600MW凝汽式机组全厂原则性热力系统计算

合集下载

汽轮机600MW汽轮机原则性热力系统设计计算

汽轮机600MW汽轮机原则性热力系统设计计算

600MW汽轮机原则性热力系统设计计算目录毕业设计...............错误! 未定义书签。

内容摘要 . .. (3)1.本设计得内容有以下几方面: . (3)2.关键词 (3)一.热力系统 . (4)二.实际机组回热原则性热力系统 (4)三.汽轮机原则性热力系统 (4)1.计算目的及基本公式 (5)1.1 计算目的 . (5)1.2 计算的基本方式 (6)2.计算方法和步骤 (7)3.设计内容 (7)3.1整理原始资料 (9)3.2计算回热抽气系数与凝气系数 (9)回热循环 (10)3.2.1混合式加热器及其系统的特点 (10)3.2.2表面式加热器的特点: (11)3.2.3表面式加热器的端差θ及热经济性 (11)3.2.4抽气管道压降p j及热经济性 (12)3.2.5蒸汽冷却器及其热经济性 (12)3.2.6表面式加热器的疏水方式及热经济性 (13)3.2.7设置疏水冷却段的意义及热经济性指标 (14)3.2.8除氧器 . (18)3.2.9除氧器的运行及其热经济性分析 (19)3.2.10除氧器的汽源连接方式及其热经济性 (19)3.3新汽量 D0计算及功率校核 (23)3.4热经济性的指标计算 (26)3.5各汽水流量绝对值计算 (27)致谢. (32)参考文献 . (33)600MW汽轮机原则性热力系统设计计算内容摘要1.本设计得内容有以下几方面:1)简述热力系统的相关概念;2)回热循环的的有关内容(其中涉及到混合式加热器、表面式加热器的特点,并对其具有代表性的加热器作以细致描述。

表面式加热器的端差、设置疏水冷却段、蒸汽冷却段、疏水方式及热经济性、除氧器的运行及其热经济性分析、除氧器的汽源连接方式及其热经济性)3)原则性热力系统的一般计算方法2.关键词除氧器、高压加热器、低压加热器一.热力系统热力系统的一般定义为:将热力设备按照热力循环的顺序用管道和附件连接起来的一个有机整体。

热力发电厂课程设计

热力发电厂课程设计

热力发电厂课程设计一、课程设计题目600MW 凝汽式机组原则性热力系统热经济性计算二、课程设计的任务1、通过课程设计加深巩固热力发电厂所学的理论知识,了解热力发电厂热力计算的一般步骤;2、根据给定的热力系统数据,计算汽态膨胀过程线上各计算点的参数,并在h -s 图上绘出汽态膨胀线;3、计算额定功率下的汽轮机进汽量D 0及机组和全厂的热经济性指标,包括汽轮机热耗率、全厂热耗率、全厂发电标准煤耗率和全厂供电标准煤耗率。

三、计算类型定功率计算四、原则性热力系统原则性热力系统图见图1。

H PGBH 4H DT DL P1L P2CD m aSGC PD EH 8H 7H 5FPH 3H 2H 1IPA BD ELM NA HPRLT1S1S2T 2T 3S3S4T 4B N T RH M PSS1S2S3S4轴封供汽母管T=T 1T 2T 3T 4+++FD l图1 发电厂原则性热力系统锅炉:HG-1900/25.4-YM4 型超临界、一次再热直流锅炉。

汽轮机:CLN600–24.2/566/566型超临界、三缸四排汽、单轴凝汽式汽轮机。

回热系统:系统共有八级不调节抽汽。

其中第一、二、三级抽汽分别供三台高压加热器,第五、六、七、八级抽汽分别供四台低压加热器,第四级抽汽作为除氧器的加热汽源。

一至七级回热加热器(除除氧器外)均装设了疏水冷却器。

三台高压加热器均内置蒸汽冷却器。

汽轮机的主凝结水由凝结水泵送出,依次流过凝结水精处理装置、轴封加热器、四台低压加热器,进入除氧器。

给水由汽动给水泵升压,经三级高压加热器加热,最终进入锅炉。

三台高压加热器的疏水逐级自流至除氧器;四台低压加热器的疏水逐级自流至凝汽器热井。

五、计算原始资料1、汽轮机参数:(1)额定功率:P e=600MW;(2)主蒸汽参数:p0=24.2MPa,t0=566℃;(3)过热器出口蒸汽压力25.4 MPa,温度570℃;(4)再热蒸汽参数:热段:p rh=3.602MPa,t rh=566℃;冷段:p'rh=4.002MPa,t'rh=301.9℃;(5)排汽参数:见表3中A;2、回热系统参数:(1)机组各级回热抽汽参数见表1;表1 回热加热系统原始汽水参数项目单位H1 H2 H3 H4 H5 H6 H7 H8 抽汽压力MPa 5.899 4.002 1.809 0.9405 0.3871 0.1177 0.05757 0.01544 抽汽温度℃351.2 301.9 457.0 363.2 253.8 128.2 x=1.0 x=0.98 抽汽管道压损% 3 3 3 5 5 5 5 5加热器上端差℃见表3中B - 见表3中C加热器下端差℃ 5.6 5.6 5.6 - 5.6 5.6 5.6 - 注:忽略加热器和抽汽管道散热损失(2)给水泵出口压力:p pu=29.21MPa,给水泵效率:ηpu=0.9;(3)除氧器至给水泵高度差:H pu=22m;(4)小汽轮机排汽压力:p cx=7kPa,小汽轮机机械效率:ηmx=0.99,排汽干度:X cx=1;(5)凝结水泵出口压力:p'pu=1.724Mpa;(6)高加水侧压力取给水泵出口压力,低加水侧压力取凝结水泵出口压力;3、锅炉参数:锅炉效率:ηb =93%。

超临界600MW原则性热力系统计算步骤

超临界600MW原则性热力系统计算步骤

《热力发电厂》课程设计指导书(2)设计题目:超临界600MW 凝汽式机组全厂原则性热力系统设计计算一、课程设计的目的和任务本课程设计是《热力发电厂》课程的具体应用和实践,是热能工程专业的各项基础课和专业课知识的综合应用,其重点在于将理论知识应用于一个具体的电厂生产系统介绍实际电厂热力系统的方案拟定、管道与设备选型及系统连接方式的选择,详细阐述实际热力系统的能量平衡计算方法和热经济性指标的计算与分析。

完成课程设计任务的学生应熟练掌握系统能量平衡的计算,可以应用热经济性分析的基本理论和方法对各种热力系统的热经济性进行计算、分析,熟练掌握发电厂原则性热力系统的常规计算方法,了解发电厂原则性热力系统的组成。

二、计算任务1 .根据给定的热力系统数据,在 h - s 图上绘出蒸汽的汽态膨胀线(要求出图占一页);2 .计算额定功率下的汽轮机进汽量 D0,热力系统各汽水流量 D j;3 .计算机组和全厂的热经济性指标(机组汽耗量、机组热耗量、机组汽耗率、机组热耗率、绝对电效率、全厂标准煤耗量、全厂标准煤耗率、全厂热耗率、全厂热效率);4 .按《火力发电厂热力系统设计制图规定》绘出全厂原则性热力系统图,并将所计算的全部汽水流量标在图中(手绘图 A2 )。

汽水流量标注: D ×××,以 t/h 为单位三、计算类型:定功率计算采用常规的手工计算法。

为便于计算,凡对回热系统有影响的外部系统,如辅助热力系统中的锅炉连续排污利用系统、对外供热系统等,应先进行计算。

因此全厂热力系统计算应按照“先外后内,由高到低”的顺序进行。

计算的基本公式是热平衡式、物质平衡式和汽轮机功率方程式,具体步骤如下:1、整理原始资料根据给定的原始资料,整理、完善及选择有关的数据,以满足计算的需要。

(1)将原始资料整理成计算所需的各处汽、水比焓值,如新蒸汽、抽汽、凝气比焓。

加热器出口水、疏水、带疏水冷却器的疏水及凝汽器出口水比焓,再热热量等。

汽轮机600MW汽轮机原则性热力系统设计计算

汽轮机600MW汽轮机原则性热力系统设计计算

600MW汽轮机原则性热力系统设计计算目录毕业设计............... 错误!未定义书签。

内容摘要 (3)1.本设计得内容有以下几方面: (3)2.关键词 (3)一.热力系统 (4)二.实际机组回热原则性热力系统 (4)三.汽轮机原则性热力系统 (4)1.计算目的及基本公式 (5)1.1计算目的 (5)1.2计算的基本方式 (6)2.计算方法和步骤 (7)3.设计内容 (7)3.1整理原始资料 (9)3.2计算回热抽气系数与凝气系数 (9)回热循环 (10)3.2.1混合式加热器及其系统的特点 (10)3.2.2表面式加热器的特点: (11)3.2.3表面式加热器的端差θ及热经济性 (11)3.2.4抽气管道压降Δp j及热经济性 (12)3.2.5蒸汽冷却器及其热经济性 (12)3.2.6表面式加热器的疏水方式及热经济性 (13)3.2.7设置疏水冷却段的意义及热经济性指标 (14)3.2.8除氧器 (18)3.2.9除氧器的运行及其热经济性分析 (19)3.2.10除氧器的汽源连接方式及其热经济性 (19)3.3新汽量D0计算及功率校核 (23)3.4热经济性的指标计算 (26)3.5各汽水流量绝对值计算 (27)致谢 (32)参考文献 (33)600MW汽轮机原则性热力系统设计计算内容摘要1.本设计得内容有以下几方面:1)简述热力系统的相关概念;2)回热循环的的有关内容(其中涉及到混合式加热器、表面式加热器的特点,并对其具有代表性的加热器作以细致描述。

表面式加热器的端差、设置疏水冷却段、蒸汽冷却段、疏水方式及热经济性、除氧器的运行及其热经济性分析、除氧器的汽源连接方式及其热经济性)3)原则性热力系统的一般计算方法2.关键词除氧器、高压加热器、低压加热器一.热力系统热力系统的一般定义为:将热力设备按照热力循环的顺序用管道和附件连接起来的一个有机整体。

通常回热加热系统只局限在汽轮机组的范围内。

(完整word版)热力发电厂课程设计---660MW凝汽式机组全厂原则性热力系统计算(word文档良心出品)

(完整word版)热力发电厂课程设计---660MW凝汽式机组全厂原则性热力系统计算(word文档良心出品)

660MW凝汽式机组全厂原则性热力系统计算(设计计算)一、计算任务书(一)计算题目国产660MW凝汽式机组全厂原则性热力系统计算(设计计算)(二)计算任务1.根据给定热力系统数据,计算气态膨胀线上各计算点的参数,并在h-s图上绘出蒸汽的气态膨胀线;2.计算额定功率下的气轮机进汽量Do,热力系统各汽水流量D j、G j;3.计算机组的和全厂的热经济性指标;4.绘出全厂原则性热力系统图,并将所计算的全部汽水参数详细标在图中(要求计算机绘图)。

(三)计算类型定功率计算(四)热力系统简介某火力发电场二期工程准备上两套660MW燃煤汽轮发电机组,采用一炉一机的单元制配置。

其中锅炉为德国BABCOCK公司生产的2208t/h自然循环汽包炉;气轮机为GE公司的亚临界压力、一次中间再热660MW凝汽式气轮机。

全厂的原则性热力系统如图5-1所示。

该系统共有八级不调节抽汽。

其中第一、二、三级抽汽分别供三台高压加热器,第五、六、七、八级抽汽分别供四台低压加热器,第四级抽汽作为0.9161Mpa压力除氧器的加热汽源。

第一、二、三级高压加热器均安装了内置式蒸汽冷却器,上端差分别为-1.7℃、0℃、-1.7℃。

第一、二、三、五、六、七级回热加热器装设疏水冷却器,下端差均为5.5℃。

气轮机的主凝结水由凝结水泵送出,依次流过轴封加热器、4台低压加热器,进入除氧器。

然后由气动给水泵升压,经三级高压加热器加热,最终给水温度达到274.8℃,进入锅炉。

三台高压加热器的疏水逐级自流至除氧器,第五、六、七级低压加热器的疏水逐级自流至第八级低压加热器;第八级低加的疏水用疏水泵送回本级的主凝结水出口。

凝汽器为双压式凝汽器,气轮机排气压力 4.4/5.38kPa。

给水泵气轮机(以下简称小汽机)的汽源为中压缸排汽(第四级抽汽),无回热加热其排汽亦进入凝汽器,设计排汽压力为6.34kPa。

锅炉的排污水经一级连续排污利用系统加以回收。

扩容器工作压力1.55Mpa,扩容器的疏水引入排污水冷却器,加热补充水后排入地沟。

600MW凝汽式机组全厂原则性热力系统计算

600MW凝汽式机组全厂原则性热力系统计算

600MW凝汽式机组全厂原则性热力系统计算凝汽式发电机组是一种常见的发电装置,通过在燃烧室中燃烧燃料,从而产生高温高压的燃气。

这些燃气经过涡轮机的推动,从而驱动发电机发电。

在这个过程中,燃气能量被转化为机械能,然后转化为电能。

在全厂原则性热力系统计算中,我们需要计算凝汽式发电机组全厂的能量转换过程,以及各组件的能量损失情况。

下面是一个示例的计算步骤:1.燃气流程:首先,我们需要计算燃气在燃烧室中的燃烧过程。

这个过程中,燃料和空气混合在一起,产生高温高压的燃气。

我们需要计算燃气的热输入、质量流量以及热力特性。

2.涡轮机流程:接下来,我们需要计算涡轮机的工作过程。

涡轮机通过燃气的压力和温度来驱动转子转动,从而转化为机械能。

我们需要计算转子的转速以及转动功。

3.发电机流程:涡轮机转动的机械能需要通过发电机转化为电能。

我们需要计算发电机的效率以及电能产生的功率。

4.蒸汽循环流程:在涡轮机工作后,燃气经过凝汽器冷却成为水蒸汽。

然后,水蒸汽被再次加热,在高温高压下再次进入涡轮机。

我们需要计算蒸汽循环的效率以及各组件的能量损失。

5.辅助系统:除了核心的凝汽式发电机组,还有很多辅助系统,如冷却水系统、泵站等。

我们需要计算这些系统的能量损失以及效率。

在进行以上计算时,我们需要使用一些基本的热力学公式和参数。

例如,燃气的热输入可以通过燃料的高位发热值和燃料消耗量计算得到。

涡轮机的转速可以通过流量和进口出口压力计算得到。

发电机的效率可以通过实验测量或者理论计算得到。

总结起来,凝汽式机组全厂原则性热力系统计算是一个包括燃气流程、涡轮机流程、发电机流程、蒸汽循环流程以及辅助系统的计算过程。

通过对这些过程的能量转换和损失进行计算,可以评估凝汽式机组的热力性能,并提供相应的改进和优化建议。

600MW超临界机组热力系统计算

600MW超临界机组热力系统计算

600MW超临界机组热力系统计算摘要:汽轮机回热系统是火力发电厂重要的组成部分,它作为当代最有效的,提高热经济性的一种方式,已被广泛的应用。

本文先对回热的基本结构作出简单阐述。

选出影响机组热经济性的设备进行分析。

解释说明研究热经济性的方法,并且给出能表现热经济性的参数。

回热系统对热经济性的提高意义重大,所以在计算时一定要从多方面分析。

本文采用热量法和等效焓降法计算研究参数为:(N600—24.2/566/566)的600M W 超临界机组回热系统的热经济性。

通过相互比较探究超临界机组的效率和煤耗情况,分析俩种方法的利弊,综合俩种方法评价机组的回热系统。

用精确的计算结果来表现超灵界机组的优越性。

同时为回热系统节能优化的改造提供重要的理论依据,也为类似的计算积累丰富的经验。

关键词:600MW;超临界机组;回热计算;等效焓降;热量法前言电厂技术的重大突破往往是建立在材料科学的基础上的。

铁素体9%-10%Cr钢被研发,带来了电力行业的改革,它在600MW机组中的应用,使得超超临界参数的机组出现了,后来,是因为排气面积突破的特大型长叶片开发成功,为大容量机组提供的条件。

我国在原来的300MW和600MW机组的基础上开展了更大功率超临界参数汽轮机的研制。

超临界技术在当今世界已被广泛的应用,它的效率要比亚临界的好很多。

由于效率的提高,相对的能耗就减少了,排放也减少了,为环境压力做出了有效的缓解。

提高机组效率可以有很多办法,我们主要研究的是回热系统的热经济性。

评价其主要热经济性的指标有循环热效率和回热做工比。

但是在研究计算中主要应用了热量法和等效焓降法。

热量法的基础就是热力学第一定律,其效率等于有效利用的热量和供给的热量之比,是通过量的变化来表现热经济性的。

等效焓降法在热力系统的计算中可以算的上是一种新的方法,因为这种方法可以研究系统的局部,可以准确的研究各部分的特点,所以受到很大的关注。

1.火力发电厂600MW超临界机组回热系统的基本结构1.1火力发电厂600MW超临界机组回热系统的介绍火电厂的超临界是指锅炉的蒸汽压力大于22.2MPa,汽温550-650℃。

600MW凝汽式汽轮机组的热力计算

600MW凝汽式汽轮机组的热力计算

600MW凝汽式汽轮机组的热力计算热力计算是对凝汽式汽轮机组运行过程中的热力参数进行计算和分析的过程。

凝汽式汽轮机组是一种高效、稳定和可靠的能源转化设备,广泛应用于电力工业、化工工业和冶金工业等领域。

以下将详细介绍针对600MW凝汽式汽轮机组的热力计算。

1.热力计算的基本概念和原理热力计算是根据热力平衡原理以及能量守恒和熵增原理,对凝汽式汽轮机组的热力性能进行计算和分析的方法。

主要包括工质流量、压力、温度、焓值、功率和效率等参数的计算。

2.工质流量的计算凝汽式汽轮机组的蒸汽流量是其运行的重要参数之一、通过对锅炉和汽轮机的热力平衡进行计算,可以得到汽轮机的蒸汽流量。

其中,锅炉的热量输出由燃烧器的燃烧效率、燃料热值和过热器温度等因素决定。

汽轮机的蒸汽流量由机组的电输出、发电机效率和蒸汽特性等因素决定。

3.压力和温度的计算凝汽式汽轮机组的工作流程中涉及多个压力级和温度级。

通过对汽轮机各级汽缸、凝汽器和再热器的热力平衡进行计算,可以得到各级的压力和温度。

其中,压力和温度的计算需要考虑系统的热力损失和蒸汽特性等因素。

4.焓值的计算凝汽式汽轮机组的蒸汽焓值是其运行的重要参数之一、蒸汽焓值可以通过饱和蒸汽表和过热蒸汽表查得。

根据各级汽缸的压力和温度计算出的焓值,可以确定汽轮机各级的焓降和功率输出。

5.功率和效率的计算凝汽式汽轮机组的功率输出和效率是对其运行性能评估的重要指标。

功率可以通过发电机的输出电功率确定。

效率可以通过对锅炉和汽轮机的热力平衡进行计算。

热力损失、热回收和蒸汽特性等因素都会影响汽轮机组的效率。

总结:600MW凝汽式汽轮机组的热力计算涉及工质流量、压力、温度、焓值、功率和效率等参数的计算。

通过对锅炉和汽轮机的热力平衡进行计算和分析,可以对凝汽式汽轮机组的热力性能进行评估和优化。

热力计算是提高凝汽式汽轮机组运行效率和性能的重要工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

600MW凝汽式机组全厂原则性热力系统计算
概述
本文基于600MW凝汽式机组全厂原则性热力系统计算,主要介绍了热力参数
的计算方法以及计算结果的分析。

采用了热力学循环分析方法对系统进行模拟,通过分析计算结果来确定燃料消耗量、水冷却量、蒸汽流量和电力输出等相关参数。

计算方法
1.假设热力系统中的所有参数都满足理想状态,且没有能量损失。

2.将热力系统划分为不同的部分进行计算。

3.对热力系统中的各个部分进行热力学循环分析,确定各个部分的功率、
燃料消耗量、水冷却量等参数。

4.建立数学模型,对热力参数进行计算和模拟。

5.根据计算结果进行分析和评估。

热力系统的主要部分
1.热力系统的主要部分包括锅炉、汽轮机、冷凝器和再热器。

2.锅炉的主要作用是将燃料转化为蒸汽,提供动力输出。

3.汽轮机的主要作用是将蒸汽转化为机械能,提供动力输出。

4.冷凝器的主要作用是将蒸汽冷却成水,回收能量。

5.再热器的主要作用是提高热效率,增加动力输出。

热力参数的计算
1.锅炉热效率的计算方法:燃料消耗量 = 机组额定电功率 / 热效率 / 燃
料低位发热量。

其中,热效率可以通过对热力系统进行分析得到。

2.汽轮机等热机的热效率的计算方法:热效率 = 1 - 净排气比 * (热容
比- 1)/ 等压热效率。

其中,等压热效率可以通过对热力系统进行分析得到。

3.再热器的热效率的计算方法:热效率 = (蒸汽流量 * (H2 - H3) - 再
热器热损失)/ 燃料消耗量 * 燃料低位发热量。

其中,H2和H3分别表示再热器进口蒸汽的焓值和出口蒸汽的焓值。

4.冷凝器的热效率的计算方法:热效率 = (冷却水流量 * (H3’ - H4))
/ 蒸汽流量 * (H1 - H2)。

其中,H3’表示冷却水进口的温度对应的蒸汽的焓
值,H4表示冷却水出口的温度对应的蒸汽的焓值。

结论
根据以上计算方法和分析结果,我们可以得到600MW凝汽式机组全厂原则性热力系统的相关参数。

通过对这些参数进行评估和分析,我们可以有效地提高系统的热效率和动力输出,减少能源消耗。

相关文档
最新文档