外加电流的阴极保护法原理
阴极保护原理

1.关于阴极保护原理的叙述如前面所述,阴极保护护就是以通电的方法使被保护物成为阴极,由此减缓、避免腐蚀。
阴极保护实现的技术有两种:一是外加电流阴极保护也称强制(电流)阴极保护,二是牺牲阳极(阴极)保护。
实体布局请见示意图。
关于它们实现阴极保护的过程,许多书籍、资料都有叙述,下面从积累的摘录(也可参照示意图):(1)“用金属导线将管道接在直流电源的负极,将辅助阳极接在电源的正极,构成保护回路,如图阴极保护模型所示。
从图中可以看出,管道实施阴极保护时,有[b]外加电子注入管道表面。
当外加的电子来不及与电解质溶液中的某些物质起作用时,就会在金属表面积聚起来,导致阴极表面金属电极电位向负方向移动,即产生阴极极化。
[/ b]这时,微阳极区金属释放电子的能力就受到阻碍。
施加的电流愈大,电子积累就会越多,金属表面的电极电位就越负,微阳极区释放电子的能就越弱,换句话说,就是腐蚀电池二极间的电位差变小,阳极电流Ia越来越小。
当金属表面阴极极化到一定值时,阴、阳极达到等电位,腐蚀电池的作用就被迫停止。
此时,外加电流Ip等于阴极电流Ic,即Ia=0,这就是阴极保护的基本原理。
”这是一本石油工人技能培训教材里的叙述,是较最详细的一种,差不多的叙述在类似的书或小册子里常可见到。
(2)“在每种条件下,管线表面都会出现阳极区和阴极区,[b]在阳极区电流由管线钢表面流出,进入周围环境电解质(土壤和水),管线在该区域将会发生腐蚀。
在阴极区,电流由电解质流到管线表面上,该区域的腐蚀速率将减小。
[/b]基于上述观点,很明显,若[b]使得管线表面暴露的每一点都有电流流入,那么就可以减小腐蚀速率。
准确地说,这就是阴极保护所要完成的任务,直流电被强制地流到管线表面上,这一直流电可以使管线的电位向负方向偏移,导致金属腐蚀速率减小。
[/b]当适当调整电流大小并使其超过由阳极区释放的腐蚀电流时,将会有净电流注入管线表面的这些区域上,管线的整个表面将是阴极,腐蚀速率被减小,……阴极保护工程师的主要工作就是决定将腐蚀速率减小到可以接受水平时所需的阴极保护实际水平,腐蚀监测并结合阴极保护准则常常被用于这一决策。
外加电流的阴极保护原理

外加电流的阴极保护原理外加电流的阴极保护原理是一种利用外加电流对金属结构进行防腐蚀保护的技术。
在金属结构中,阴极往往是容易被腐蚀的部分,因为它们是电化学反应中接受电子的部分。
外加电流的阴极保护原理就是通过将金属结构设为阴极,在金属表面形成一层阴极保护膜,从而减少阴极的电极反应速率,达到延迟或阻止金属结构的腐蚀过程。
外加电流的阴极保护原理基于两种电化学反应:阴极反应和阳极反应。
阴极反应是金属结构表面的电解反应,而阳极反应则发生在与阴极相对的阳极区域。
在阴极保护过程中,通过加入外部直流电源,将金属结构设为阴极,使得阳极反应从金属结构转移到其他区域。
这种外加电流通过减慢或抑制金属结构表面的腐蚀反应,来保护金属结构免受腐蚀。
在外加电流的阴极保护原理中,阴极保护的效果主要与电流密度、电解液的成分和浓度、金属结构的材料和表面处理以及金属结构的形状和尺寸等因素有关。
首先,电流密度是外加电流阴极保护的关键因素。
适当的电流密度有助于形成均匀且致密的保护膜。
如果电流密度过低,保护膜的形成速度会很慢,导致保护效果不佳;而电流密度过高,则会导致阴极反应速率过快,形成非致密保护膜,导致保护效果变差。
其次,电解液的成分和浓度也非常重要。
电解液一般由一种或多种阴离子和阳离子组成。
其中,阴离子起到腐蚀抑制和保护膜形成的作用,而阳离子则对电流的传输起到重要的作用。
适当选择电解液的成分和浓度可增加保护膜的致密性和稳定性,提高阴极保护效果。
再次,金属结构的材料和表面处理也影响着阴极保护的效果。
金属材料的选择应考虑其在电解液中的耐蚀性和导电性。
此外,金属结构的表面处理方法对保护膜的生成有重要影响。
常见的表面处理方法包括沉积涂层、镀锌、喷涂和阳极氧化等。
最后,金属结构的形状和尺寸也会对阴极保护的效果产生影响。
金属结构的形状和尺寸影响着电流的分布和传输。
通常情况下,金属结构的小曲率区域会形成高电流密度区域,导致保护膜生成较快,而大曲率区域则会形成低电流密度区域,保护效果相对较差。
阴极保护外加电流阴极保护基本概念

外加电流阴极保护基本概念我们都知道常用的阴极保护方法有两种,一种是牺牲阳极阴极保护,另外一种是外加电流阴极保护,前面我们关于牺牲阳极阴极保护的案例已经讲过很多了,今天我们重点讲一下外加电流阴极保护。
外加电流阴极保护,简单点说就是在回路中串入一个直流电源,借助辅助阳极,将直流电通向被保护的金属,进而使被保护金属变成阴极,实施保护。
在工程中主要是用于保护金属管道和储罐不被电化学腐蚀。
外加电流阴极保护的目的就是防止金属电化学腐蚀。
在对金属管道阴极保护施工过程容易出现两种情况:第一种情况是地下管网在出地面后没有与地上部分进行金属绝缘隔离。
第二种情况是地下接地网与地下管道接触,造成短路导通,造成阴极保护系统不能正常工作。
管道与管道连接的设备是与接地网连接的,也就是说,地上管道是与接地导通的。
所以要使阴极保护系统正常工作,必须将地上管道与地下管道之间做隔离,第一方法是在地上管道与地下管道之间加装绝缘隔离接头;第二种方法是在地下管道与地上管道之间加装法兰隔离措施,在法兰处加装绝缘垫片,同时在法兰螺栓处加装绝缘套管和绝缘垫片。
采用这种的法兰连接方法后,法兰两侧的管道就被电气隔离了。
法兰连接后,要求做连续性测试,如果测试结果是导通的,说明垫片有破损或者某个套管有损伤导致法兰导通。
如果测试结果是断开的,说明采用这种措施达到了电气隔离的目的。
阴极保护系统实际应用过程中,大部分采用第一种方法,也就是在地下管道与地上管道之间加装绝缘隔离连接头。
外加电流阴极保护在大面积和大电流环境中,经济效益比较高,而且电流可以调节,使用寿命较长,而且保护范围比较大,因此在大的管道工程中有着无法取代的地位,但是外加电流阴极保护施工,大部分工作内容在地面以下,属于隐蔽工程。
而一些问题通常是在后期检查、测试的时候才发现。
这时候项目临近中交,地面基本硬化完成,设备也安装完成。
一旦发现问题,处理起来,费时费力,既增加成本,又影响工期。
所以,要在施工过程中,分析潜在的风险和容易出现的问题,及时采取相应措施来规避这些风险、处理好这些问题,从而确保进度、质量和成本控制,使项目顺利竣工,投入运营。
外加电流的阴极保护原理

外加电流的阴极保护原理外加电流的阴极保护原理是一种利用外部电源向金属结构施加电流,以减缓或阻止金属结构的腐蚀过程的方法。
这种方法通常用于防止钢铁结构在潮湿、盐碱环境中的腐蚀,以及减少管道、船舶、海洋平台等金属结构的腐蚀速度。
在这种保护原理下,金属结构的腐蚀过程会被转移至外部电流的阳极区,从而保护了金属结构的阴极区。
外加电流的阴极保护原理的基本原理是通过向金属结构施加一个与其自然电位相反的电流,使金属结构的电位向负方向移动,从而使其成为一个电化学上的“阴极”。
这样一来,金属结构的腐蚀过程就会被减缓或阻止,从而达到了保护金属结构的目的。
在实际应用中,外加电流的阴极保护原理通常通过在金属结构表面安装阳极和外部电源来实现。
阳极通常由惰性金属或铁、铝合金制成,外部电源则通过控制器对阳极施加适当的电流。
当外部电流施加到金属结构上时,金属结构的电位会发生变化,从而形成一个保护性的电位。
外加电流的阴极保护原理具有许多优点。
首先,它能够提供持久的保护效果,有效延长金属结构的使用寿命。
其次,它能够在不影响金属结构外观和性能的情况下实现保护效果。
此外,它还能够适应不同环境条件下的保护需求,如海洋环境、土壤环境等。
然而,外加电流的阴极保护原理也存在一些局限性。
首先,它需要一定的设备和技术支持,成本较高。
其次,对于大型金属结构的保护效果可能受到影响,需要进行详细的设计和施工。
此外,外加电流的阴极保护原理在一些特殊环境条件下可能会出现效果不佳的情况,需要谨慎应用。
总的来说,外加电流的阴极保护原理是一种有效的金属结构腐蚀防护方法,通过施加外部电流改变金属结构的电位,实现了对金属结构的保护。
在实际应用中,需要根据具体情况进行详细的设计和施工,以确保保护效果的实现。
同时,也需要注意其局限性,合理选择保护方案,以达到最佳的保护效果。
阴极保护的原理

阴极保护的原理1阴极保护的原理就是用外电流实现阴极极化,使局部电池的阴极区域达到其阳极开路电位,表面变成等电位腐蚀电流不再流动。
极化(polarizing):由于净电流的流入或流出而在电极上引起的电位变化称为极化。
电位的变化方向总是反抗平衡的移动,也就是说反抗电流的流动。
阴极电位向负的方向偏离,阳极电位向正的方向偏离,使得阴极和阳极之间的电位差减小,如果电池的电阻不发生变化,电动势的减小会使电流减弱。
极化原理示意图(略)3阴极保护的工程标准阴极保护标准:当腐蚀下降到工程上可予忽略的微小腐蚀量时,阴极保护就实现了。
通常,腐蚀速度为0.01mm/年时就可认为达到了理想的阴极保护。
根据DIN30676的规定,相应的阴极极化电位为钢/中性电解液(透气的土壤和地表水)-0.85v(这个电位对应与铁的电位铁稳定区)。
对铁材料没有最大保护电位的限制,但是实际上使用超过需要量的电流并没有好处,除增加电能和辅助阳极材料的消耗外,还可能对一些两性金属或对涂层有损害(析氢),贝克曼阴保手册推荐最大保护电位采用-1.15v。
4 陕京二线阴极保护的主要方法:阴极保护可以通过牺牲阳极(Galvanic Anodes)和外加电流(强制电流Impressed current)两中形式实现,原理一致区别在于阳极产物(MgC12\HC1)4.1牺牲阳极阴极保护两种金属相接触而产生的腐蚀电池。
在这种腐蚀电池中一种金属比另一种金属活泼而发生腐蚀。
在牺牲阳极的阴极保护技术中,就是有意识地运用这种作用建立足够强的异种金属腐蚀电池来抵消通常存在于管道表面的腐蚀电池。
这是通过一种十分活泼的金属与管道相连接来实现的。
这种金属将发生腐蚀并由此向管道提供电流。
在牺牲阳极阴极保护的情形下,阴极保护并没有减少腐蚀,它其实只是将所保护的结构的腐蚀转移到了牺牲阳极上面。
在一般情况下,牺牲阳极提供的电流是有限的。
所以,牺牲阳极阴极保护一般都用在保护所需电流较小的情况下。
外加电流的阴极保护原理

外加电流的阴极保护原理
阴极保护是一种常用的金属防腐蚀方法。
当金属处于电解质中时,会发生电化学反应,金属表面形成阳极和阴极。
阴极保护的原理就是通过施加外加电流,将金属件的表面设置为阴极,使其与电解质中的阳极直接相连,从而抑制或减少金属腐蚀的发生。
外加电流的阴极保护原理是基于电化学原理的。
施加外加电流后,金属件表面的阴极反应将被加强,阻止阳极反应的进行,从而降低了金属的腐蚀速率。
阴极保护通常通过两种方式实现:
1. 电流阴极保护:在金属件周围放置一个外部供电的电源,使金属件处于恒定的负电位状态,将金属件设为阴极。
由于金属处于阴极状态,金属的电位会变得较低,使其成为电解质中的阴极反应发生的位置。
这样,金属的腐蚀就通过阴极反应得到抑制。
2. 防护层阴极保护:在金属表面涂覆一层可溶性阳极材料或者不溶性阳极材料。
当电流通过涂层时,阳极材料会发生氧化反应,而金属件成为电化学电池中的阴极。
通过这种方式,涂层的阳极材料将受到腐蚀,而金属件则不会受到腐蚀,实现了对金属的保护。
这样,通过施加外加电流,金属阴极保护可以阻止或者减缓金属的腐蚀反应,延长金属的使用寿命。
这种方法广泛应用于海洋设施、油气管道等需要长期暴露于潮湿和腐蚀环境的金属结构。
外加电流阴极保护法

外加电流阴极保护法外加电流阴极保护法,是通过外加电源来提供所需的保护电流。
将被保护的金属作阴极,选用特定材料作为辅助阳极,从而使被保护金属受到保护的方法。
外加电流阴极保护系统由如下几部分组成:① 直流电源,② 辅助阳极,③ 参比电极。
此外,为使阳极输出的保护电流更均匀,避免阳极附近结构物产生过保护,有时在阳极周围还须涂刷阳极屏蔽层。
为使船舶的轴及推进器等转动结构获得良好的保护,应加装轴接地装置。
直流电源在外加电流阴极保护系统中,需要有一个稳定的直流电源,以提供保护电流。
目前,广泛使用的有整流器和恒电位仪两种。
一般,当被保护的结构物所处的工况条件(如浸水面积、水质等)基本不变或变化很小时,可以采用手动控制的整流器;但当结构物所处的工况条件经常变化时,则应采用自动控制的恒电位仪,以使结构物电位总处在最佳保护范围内。
在工程中广泛使用的恒电位仪主要有三类:可控硅恒电位仪、磁饱和恒电位仪和晶体管恒电位仪。
可控硅恒电位仪功率较大、体积较小,但过载能力不强。
磁饱和恒电位仪紧固耐用,过载能力强,但体积比较大,加工工艺也比较复杂。
晶体管恒电位仪输出平稳、无噪声、控制精度较高,但线路较复杂。
辅助阳极辅助阳极的作用是将直流电源输出的直流电流由介质传递到被保护的金属结构上。
可作辅助阳极的材料有很多,如废钢铁、石墨、铅银合金、高硅铸铁、镀铂钛、包铂铌以及混合金属氧化物电极等。
这些材料各有其特点,适用于不同的场合。
我所在辅助阳极材料研究与开发方面做了很多工作,开发的铂铌阳极等具有体积小、排流量大、使用寿命长、工作稳定可靠等优点。
已广泛应用于船舶、钢桩码头、循环水泵、冷凝器及海水管道的保护中。
参比电极参比电极的作用有两个:一方面用于测量被保护结构物的电位,监测保护效果;另一方面,为自动控制的恒电位仪提供控制信号,以调节输出电流,使结构物总处于良好的保护状态。
外加电流阴极保护

外加电流阴极保护1. 相关参数船体外加电流阴极保护,通过调节保护电位和保护电流达到保护船体钢板的目的,所以其最基本的也是最重要的参数有两个:保护电位、保护电流密度。
(1)保护电位:保护电位,取决于金属性质和所处介质的性质,变化不大。
通常最佳保护电位(船体钢板相对于银/ 氯化银参比电极的电位)-0.75~-1.00V ,ICCP 控制仪- 恒电位仪的工作电压范围± 2V。
(2)保护电流密度:保护电流密度,除金属和介质的性质外,还受环境影响,变化较大,可能包括:船舶在静止海水中,电流密度150mA/m2寸,可以很快达到保护电位(-0.80V ); 但若电流密度小于40mA/m2则几乎无法达到保护电位。
•船体钢板表面有无复盖物、复盖物的种类、复盖物的完整性等,很大程度上影响最佳电流密度的大小。
例如,涂有完整油漆的钢板所需的保护电流密度,比裸钢板小得多:在静止海水内,涂有三道聚二乙烯乙炔涂料的钢板,电流密度0.35mA/m2可即刻达到保护电位;而裸钢板却需154mA/m?大400多倍。
再如,同样在静止海水内:涂有三道聚二乙烯乙炔涂料的钢板,电流密度0.11mA/m2 只要几小时就可达到保护电位;而裸钢板,电流密度高达45mA/m2也需要9天左右。
•海水是流动的而且海流和风浪时大时小,船舶也有时停泊有时航行且航速有快慢,都影响最佳保护电流密度。
例如恶劣气象航行和破冰航行,所需要的保护电流密度显著增高。
•不同海域海水含盐量有差别,不同季节海水温差不同,都会影响最佳保护电流密度。
保护电流密度,需要综合考虑上述各种因素,而且主要靠大量的实践才能得到比较切实的数据。
船体外加电流阴极保护装置的管理者,日常应针对这些环境因素不断调节、修整装置的相关参数,以确保其充分发挥作用。
相对于常用的银/ 氯化银参比电极,保护电流密度要保证保护电位-0.75~-1.00V,最佳保护电流密度30~60mA/m2我国海船选用40~60mA/m2较为合适。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外加电流的阴极保护法原理
外加电流的阴极保护法的原理是利用外加电流控制金属结构表面电位,使其保持在一个稳定的负电位区域,从而防止金属结构腐蚀。
在这个过程中,外加电流通过阳极和阴极之间的电解液流动,形成阴极保护电位场,防止了金属的电化学反应。
下面将对外加电流的阴极保护法的原理进行详细的解释。
阴极保护的基本原理是根据电位差。
金属在空气或水中容易发生电化学反应,从而导致腐蚀。
在自然环境中,金属电位受到多种大气因素、水质和离子等影响,难以控制。
而采用外加电流的阴极保护法,通过电化学反应调节阴极电位保护金属,达到有效地抵制腐蚀的作用。
在阴极保护系统中,金属结构是作为阴极,电源是以阳极连接。
通过控制外加电流,控制阳极与阴极之间的电位差,使金属结构的电位维持在一个稳定的阴极保护电位区间。
这个区间一般为-800 mV至-1050 mV,具体的阴极保护电位还要根据金属结构和使用环境的具体情况来确定。
该电位差表示金属较低电位的范围,防止了金属发生电化学反应。
阴极保护电位的调节是通过外加电流的控制来实现的。
外加电流可以根据金属结构的不同和使用环境的不同而调节,以维持金属的电位稳定在阴极保护区间。
在外加电流的过程中,阳极和阴极之间的电解液流动,形成阴极保护电位场。
阴极保护电位场的形成需要满足一定的条件。
首先,金属表面必须充分暴露在电
解液中,以便流动的离子与金属接触。
其次,电解液的电导率要足够高,以便电子和离子能够流动。
最后,通过控制电源的电流,使得阴极电位在一个稳定的负值区间内,从而防止了金属的电化学反应。
在阴极保护电位场中,金属表面经过保护,金属离子和电子的流动受到限制,从而减少了金属的腐蚀。
同时,电流对金属也具有一定的影响。
当外加电流过大时,电极周围的电解质会发生电化学反应,导致电极和电解质中的物质发生变化,从而导致电极腐蚀。
因此,外加电流的大小和金属结构的阴极保护电位需要严格控制。
阴极保护技术是船舶和海洋工程中常用的一种技术,该技术可以显著地减少金属结构的腐蚀,延长金属结构的使用寿命。
随着技术的发展,阴极保护技术不断完善,提高了金属结构的防腐性能,为工业生产和环境保护做出了重要贡献。
总之,外加电流的阴极保护法的原理是利用电位差,控制金属结构表面电位,使其保持在一个稳定的负电位区域,从而防止金属结构腐蚀。
在该过程中,金属结构作为阴极,电源作为阳极,通过控制外加电流,形成阴极保护电位场,从而达到有效地抵制腐蚀的作用。
防腐技术对于工业生产和环境保护都具有重要的意义。