消防燃烧学
消防员基础燃烧学知识

第 七 部分
火焰颜色及显光性
火焰颜色及显光性
火焰是正在燃烧的可燃气体或蒸气所占据的发光、放热的空间范围,是 指发光的气相燃烧区域。
一切可燃性固体和液体燃烧时形成的火焰,都有焰心、内焰和外焰三个 区域。但可燃气体燃烧时形成的火焰,只有内焰和外焰两个区域,而没有焰 心区域。
可燃物的化学组成不同、供氧条件不同,火焰会发出不同的颜色。含氧 量在 50%以上时,发出不显光(光暗或呈浅蓝色光)的火焰;含氧量在 50% 以下时,发出显光(光亮或黄光)的火焰;含碳量大于 60%时,发出显光并 伴有大量黑烟的火焰。有机可燃物火焰的明亮程度和颜色主要由火焰中的碳 粒子决定。
2、火势越大,温度越高, 火风压值越大
值得我们注意的是: 火风压不仅产生在火灾的 那条巷道里,也会出现在 高温火烟流经的其他巷道 里。特别是高温火烟流经 的上山、下山及垂直巷道 里,影响最大。一条巷道 里产生火风压的大小与该 巷道的标高差、与温度差 成正比,即温度越高火风 压越大;巷道标高差越大, 火风压越大。
添加标题
会导致人员窒息、中毒,甚至死亡。目前,已知的燃烧产物中有毒有害气体的种类或成分达数十种( HCL、
H2S、 HCN、 SO2、光气、醛类气体等)。 烟气的危害:烟气是一种不完全燃烧产物,由燃烧或热解作用所产生的悬浮固(液)体颗添粒加以标及题一氧化
碳、二氧化碳、氯化氰等有毒有害气体组成。首先,它会造成消防人员灼伤、中毒、窒息(在无防护的情况
下,人在充满烟气环境中停留 1~ 2min 就可能昏倒,停留 4~ 5min 就可能死亡);其次,火灾烟气具有较 强的减光作用,影响被困人员安全疏散,阻碍救援人员接近着火点和添救加人标;题第三,火灾烟气具有流动性,高
温烟气在流动过程中能引燃流经途中的可燃物,易导致火势蔓延扩大;第四,密闭空间里,烟气大量聚集易
《消防燃烧学》PPT课件

按燃烧物的性质分类
根据燃烧物的性质,可以将燃烧分为固体燃烧、液体燃烧和气体燃烧。固体燃烧又可以分 为表面燃烧、熏烟燃烧和炽热燃烧;液体燃烧可以分为闪燃和沸溢;气体燃烧可以分为扩 散燃烧和预混燃烧。
按燃烧方式分类
根据燃烧方式的不同,可以将燃烧分为扩散燃烧、预混燃烧和动力燃烧。扩散燃烧是指可 燃物与助燃物在混合过程中进行燃烧;预混燃烧是指可燃物与助燃物预先混合,然后进行 燃烧;动力燃烧是指可燃物在高速气流中进行的燃烧。
火灾扑救的基本原则与方法
冷却灭火法
窒息灭火法
隔离灭火法
抑制灭火法
通过降低可燃物的温度 来达到灭火的目的。
通过隔绝空气或稀释可 燃物来达到灭火的目的。
通过将可燃物与火源隔 离来达到灭火的目的。
通过抑制可燃物的化学 反应来达到灭火的目的。
应急救援的组织与实施
应急救援的组织 成立应急救援指挥部,负责统一指挥和协调应急救援工作。
火灾的起因与分类
火灾的起因
可燃物、助燃物(如氧气)和点火源 (如火柴、打火机)是火灾发生的必 要条件。
火灾的分类
根据燃烧物的不同,火灾可分为A、B 、C、D、E五类,分别为固体物质火 灾、液体或可熔化固体物质火灾、气 体火灾、金属火灾和带电火灾。
火灾预防的基本原则与方法
01
02
03
消除可燃物
减少室内可燃物的存放, 避免将可燃易燃物品置于 靠近火源的位置。
燃烧是一种放热、发光 的化学反应,通常伴随 着火焰的产生。
燃烧反应需要可燃物、 助燃物(通常是氧气) 和足够的高温,三者缺 一不可。
燃烧反应通常涉及一系 列复杂的化学反应,这 些反应会产生大量的热 量和光。
消防燃烧学

04
空气需要量是 燃烧控制的重 要参数,关系 到燃烧效率和 污染物排放。
燃烧产物生成量
燃烧产物:二氧化 碳、水蒸气、氮氧 化物等
01
生成量与燃烧条件 有关:如温度、压 力、氧气浓度等
02
04
燃烧产物的利用: 如二氧化碳用于合 成燃料、氮氧化物 用于制造化肥等
03
燃烧产物对环境的 影响:如温室效应、 酸雨等
两者关系
01
空气需要量: 燃料燃烧所需
的氧气量
02
燃烧产物生成 量:燃料燃烧 后产生的气体、
烟尘等物质
03
关系:空气需 要量与燃烧产 物生成量成正 比,即空气需 要量越大,燃 烧产物生成量
越多
04
影响:空气需 要量不足会导 致燃烧不充分, 产生有毒气体 和烟尘,影响 环境质量和人
04
确认周围环境安全,确 保自身安全
灭火措施
冷却灭火:降低 温度,使可燃物
无法继续燃烧
窒息灭火:隔绝 氧气,使可燃物
无法继续燃烧
隔离灭火:将可 燃物与火源隔离,
阻止火势蔓延
化学抑制灭火: 使用灭火剂,使
燃烧反应中断
逃生技巧
保持冷静:遇到 火灾时,保持冷 静,不要惊慌失 措。
寻找逃生路线: 观察周围环境, 寻找最近的逃生 路线,如安全出 口、楼梯等。
利用消防设施: 使用灭火器、消 防栓等消防设施 进行灭火,为自 己争取逃生时间。
保护呼吸系统: 用湿毛巾或衣物 捂住口鼻,防止 吸入有毒气体。
匍匐前进:在浓 烟环境中,尽量 匍匐前进,避免 吸入过多有毒气 体。
寻求帮助:如果 无法自行逃生, 可以拨打119报警 电话,寻求消防 员的帮助。
消防燃烧学(新)

第一章火灾燃烧基础知识一、填空1、燃烧从本质上讲,是一种特殊的氧化还原反应。
2、燃烧三要素:要发生燃烧反应,必须有可燃物、助燃物和点火源。
3、根据火三角形,可以得出控制可燃物、隔绝空气、消除点火源、防止形成新的燃烧条件阻止火灾范围的扩大四种防火方法。
4、根据燃烧四面体,可以得出隔离法、窒息法、冷却法、化学抑制法四种灭火方法。
5、燃烧按照参与燃烧时物质的状态分类,可分为气体燃烧、液体燃烧和固体燃烧;按照可燃物与助燃物相互接触与化学反应的先后顺序分类,燃烧可分为预混燃烧和扩散燃烧;按照化学反应速度大小分类,燃烧可分为热爆炸和一般燃烧;按照参加化学反应的物质种类分类,燃烧可分为化合反应燃烧和分解反应燃烧两类;按照反应物参加化学反应时的状态分类,燃烧可分为气相燃烧和表面燃烧;按照着火的方式分类,燃烧可分为自燃和点燃等形式。
6、热量传递有三种基本方式:即热传导、热对流和热辐射。
7、释放热量和产生高温燃烧产物是燃烧反应的主要特征。
8、物质的传递主要通过物质的分子扩散、燃料相分界面上的斯蒂芬流、浮力引起的物质流动、由外力引起的强迫流动、紊流运动引起的物质混合等方式来实现。
9、物质A在物质B中扩散时,A扩散造成的物质流与B中A物质的浓度梯度成正比,这个梯度可有三种表示方法,分别是浓度梯度、分压梯度和质量分数梯度。
10、管道高度越高,管道内外温差越大,烟囱效应越显著。
11、烟气是火灾使人致命的主要原因。
烟气具有的危害性包括:缺氧、窒息作用;毒性、刺激性及腐蚀性作用;烟气的减光性;烟气的爆炸性;烟气的恐怖性;热损伤作用。
12、烟气的主要成分:CO、CO2、HCI、SO2、NO2、NH3等气态产物。
二、简答1、燃烧的本质:是一种特殊的氧化还原反应。
燃烧的特征:燃烧时可以观察到火焰、发光、发烟这些特征。
例如:蜡烛燃烧时可以观察到花苞型火焰,实际火灾中的火焰呈踹流状态;停电时蜡烛发出的光可以照亮周围,实际火灾中物质燃烧的火光能够照亮夜空;蜡烛棉芯较长时很容易观察到火焰上方有黑烟冒出,在蜡烛上方放臵冷瓷器时,可以观察到烟炱,实际火灾中更可以观察到浓烟滚滚的现象。
3.1.2消防燃烧学

n+ 2 n
)
E 斜率 = nR
1 Tc
Pc
着火区
非着火区
Tc
小结: 小结:
1.着火条件和着火分类 2.热自燃理论的出发点和结论 3.热 4.着火感应期及求解方法 5. 着火极限的自燃理论得出的着火条件 意义
二、谢苗诺夫理论的应用
1.着火感应期 着火感应期 2. 自燃着火极限条件
1. 着火感应期
(1).定义: (1).定义:开始化学反应到着火所经历的时间 定义 (2).确定着火感应期的意义 (2).确定着火感应期的意义 (3).求解方法 (3).求解方法 ① T - t法 ② 数学解析法
(4).影响着火感应期的因素 (4).影响着火感应期的因素
2.点燃(引燃): 可燃物局部受高温热源加热,T↗
试判断下列情况下的着火方式各属什么类型? ① 植物油生产车间 热锅中植物油着火 ② 沉积于热管道上的可燃粉尘引起的爆炸 ③ CaC2遇水发生的爆炸 ④ 深圳清水河8.15爆炸(化学危险品) ⑤ 用火机点燃香烟 ⑥ 新疆克拉玛依幼儿园剧场着火
一、着火条件
− E / RT
ɺ ql =
∆ΗC ⋅ V ⋅ Kn ⋅ C A e
dT − S ⋅ h ⋅ (T − T0 ) = ρ ⋅ V ⋅ c ⋅ dt
Semenov热自燃理论模型
体系 T
环境 T0
Semenov 模 型温度分布 示意图
Semenov模型是一个理想化的模型。 该模型的假设是:体系内温度均匀一致, 不具有任何温度梯度,各处的温度均为T, 且体系的温度大于环境的温度T0,体系和 环境的温度是不连续的有温度突跃。 体系与环境的热交换全部集中在体系的表 面。
ρ ∞ ( f∞ − fc) ⋅ ∆Η C = ρ ∞ ⋅ CV ⋅ (TC − T∞ )
消防燃烧学

一、单项选择题(只有一个选项正确,共15道小题)1. 燃烧是指可燃物与氧化剂作用发生的放热反应,通常伴有现象。
【】(A) 火焰(B) 发光(C) 火焰、发光和(或)发烟(D) 发烟正确答案:C2. 可燃物按其,又可分为可燃固体、可燃液体和可燃气体三大类。
【】(A) 闪点(B) 燃点(C) 物质状态(D) 化学成分正确答案:C3. 可燃物质在没有外部火花、火焰等引火源的作用下,因所产生的自然燃烧,成为自燃。
【】(A) 受潮(B) 受潮或自身发热(C) 自身发热(D) 受热或自身发热并蓄热正确答案:D4. 可燃物的燃烧是氧化作用,使氧浓度降低至最低氧浓度以下,燃烧不能进行,火灾即被扑灭,这样的灭火方法叫。
【】(A) 冷却灭火(B) 隔离灭火(C) 窒息灭火(D) 化学抑制灭火正确答案:C5. 下列说法中错误的是。
【】(A) 发热量越大,体系越不易自燃(B) 环境温度越高,体系越不易自燃(C) 发热量相同,比表面积越大,散热能力越强,体系越不易自燃(D)较低自燃点物质的加入可使高自燃点的物质自燃点降低正确答案:C6. 根据链锁反应理论,要使已着火系统灭火必须。
【】(A) 改善系统的散热条件(B) 降低环境温度(C) 增大自由基的销毁速度(D) 增大自由基的增长速度正确答案:C7. 气体和液体的爆炸极限通常用表示,粉尘的爆炸极限通常用表示。
【】(A) 体积分数(%),单位体积中的质量(g/m3)(B) 体积分数(%),体积分数(%)(C) 单位体积中的质量(g/m3),单位体积中的质量(g/m3)(D) 单位体积中的质量(g/m3),体积分数(%)正确答案:A8. 若可燃气体与空气的混合物在遇到火源之前的最初温度升高,则爆炸下限。
【】(A) 降低(B) 增高(C) 不变(D) 不确定正确答案:A9. 用惰性气体稀释可燃性混气时,惰性气体的添加量必须满足下列条件。
【】(A) 添加惰性气体后,混气中的氧含量必须处在临界氧浓度以上(B) 添加惰性气体后,混气中的氧含量必须处在临界氧浓度以下(C) 添加惰性气体后,混气中的氧含量必须处在爆炸极限以上(D) 添加惰性气体后,混气中的氧含量必须处在爆炸极限以下正确答案:B10. 评定液体火灾危险性的主要指标是。
《消防燃烧学》教案

《消防燃烧学》教案.doc教案章节:第一章燃烧基础理论一、教学目标:1. 让学生了解燃烧的基本概念,理解燃烧的三要素。
2. 使学生掌握燃烧过程的物理化学变化。
3. 培养学生对火灾危险性的认识,提高消防安全意识。
二、教学内容:1. 燃烧的基本概念燃烧的定义燃烧的分类2. 燃烧的三要素燃料氧气点火源3. 燃烧过程的物理化学变化燃料的分解氧化反应燃烧产物的形成三、教学方法:1. 讲授法:讲解燃烧的基本概念、燃烧的三要素和燃烧过程的物理化学变化。
2. 案例分析法:分析火灾案例,让学生了解燃烧事故的危害。
四、教学准备:1. 教材:《消防燃烧学》2. 课件:燃烧基础理论3. 案例素材:火灾案例图片和视频五、教学步骤:1. 引入:讲解燃烧在日常生活中的应用,引发学生对燃烧的兴趣。
2. 讲解燃烧的基本概念,阐述燃烧的定义和分类。
3. 讲解燃烧的三要素,分析它们在燃烧过程中的作用。
4. 讲解燃烧过程的物理化学变化,包括燃料的分解、氧化反应和燃烧产物的形成。
5. 分析火灾案例,让学生了解燃烧事故的危害。
6. 总结本章内容,强调消防安全的重要性。
7. 布置课后作业:复习本章内容,查阅相关资料,了解燃烧事故的预防措施。
教案章节:第二章火灾蔓延规律二、教学内容:1. 火灾蔓延的基本概念火灾蔓延的定义火灾蔓延的分类2. 火灾蔓延的规律火灾蔓延的影响因素火灾蔓延的速度和距离3. 火灾蔓延的模型火灾蔓延的数学模型火灾蔓延的数值模型三、教学方法:1. 讲授法:讲解火灾蔓延的基本概念、规律和模型。
2. 实验法:进行火灾蔓延实验,让学生观察火灾蔓延的现象。
四、教学准备:1. 教材:《消防燃烧学》2. 课件:火灾蔓延规律3. 实验器材:火灾蔓延实验装置五、教学步骤:1. 引入:讲解火灾蔓延在日常生活中的危害,引发学生对火灾蔓延的关注。
2. 讲解火灾蔓延的基本概念,阐述火灾蔓延的定义和分类。
3. 讲解火灾蔓延的规律,分析影响火灾蔓延的因素。
消防燃烧学

消防燃烧学
消防燃烧学是一种广泛应用于消防工程中的燃烧物理学和化学学科,它解释了
在不同工况下燃烧物质的反应,以及产生的温度、流量和产物的燃烧特性。
它不仅关系到火灾的发生、火势的发展,还关系到消防扑救的安全、有效和有效控制。
进行消防扑救时,对火源素质有较系统的分析,并建立火灾发展模型,为了更好地控制火势发展和设计、选择合适的消防设备和措施。
消防燃烧学又称为"流体动力学热学",主要研究燃烧过程中的温度、压力、速度、物质流量和成份,研究火焰的素质、形状,建立火焰的物理模型,并建立不同工况及火焰的数学模型,从而研究火焰的蔓延、发展和控制。
总之,燃烧是一个复杂的化学反应过程,消防燃烧学旨在理解燃烧机理、解释反应过程并预测火焰发展,为火灾防治提供重要的理论依据。
消防燃烧学是建立消防科学体系的基础,是消防工程攻关的科学核心。
它涉及
物理学、化学、动力学、数学、气象学、测控技术、材料学等方面的知识,是一门涉猎广泛、层面复杂的科学学科。
消防燃烧学的学习非常重要,为实施火灾防治工作提供理论技术支撑,给消防机构,特别是政府消防部门提供有效的火灾管理理论指导。
消防燃烧学的学习不仅包括基础理论的研究,还要涉及当代消防技术的熟练应
用和火灾案例的深入分析,只有深入研究,才能解决火灾发展产生的复杂性情况,更好地行使全面的消防管理功能。
总之,消防燃烧学是研究火灾素质、火焰扩散及其发展的基本理论,是火灾防
治的基础,也是消防工程的科学分析和策略制定的基础。
掌握消防燃烧学,对于提高消防扑灭效率、降低火灾破坏程度,消防安全救助工作拥有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
消防燃烧学第一章火灾燃烧基础知识第一节燃烧的本质和条件一、燃烧的本质(识记)燃烧是可燃物与助燃物相互作用发生的强烈放热化学反应,通常伴有火焰、发光和(或)发烟现象。
游离基的链式反应是燃烧反应的实质,光和热是燃烧过程中的物理现象。
二、燃烧条件及其应用(简单应用)(一)燃烧条件燃烧的发生必须具备三个基本条件,即可燃物、助燃物和点火源。
1.可燃物(还原剂)如氢气、乙炔、乙醇、汽油、木材、纸张、塑料、橡胶、纺织纤维、硫、磷、钾、钠等。
2.助燃物(氧化剂)如空气(氧气)、氯气、氯酸钾、高锰酸钾、过氧化钠等。
一般‘3.点火源如明火、高温表面、摩擦与冲击、自然发热、化学反应热、电火花、光热射线等。
上述三个条件还需满足以下数量要求,并相互作用:(1)一定的可燃物浓度氢气的体积分数低于4%时,不能点燃;煤油在20℃时,由于蒸发速率较小,接触明火也不能燃烧。
(2)一定的助燃物浓度或含氧量例如,一般的可燃材料在氧气的体积分数低于13%的空气中无法持续燃烧。
(3)一定的着火能量即能引起可燃物质燃烧的最小着火能量。
(4)相互作用燃烧的三个基本条件须相互作用,燃烧才可能发生和持续进行。
(二)燃烧条件的应用根据着火三角形1.控制可燃物2.隔绝空气3.消除点火源4.防止形成新的燃烧条件,阻止火灾范围的扩大根据燃烧四面体1.隔离法2.窒息法3.冷却法4.化学抑制法第二节燃烧分类与燃烧基本过程一、燃烧分类(识记)按照参与燃烧时物质的状态分类:气体燃烧、液体燃烧和固体燃烧。
按照可燃物与助燃物相互接触与化学反应的先后顺序分类:预混燃烧和扩散燃烧。
按照化学反应速度:热爆炸和一般燃烧。
按照参加化学反应的物质:化合反应燃烧和分解爆炸燃烧。
按照反应物参加化学反应时的状态:燃烧可分为气相燃烧和表面燃烧按照着火的方式分类:自燃和点燃。
绝大部分物质的燃烧都属于气相燃烧。
物质燃烧剩余的残炭和金属物质的燃烧等是表面燃烧。
二、燃烧的基本过程(领会)(一)可燃固体的的熔化、分解或升华过程燃烧过程中发生熔化的主要是热塑性材料,塑料的熔化没有明确的熔点。
升华是指固体物质受热时直接转变为气体的过程。
如萘在受热时就会发生升华。
(二)可燃液体的蒸发过程液体表面不断发生着蒸发和凝结两个可逆过程。
在封闭容器中,蒸发和凝结过程最终会;并形成平衡蒸气压力或饱和蒸气压力。
温度越高,饱和蒸气压力越大。
(三)可燃气体与助燃气体的混合过程可燃气体与助燃气体相互接触时,它们之间才能发生化学反应。
这种混合过程既可能是相互扩散,也可能是流动引起的掺混。
(四)可燃气/助燃气体混合物的化学反应过程可燃气体与助燃气体的化是由众多的基元反应组成。
基元反应的反应速率服从质量作用定律和阿累尼乌斯定律。
根据质量作用定律,基元反应aA+bB-->eE+fF的反应速率为K---反应常数,其值等于反应物为单位浓度时的反应速率;a、b---反应级数。
第三节燃烧过程中的物理基础热量传递有三种基本方式,即热传导、热对流和热辐射。
一、热传导热传导又称导热,属于接触式传热,是连续介质由于存在温差传递热量而又没有各部分之间相对的宏观位移的一种传热方式。
在流体中,尽管也有导热现象发生,但通常被对流运动所掩盖。
热传导服从傅里叶定律,即2(领会)q’’某----热通量,在单位时间,经单位面积传递的热量,(W/m2);dT/d某---沿某方向的温度梯度,(℃/m);K---导热系数,[W/(m.K)]二、热对流热对流又称对流,是使流体各部分之间发生相对位移,由于在流体中存在温度差,所以也存在导热现象,但导热在整个传热中处于次要地位。
常把具有相对位移的流体与所接触的固体壁面之间的热传递过程称为对流换热。
牛顿冷却公式(领会)q”---单位时间内,单位壁面积上的对流换热量,(W/m2)。
ΔT---流体与壁面间的平均温差,(℃);h---表面传热系数,表示流体和壁面间温度差为1℃时,单位时间内壁面和流体之间的换热量,[W/(m.℃)]三、热辐射辐射是物体通过电磁波来传递能量的方式。
辐射力定义为单位时间内物体的单位表面积向周围半球空间发射的所有波长范围内的总辐射能,用E表示,单位为W/m2。
在所有物体中,同温度下辐射力最大的物体称为黑体。
黑体的辐射力服从斯蒂芬-玻耳兹曼定律(领会)Eb---黑辐射能力;σ---斯蒂芬—玻耳兹曼常数,其值为T---表面的绝对温度(K)。
3.四、燃烧过程中的质量传递(一)物质扩散(识记)面积上流体A扩散造成的物质流与在B中流体A的浓度梯度成正比(二)燃烧引起的浮力作用(综合应用)火灾现场、燃烧区附近的气体都在流动,这个物质流称为整体物质流。
产生这种整体物质流的原因有强迫对流(例如机械通风)以及自然对流,即燃烧引起的浮力作用。
流体平衡方程有如果管道内温度高于管道外,即T>T0,则1)管道H越高,管管道下端1-1平面上的压力差(p-p1)越大,烟囱效应越显著。
2)管道内外温差越大,热空气与冷空气的密度差越大,管道下端1-1平面上的压力差也就越大,烟囱效应越显著。
烟囱效应对高层建筑发生火灾时的危害特别大。
在发生火灾时,楼梯通道、电梯井如不采取防火措施,就会起到烟囱的作用。
火灾时烟气的垂直流动速度可达2-4m/,几十层的大楼不到1min就会充满热烟气。
第四节燃烧热及燃烧温度一、热容摩尔热容是试验测定的一种基础数据,是Imol物质在非体积功为零的条件下,仅因温度升高1℃所吸收的热。
用Cp表示一定量的物质从温度T1升高到T2时平均每升高1℃所需要的热量,用Cp,表示,则恒压热Qp为V---物质的体积(m3)。
平均热容的数值与温度范围有关。
二、燃烧热(识记)如果体系发生反应,参加反应的各种物质在化学成分发生变化的同时,会伴随着系统内能量分配的变化。
这种反应前后能量的差值以热的形式向环境散失或从环境中吸收,散失或吸收的热量就是反应热。
对于燃烧反应,反应热等于燃烧热。
根据化学热力学理论:4对于定温恒压过程,反应热等于系统的焓变;对于定温定容过程,反应热等于系统内能的变化。
三、热值的计算(领会)所谓热值是指单位质量或单位体积丁燃物完全燃烧所放出的热量,通常用Q表示。
对于液态和固态可燃物,表示为质量热值Qm(kJ/kg);对于气态可燃物,表示为体积热值Qv(kJ/m3)对于液态和固态可燃物M---液态或固态可燃物的摩尔质量(g/mol);ΔHc---摩尔燃烧热(kJ/mol)。
对于气态可燃物是高热值(QH)就物中的水和氢燃烧生成的水以液态存在时的热值;低热值(QL)就是可燃物中的水和氢燃烧生成的水以气态存在时的热值。
在研究火灾的燃烧中,常用低热值。
很多可燃物,分子结构很复杂,摩尔质量很难确定。
通常用经验公式计算。
最常用的有门捷列夫公式QH=4.18某[81C+300H-26某(O-S)]QL=QH-6某(9H+W)某4.18四、燃烧温度的计算可燃物在燃烧时放出的热量,一部分被火焰辐射掉,大部分消耗在加热燃烧产物上。
燃烧产物所具有的温度,也就是物质的燃烧温度。
第五节烟气的产生及其危害一、烟气的产生燃烧反应物的混合基本上由浮力诱导产生的紊流流动控制,其中存在着较大的组分浓度梯度。
材料的化学组成是决定烟气产生量的主要因素。
碳氢比值越大,产生烟的能力较大,可燃物分子结构对碳烟的生成也有较大影响。
环状结构的芳香族化合物(如苯、萘)的生碳能力比直链的脂肪族化合物(烷烃)高。
氧气供给速率是影响燃烧发烟量的另一个重要因素。
氧供给充分,碳原,烟雾较小;氧供给不充分,碳粒子生成雾很大。
二、烟气的主要成分(识记)5(三)链式反应着火条件1.链式反应中的化学反应速度链式反应理论认为,反应自动加速并不一定要依靠热量的积累,也可以通过链式反应逐渐积累自由基的方法使反应自动加速,直至着火。
自由基的生成速度用W1表示,由于引发的过程很困难,故W1一般比较小。
设在链传递过程中自由基增长速度为W2,W2=fn,f为分支链生成自由基的反应速度常数。
由温度升高,f值增大,即活化分子的质量分数增大,W2也就随着增大。
链传递过程中因分支链引起的自由基增长度W2在自由基数目增长中起决定作用。
设自由基销毁速度为W3正比于n,写成等式为W3=gn,g为链终止反应速度常数。
由整个链式反应中自由基数目随时间的变化的关系为dn/dt=W1+W2-W3=Wi+fn-gn=Wi+(f-g)n令=f-g,则上式可写成dn/dt=W1+n2.着火条件引发自由基数目变在链引发过程中,自由基生成速率很小,可以忽略。
引发自由基数目变化的主要因素是链分支引起的自由基增长速度W2和链终止过程中的自由基销毁速度W3。
在<0的情况下,自由基数目不能积累,反应速度不会自动加速,而只能趋向某一定值,因此系统不会着火。
系统温度升高,W2加快,W3可视为不随温度变化,这就可能出现W2=W3的情况。
反应速度将随时间呈线性增加,而不是加速增加,所以系统不会着火。
系统温度进一步升高,W2进一步增大,则有W2>W3,即=(f-g)>0。
反应速度将随时间呈指数形式加速增加,系统会发生着火。
只有当>o时,即分支链形成的自由基增长速度W2大于链终止过程中自由基销毁速度W3时,系统才可能着火。
=0是临界条件,此时对应的温度为自燃温度,在此自燃温度以上,只要有链引发发生,系统就会自发着火。
(四)链式反应理论中的着火感应期链式反应中的着火感应期,有三种情况:1)<0时,系统的化学反应速度趋向于一常量,系统化学反应速度不会自动加速,系统11不会着火,着火感应期т=∞。
2)>0时,着火感应期т减小3)=0是一种极限情况,其着火感应期是指W产=W0的时间。
第三节几种典型物质的自燃一、易自燃的化合物与单质(一)与水作用发生自燃的物质1.活泼金属例如锂、钠、钾、铷、铯、钙、钠汞齐、钾钠合金等。
它2.金属氢化物主要有氢化钾、氢化钠,四氢化锂铝、氢化钙、氢化铝等。
这娄3.硼烷硼烷有20多种,因其特殊的缺电子结构,易与水中的羟基结合形成路易斯酸,同时放.出氢气,产生大量的热,引起自燃。
4.金属磷化物例如磷化钙、磷化锌,它们与水作用生成磷化氢,磷化氢在空气中容易自燃,反应式为5.金属碳化物如碳化钾、碳化钠、碳化钙、碳化铝等。
6.金属粉末主要有锌粉、铝粉、镁粉、铝镁粉等。
7.保险粉单名为连二亚硫酸钠(Na2S204),分,保险粉是一种强还原剂。
遇水反应能自燃的物质遇酸同样会发生反应,而且反应更剧烈,发生自燃的危险性大。
(二)在空气中能自燃的物质这类物质主要有黄磷、烷基铝、硝酸纤维素制品、有机过氧化物等物质。
根据硝化纤维素中的含氮量进行分类,氮的质量分数在10.5%-12.5%的属易燃物质,氮的质量分数在12.5%以上的肩爆炸物质。
赛璐珞由硝化纤维、樟脑、乙醇制成,它和硝化纤维一样容易自燃。