC PC PC ==´,211112243232V AB BC PC PC PC =´´´××=´´´´=,因此12V V =;【小问2详解】以C 为坐标原点,以,CA CP uuu r uuu r为,x z 轴正方向,在底面ABCD 内过点C 作平面PAC 的垂直线为y 轴,建立如图所示的空间直角坐标系.因为30BAC DAC AB AD ÐÐ===o ,,所以 ABE V ≌ADE V ,故 90AEB AED ÐÐ==o ,所以1622BE DE AB AE CE AC AE =====-=,,2PC kCE k ==,因此()()()()()()0,0,0,8,0,0,2,,0,0,2,2,,0,0,2C A D P k CD CP k ==uuu r uuu r,()8,0,2PA k =-uuu r,因为 PA kPF =,所以 18,0,2PF PA k k æö==-ç÷èøuuu r uuu r ,则88,0,22,,0,22F k CF k k k æöæö-=-ç÷ç÷èøèøuuu r 设平面FCD 和平面PCD 的法向量分别为()()111222,,,,,n x y z m x y z ==r r,则有:)111182020n CF x z k n CD x ì×=+-=ïíï×=+=îuuu r r uuu rr ,222220m CP kz m CD x ì×==ïí×=+=ïîuuu r r uuu r r ,取())()221,,1,4n k k k k m æö=---=-ç÷ç÷èør r ,设平面FCD 与平面PCD 的夹角为 q,则sin q =所以有:cos cos q ===,整理得2120k k --=,2120k k -+=(无解,舍),由于k 为正整数,解得4k =.18. 已知函数()()1ln f x x x =-,(1)已知函数()()1ln f x x x =-的图象与函数()g x 的图象关于直线 x =―1对称,试求()g x ;(2)证明()0f x ³;(3)设0x 是()1f x x =+的根,则证明:曲线ln y x =在点()00,ln A x x 处的切线也是曲线e x y =的切线.【答案】(1)()()()3ln 2,(2)g x x x x =----<-. (2)证明见解析 (3)证明见解析【解析】【分析】(1)由()()11f x g x --=-+,得()()()12ln 1g x x x -+=----,再利用换元法求()g x ;(2)分区间讨论各因式的符号或利用导数证明;(3)取曲线 e x y =上的一点 ()11e,x B x ,设()ln g x x =在A 处的切线即是 ()exh x =在B 处的切线,证明直线AB 的斜率等于()ln g x x =在A 处的切线斜率和()e xh x =在B 处的切线斜率即可.【小问1详解】因为()f x 的图象与()g x 的图象关于直线 x =―1对称,所以 ()()11f x g x --=-+.又因 ()()()()()111ln 12ln 1f x x x x x éù--=-----=----ëû,所以()()()12ln 1g x x x -+=----,令1t x =-+,则 1x t =+,所以()()][()()()21ln 113ln 2g t t t t t éù=--+--+=----ëû,因此()()()3ln 2,(2)g x x x x =----<-.【小问2详解】证明:解法1:当 1x ³时,10x -³且 ln 0x ³,此时 ()()1ln 0f x x x =-³;当01x <<时,10x -<且ln 0x <,此时 ()()1ln 0f x x x =->,故综上()0f x ³.解法2:()1ln 1f x x x +¢=-,令()1ln 1x x xj =+-,()2110x x x j ¢=+>在()0,¥+上恒成立,为故()x j 在()0,¥+上单调递增,即()f x ¢在()0,¥+上单调递增,因此当01x <<时,()()10f x f ¢¢<=; 当()()110x f x f ¢¢³³=,;因此()f x 在()0,1上单调递减,在 [)1,+¥上单调递增,故()()10f x f ³=.【小问3详解】证明:不妨取曲线 e x y =上的一点 ()11e ,x B x ,设()ln g x x =在A 处的切线即是 ()exh x =在B 处的切线,则 ()()10101e x g x h x x ¢¢===,得 101ln x x =,则 B 的坐标 0011ln x x æöç÷èø,,由于()0001ln 1x x x -=+,所以0001ln 1x x x +=-,则有()()2000000000002000000000011111ln ln 111111ln ln 11ABx x x x x x x x x x k g x x x x x x x x x x x ++-----======++--¢++-,综上可知,直线AB 的斜率等于()ln g x x =在A 处的切线斜率和()e xh x =在B 处的切线斜率,所以直线AB 既是曲线ln y x =在点()00n ,l A x x 处的切线也是曲线e x y =的切线.19. 如果函数 F (x )的导数为()()F x f x ¢=,可记为()()d f x x F x ò= ,若 ()0f x ³,则()()()baf x dx F b F a =-ò表示曲线 y =f (x ),直线 x a x b ==,以及x 轴围成的“曲边梯形”的面积. 如:22d x x x C ò=+,其中 C 为常数; ()()222204xdx C C =+-+=ò,则表 0,2,2x x y x ===及x 轴围成图形面积为4.(1)若 ()()()e 1d 02xf x x f =ò+=,,求 ()f x 的表达式;(2)求曲线 2y x =与直线 6y x =-+所围成图形的面积;(3)若 ()[)e 120,xf x mx x ¥=--Î+,,其中 R m Î,对 [)0,a b ¥"Î+,,若a b >,都满足()()0d d a bf x x f x x >òò,求 m 的取值范围.【答案】(1)()e 1xf x x =++(2)1256(3)12m £【解析】【分析】(1)根据新定义及()02f =计算得解;(2)根据新定义,构造函数()26g x x x =-+-即可得出面积;(3)根据所给条件可得()()d F x f x x =ò在 [)0,¥+上单调递增,转化为()0f x ³在 [)0,¥+恒成立,就导数的符号分类讨论后可求参数的取值范围.【小问1详解】()()e 1d e x xf x x x C =ò+=++,其中 C 为常数.而 ()02f =,即 102C ++=,所以 1=C ,所以()e 1xf x x =++.【小问2详解】联立 26y x y x ì=í=-+î,解得 123,2x x =-=,当32x -<<时,26x x -+>,令 ()26,g x x x =-+-()()2311d 623F x g x x x x x C =ò=-+-+,则围成的面积()()()2389125d 23212189326S g x x F F -æöæö==--=-+----+=ç÷ç÷èøèøò【小问3详解】令 ()()d F x f x x =ò,由题意可知,[)0,a b a b ¥"Î+>,,,满足()()()()00F a F F b F ->-,即()()F a F b >,即()()d F x f x x =ò在 [)0,¥+上单调递增,进而()0f x ³在 [)0,¥+恒成立,e 120x mx --³在 ()0,¥+恒成立.()e 2,0x f x m x =->¢,若12m £,则()0f x ¢>在()0,¥+上恒成立,故()f x 在[)0,¥+上为增函数,故()()00f x f ³=;若12m >,则0ln 2x m <<时,()0f x ¢<,故()f x 在[]0,ln 2m 上为减函数,故[]0,ln 2x m "Î时,()()00f x f £=,与题设矛盾;故12m £.【点睛】关键点点睛:本题第三步关键在于利用a b >,都满足()()0d d abf x x f x x >òò,得出函数()()d F x f x x =ò在 [)0,¥+上单调递增,再结合导数的符号分类讨论后可得参数的取值范围.。

黄冈市2024-2025学年高三上学期9月调研考试 数学 含答案

黄冈市2024-2025学年高三上学期9月调研考试 数学 含答案

黄冈市2024年高三年级9月调研考试数学本试卷共4页,19题.全卷满分150分.考试用时120分钟.★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号,考场号,座位号填写在试卷和答题卡上,并将准考证 号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在 试卷,草稿纸和答题卡上的非答题区域均无效.3. 非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷,草稿纸和 答题卡上的非答题区域均无效.4.考试结束后,请将答题卡上交.一 、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合 题目要求的.1. 若集合A={x|x²-2x-8<0,x ∈Z},B={yly=√x,x ∈R}, 则A∩B=( )A.{0,1,2,3}B.{1,2,3} c.{0,1} D.{0}2.复数则 z 的虚部为( )B. C.3.则sin 2α=( )B. 士C.D.4.若向量a=(2,0),b=(3,1),则向量a 在向量b 上的投影向量为( )D.(5,1)5 . 若m>0,n>0, 且 3m+2n-1=0, 则的最小值为( )A.20B.12C.16D.25A A口6. 已知△ABC 的内角A,B,C 所对的边分别为a,b,c, ,b=3, 下面可使得△ABC 有两组解的a 的值为( )A. B.3 C.4 D.e7.设h(x),g(x) 是定义在R上的两个函数,若Vx,x₂∈R,x≠x₂, 有n(x;)-h(x₂)≥|s(x₁)-g(x₂) 恒成立,下列四个命题正确的是( )A.若h(x)是奇函数,则g(x) 也一定是奇函数B.若g(x)是偶函数,则h(x)也一定是偶函数C. 若h(x)是周期函数,则g(x) 也一定是周期函数D. 若h(x)是R上的增函数,则H(x)=h(x)-g(x) 在R上一定是减函数8. 已知向量al=|5|=4,a.b=-8,,且|i-d=1, 则n与c夹角的最大值为( )A. B. C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.9. 已知c<0<b<a, 则( )A.ac+b<bc+aB.b³+c³<a³10. 已知函数的图象过点A(0,1)和B(x,-2)(x₀>0), 且满足|AB= √13,则下列结论正确的是( )A.C. 当时,函数f(x)值域为[0,1]日D. 函数y=x-f(x) 有三个零点11.已知f(x)=2x³-3x²+(1-a)x+b,则下列结论正确的是( )A.当a=1时,若f(x)有三个零点,则b的取值范围是(0,1)B.当a=1且x∈(0,π)时,f(sinx)<f(sin²x)C. 若f(x) 满足f(1-x)=2-f(x), 则a-2b=2D. 若f(x) 存在极值点x, 且f(x,)=f(x), 其中x₀≠x, 则三、填空题:本题共3小题,每小题5分,共15分.12.已知集合A={x|log₂x<m},, 若“x∈A” 是“x∈B” 的充分不必要条件,则实数m 的取值范围是13.已知f(x) 是定义在R上的奇函数,f(x+2) 为偶函数.当0<x<2 时,f(x)=log₂(x+1), 则f(101)=14.已知函数f(x)=sinx-x+1,若关于x的不等式f(axe')+f(-ae*-x+2)>2的解集中有且仅有2个正整数,则实数a 的取值范围为四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15 . (本小题13分)设S,为数列{a,}的前n项和,满足S,=1-a,(neN").(1)求证:(2)记T=S²+S²+…+S²,求T,.16.(本小题15分)函数f(x)=sin ox coscox+cos²ax,w>0,函数f(x) 的最小正周期为π.(1)求函数f(x)的单调递增区间以及对称中心;(2)将函数f(x)的图象先向右平移个单位,再向下平程个单位,得到函数g(x)的图象,在函数g(x)图象上从左到右依次取点A,A₂,..,A₂024, 该点列的横坐标依次为x,x₂,..,X2024, 其中求g(x)+g(x₂)+.+g(x2024)17. (本小题15分)已知函(1)若曲线y=f(x)在点(1,f(1))处的切线方程为f(x)=-x+b, 求a和b的值:(2)讨论f(x) 的单调性.18. (本小题17分)在△ABC 中,角A,B,C 所对的边分别为a,b,c(1)证明:( 2 ) 若a,b,c 成等比数列.(i) 设求g 的取值范围;(ii) 求的取值范围.19. (本小题17分)已知定义在(0,+0c)的两个函数,(1)证明:|sinx|<x(x>0):(2)若h(x)=sinx-x⁴. 证明:当a>1 时,存在x∈(0,1), 使得h(x)>0;(3)若f(x)<g(x)恒成立,求a的取值范围.A2024年9月高三起点联考数学答案一、单选题:本题共8小题,每小题5分,共40分.1.A2.B3.C4.B5.D6.D7.C8.A二、选择题:本题共3小题,每小题6分,共18分.全部选对的得6分,部分选对的得部分分,有选结的得0分.9.ABD 10.AD 11.ABD11.解析:A.a=1时,f(x)=6x²-6x=6x(x-1),f(x)在(-o.0)递增,(0,1)递减,(1,+0o)递增。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

唐山一中2008—2009学年度第二学期第二次调研考试
高二年级化学试卷
命题人:王春凤张春霞
审定人:周长山
说明:
1.考试时间60分钟,满分100分。

2.将卷Ⅰ答案用2B铅笔涂在答题卡上,卷Ⅱ用蓝黑钢笔或圆珠笔答在试卷上.。

3.Ⅱ卷卷头和答题卡均填涂本次考试的考号,不要误填学号,答题卡占后5位。

卷Ⅰ(选择题共60分)
一.选择题(共15小题,每小题4分,计60分。

在每小题给出的四个选项中,每小题只有一个选项正确。


1.下列各组物质中,一定既不是同系物,又不是同分异构体的是
A.
B.乙酸和硬脂酸
C.CH2O2和C3H6O2
D.苯甲酸和
2.下列有机物:(1)饱和一元醇(2)饱和一元醛(3)饱和一元羧酸(4)饱和一元羧酸和饱和一元醇生成的酯(5)苯的同系物,它们的同系物完全燃烧后生成的水和二氧化碳的物质的量之比恒定的是
A.(2)(3)(4) B.(1)(2)(3) C.(4)(5) D.(2)(3)(4)(5)
3.甲醛.乙酸和丙醛组成的混合物中,氧元素的质量分数是37%,则碳元素的质量分
数为
A.27% B.28% C.54% D.无法计算
4.某有机物的结构简式如下图。

则此有机物可发生的反应类型有
①取代②加成③消去④酯化⑤水解⑥氧化⑦中和。

A.①②③⑤⑥B.②③④⑤⑥
C.①②③④⑤⑥D.①②③④⑤⑥⑦
5.分子式为C8H16O2的有机物A,它能在酸性条件下水解生成B和C,且B在一定条件下能转化成C。

则有机物A的可能结构有
A.1种B.2种C.4种D.8种
6.下列有关除杂质(括号中为杂质)的操作中,错误的是
A.福尔马林(甲酸):加入足量饱和碳酸钠溶液充分振荡,蒸馏,收集馏出物
B.乙醇(乙醛):加新制Cu(OH)2溶液,加热至沸腾,过滤取溶液
C.苯(苯酚):加NaOH溶液,充分振荡,分液,弃水层。

D.乙酸乙酯(乙酸):加饱和碳酸钠溶液,充分振荡,分液,弃水层
7.下列三种有机物是某些药物中的有效成分:
以下说法正确的是()
A.三种有机物都能与浓溴水发生反应
B.三种有机物苯环上的氢原子若被氯原子取代,其一氯代物都只有2种
C.将等物质的量的三种物质加入到氢氧化钠溶液中,阿司匹林消耗氢氧化钠最多D.使用FeCl3溶液和稀硫酸不能鉴别出这三种有机物
8.下列有机物在酸性催化条件下发生水解反应,生成两种不同的有机物,且这两种有机物的相对分子质量相等,该有机物是
A.蔗糖B.葡萄糖C.丙酸丙酯D.戊酸丁酯
9.下列说法正确的是
A.实验室进行石油的分馏实验:温度计水银球插入石油液面以下
B.检验乙醇中是否含水:向乙醇样品中加入金属钠,观察反应的剧烈程度
C.除去苯中溶解的少量苯酚:向其中加入过量的浓溴水,过滤
D.制备氯乙烷:用乙烷和氯气取代的方法最佳
10.下列各组物质不论以何种比例混合,只要总质量一定,完全燃烧后所产生的水的质量保持不变的是
A.苯和甲苯B.甲醛和甲酸乙酯C.丁苯和甘油D.苯和苯酚11.150℃,1.01×105 Pa时,a L乙炔和a L丙烯的混合气体与过量的b L O2混合,点燃使这两种烃充分燃烧,再恢复到原状况,此时混合气体的体积为
A.10a L B.(2a+b)L C.(b-a)L D.无法计算
12.某有机物分子中含n1个—CH2—,n2个—CH—,n3个—OH,其余为甲基。

则甲基的个数为
A.n1+n2+n3B.2n2+2n1-n3
C.n2+2-n3D.2n1+n2+2-n3
13.近几年一种新型的甜味剂---木糖醇悄悄的走进人们的生活,因为木糖醇是一种理想的蔗糖代替品,它具有甜味足.溶解性好.防龋齿.适合糖尿病患者等优点。

木糖醇是一种白色粉末状的固体,结构简式为:CH2OH(CHOH)3CH2OH,
下列有关木糖醇的叙述错误的是:
A.木糖醇与葡萄糖、果糖等一样是一种单糖 B.木糖醇能与水以任意比互溶
C.木糖醇是一种五元醇 D.木糖醇是一种无糖型植物甜味剂14.既能发生水解反应,又能发生氢化反应的是
A.油酸甘油酯B.软脂酸甘油酯C.油酸D.石炭酸15.通过实验来验证纤维素水解后生成葡萄糖,其实验包括下列一些操作过程,这些操作过程的正确排列顺序是
①取小团棉花或几小片滤纸;②小火微热,使之成亮棕色溶液;③加入90%的浓硫酸,用玻璃棒把棉花或滤纸捣成糊状;④稍冷,滴入几滴CuSO4溶液,并加入过量NaOH溶液使溶液中和至出现Cu(OH)2沉淀;⑤加热煮沸。

A.①②④③⑤ B.①③②④⑤ C.③①②④⑤ D.①③④②⑤
卷Ⅱ(非选择题 共40分)
二.填空题(共3小题,16~19小题)
16.(9分)已知乙醇可以和氯化钙反应生成微溶于水的CaCl 2·6C 2H 5OH 。

实验室合成乙酸乙酯的粗产品的步骤如下:
㈠制备乙酸乙酯粗产品:如图所示的仪器装置,在蒸馏烧瓶内将过量的乙醇与适量浓硫酸混合,然后经分液漏斗边滴加醋酸,边加热蒸馏。

得到含有乙醇.醋酸和水的乙酸乙酯粗产品。

(1)写出蒸馏烧瓶中发生的化学反应方程式: (2)浓H 2SO 4的作用是 (3)冷凝水流经冷凝管时应从 进入(填“a ”或“b ”) (4)碎瓷片的作用是 ㈡对乙酸乙酯进行精制
(1)为了除去粗产品其中的醋酸,可向产品中加入 溶液,然后进行 (填操作)
(2)再向得到的有机物中加入饱和氯化钙溶液,振荡.分离,加入饱和氯化钙溶液的目的是 。

姓名______________ 班级_____________ 考号______________
(3)最后,加入无水硫酸钠除去其中的水分,再经过处理,即可得到纯净的乙酸乙酯。

17.(9分)菠萝酯是一种具有菠萝香气的食用香料,是化合物甲(CH 2=CHCH 2OH )与苯氧乙酸发生酯化反应的产物。

已知:
菠萝酯的合成路线如下:
①试剂X 不可..
选用的是(选填字母)____________。

a .CH 3COONa 溶液 b .NaOH 溶液 c .NaHCO 3溶液 d .Na ②丙的结构简式是_________________,反应Ⅱ的反应类型是___________。

③苯氧乙酸有多种酯类的同分异构体,其中能与FeCl 3溶液发生显色反应,且有2种一硝基取代物的同分异构体是(写出任意2种的结构简式) _____________________________________________________。

18.(17分)某卤代烃A 的相对分子质量为94.5,在一定条件下可以发生如下转化(其
他产物和水以省略)。

请回答下列问题:
(1)按要求写化学式:A的分子式J的结构简式
(2)在上述反应中①~⑨反应中,属于取代反应的是,
属于消去反应的是
(3)写出下列反应的化学方程式:
B→C
A→D
(4)有机物I在一定条件下,可合成一种环保型的高分子材料,写出该反应的方程式
三.计算题(5分)
21.某有机物0.3克完全燃烧后生成224ml的CO2和0.18克水,已知该物质蒸气对H2的相对密度为30,求有机物的分子式。

又知该有机物加稀H2SO4煮沸后生成A.B两种物质,推断该有机物结构简式。

(写出推断过程)。

相关文档
最新文档