六年级数学下册《整式的运算》测试题

合集下载

中学六年级数学下册 第六章 整式的乘除单元综合检测题(无答案) 鲁教版五四制 试题

中学六年级数学下册 第六章 整式的乘除单元综合检测题(无答案) 鲁教版五四制 试题

整式的乘除一、选择题〔每题3分,共30分〕1.以下运算中,正确的选项是〔 〕A .2054a a a =B .4312a a a =÷C .532a a a =+D .a a a 45=-2.÷c b a 468〔 〕=224b a ,那么括号内应填的代数式是〔 〕A 、c b a 232B 、232b aC 、c b a 242D 、c b a 2421 3.以下从左边到右边的变形,属于因式分解的是〔 〕 A. 1)1)(1(2-=-+x x x B.1)2(122+-=+-x x x x C. )4)(4(422y x y x y x -+=- D. )3)(2(62-+=--x x x x 4、如果:()159382b a b a n m m =⋅+,那么〔 〕A 、2,3==n m B 、3,3==n m C 、2,6==n m D 、5,2==n m 7、以下各式是完全平方式的是〔〕 A 、412+-x x B 、241x + C 、22b ab a ++ D 、122-+x x 8、矩形ABCD 中,横向阴影局部是长方形,另一局部是平行四边形,依照图中标注的数据,图中空白局部的面积为〔 〕A 、2c ac ab bc ++-B 、2c ac bc ab +--C 、ac bc ab a -++2D 、ab a bc b -+-22 9、将12-x 4+8分解因式正确的选项是( )A 、12-(x 4-16)B 、12-(x 2+4)(x 2-4)C 、12-(x 2+4)(x+2)(x -2) D 、12-(x 2+2)(x 2-2)2 10、把a 4-2a 2b 2+b 4分解因式,结果是( )A 、a 2(a 2-2b 2)+b 4B 、(a 2-b 2)2C 、(a -b)4D 、(a+b)2⋅(a -b)2 二、填空题〔每题3分,共30分〕11.计算 -a ⋅(-a)2⋅(-a)3=_____ ._______2142=÷-a b a ._____)2(23=-a12.计算:.___________________)3)(2(=+-x x (-2x -3)(-2x+3)=________13.计算:._________________)12(2=-x(2x -2)(3x+2)=___________。

(完整版)六年级数学下-《整式的乘除》测试题

(完整版)六年级数学下-《整式的乘除》测试题

六年级数学下 《整式的乘除》测试题姓名 成绩 家长签名:题 号 1 2 3 4 5 6 7 8 9 10 答 案1、下列运算正确的是( )A .2523a a a =+ B .336)2(a a = C .1)1(22+=+x x D .4)2)(2(2-=-+x x x2、.4)2(xy -的计算结果是( )A.-2x 4y 4B. 8x 4y 4C.16x 4y 4D. 16xy 43、如果多项式162++mx x 是一个完全平方式,则m 的值是( ) A.±4 B.4 C.±8 D.8 4、下列各题中,能用平方差公式的是( )A.)2)(2(b a b a +--B.)2)(2(b a b a +-C.)2)(2(b a b a ----D.)2)(2(b a b a +-- 5、若n mx x x x ++=-+2)2)(4(,则m 、n 的值分别是( )A.2,8B.2-,8-C. 2-,8D. 2,8- 6、下列计算正确的是( )A.(-1)0=-1B.(-1)-1=1C.2a -3=321aD.(-a 3)÷(-a )7=41a7、已知,3,5=-=+xy y x 则=+22y x ( ) A. 25. B 25- C 19 D 、19-8、如图,从边长为cm a )1(+的正方形纸片中剪去一个边长为cm a )1(-的正方形(1>a ),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是( )A .22cmB .22acmC .24acm D .22)1(cm a -9、计算:33)8(125.0-⨯的结果是( )A .-8 B .8 C .1 D .-1二、填空题:(3分×5=15分)11、已知,6,1222=+=-y x y x 则=-y x 。

12、计算:32011x x ⋅ = ; 0)14.3(π- = 。

13、=⨯⋅⨯)108()106(53 ;5、(3x-2y )( )=4y 2-9x 2。

《整式的加减》单元测试题

《整式的加减》单元测试题

《整式的加减》单元测试题时间:100分钟 总分:100分班级___________ 姓名__________ 学号____________ 得分____________!仔细思考,认真答题,相信你一定会得到自己满意的成绩。

祝你考试成功!基础知识一. 选择题(本大题共10小题,每小题3分,共30分。

每小题给出的选项中,只有一项符合题目要求,把正确答案填在下列方框中)1.在y 3+1 , 13+m ,—x 2y ,1-c ab —1 , —8z , 0中整式的个数是( )A .6B .3C .4D .52.下列说法正确的是( )A .8—z 2是多项式 B .—x 2yz 是三次单项式C. x 2—3xy 2+2x 2y 3—1是五次多项式 D .x b5-是单项式3.若A 和B 都是5次多项式,则A+B 一定是( )A .10次多项式B .5次多项式C .次数不低于5的多项式D .次数不高于5的多项式4.下列计算中错误的是( )A .8x 2+3y 2=11x 2y 2B .4x 2—9x 2=—5x 2C .5a 2b —5ba 2=0D .3m —(—2m )=5m5.下列说法正确的是( )A .0不是单项式B a b是单项式C .x 2y 的系数是0D .x —23是整式6.我市出租车的收费标准是:起步价5元,当路程超过3公里时,超出部分每公里收费1.5元。

如果某出租车行驶路程为S (S 大于3公里),则司机应收费(单位:元)( )A .5+1.5SB .51.5SC .5+1.5(S —3)D .5—1.5(S —3)7.下列结论正确的是( )A .单项式732xy 的系数是3,次数是2B .单项式m 既没有系数,也没有次数C .x 2y 的系数是0D .没有加减运算的代数式叫单项式8.多项式x 2y 3—3xy 3—2的次数和项数分别是( )A .5,3B .5,2C .2,3D .3,39.已知长方形的宽为(3x —2y )厘米,长比宽多(2x+y )厘米,则长方形的周长为( )厘米。

第六章整式的乘除 综合练习题 2022—2023学年鲁教版(五四制)数学六年级下册

第六章整式的乘除 综合练习题 2022—2023学年鲁教版(五四制)数学六年级下册

第六章 整式的乘除综合练习题一、选择题:1、计算a ²· a 的结果是 ( )A.a ²B.a ³C.aD.2a ²2、① a 2n ⋅a n =a 3n ;② 22×33=65;③ 32×32=81;④ a 2⋅a 3=5a ;⑤ (−a )2⋅(−a )3=a 5 中,计算正确的式子有 ( )A . 4 个B . 3 个C . 2 个D . 1 个3、计算﹣(3x 3)2的结果是( )A .9x 5B .9x 6C .﹣9x 5D .﹣9x 64、下列各式中,正确的有( )A .a 3+a 2=a 5B .2a 3•a 2=2a 6C .(﹣2a 3)2=4a 6D .﹣(a ﹣1)=﹣a ﹣15、计算(a 2)3-5a 3·a 3的结果是( )A.a 5-5a 6B.a 6-5a 9C.-4a 6D.4a 66、已知4m =a ,8n =b ,其中m ,n 为正整数,则22m +6n =( )A.ab 2B.a+b 2C.a 2b 3D.a 2+b 27、下列运算结果是a 6的是( )A .﹣(a 2)3B .a 3+a 3C .(﹣2a )3D .﹣3a 8÷(﹣3a 2)8、计算 (-a ²)³÷a ² 的结果是( )A.-a ⁴B.-a ³C.a ⁴D.a ³9、如果 a ³÷a ˣ⁻²=a ⁶,那么x 的值为 ( )A.-1B.1C.2D.310、20230×2﹣1等于( )A .107B .0C .D .﹣2022 11、若a =0.32,b =﹣3﹣2,c =(﹣)﹣2,d =(﹣)0,则( )A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b12、计算的结果是( ) A. B. C. D.2322)(xy y x -⋅105y x 84y x 85y x -126y x13、计算(-3x)·(2x2-5x-1)的结果是()A.-6x2-15x2-3x B.-6x3+15x2+3xC.-6x3+15x2 D.-6x3+15x2-114、t2-(t+1)(t-5)的计算结果正确的是 [ ]A.-4t-5 ; B.4t+5; C.t2-4t+5; D.t2+4t-5.15、下列运算正确的是()A.a4•a2=a8B.(2a3)2=4a6C.(ab)6÷(ab)2=a3b3D.(a+b)(a﹣b)=a2+b216、下列算式中不能利用平方差公式计算的是()A.(x+y)(x﹣y)B.(x﹣y)(﹣x﹣y)C.(x﹣y)(﹣x+y)D.(x+y)(y﹣x)17、若m2﹣n2=24,且m﹣n=4,则m+n等于()A.7 B.6 C.5 D.818、下列等式成立的是()A.(a-b)2=a2-ab+b2B.(a+3b)2=a2+9b2C.(a+b)2=a2+2ab+b2D.(x+9)(x-9)=x2 -919、若x2+2ax+36是一个完全平方公式展开式,则a的值是()A.6 B.±6 C.18 D.±1820、若(x+m)2=x2+kx+16,则m的值为()A.4 B.±4 C.8 D.±821、已知(x﹣1)2=2,则代数式x2﹣2x+5的值为()A.4 B.5 C.6 D.722、下列计算正确的是()A.x10÷x2=x5B.(x3)2÷(x2)3=xC.(15x2y﹣10xy2)÷5xy=3x﹣2yD.(12x3﹣6x2+3x)÷3x=4x2﹣2x23、一个长方形的面积为(2mn+3n)平方米,长为n米,则它的宽为()A.(2mn+2n)米B.(2mn2+3n2)米C.(2m+3)米D.(2mn+4n)米24、已知4y2+my+9是完全平方式,求(6m4﹣8m3)÷(﹣2m2)+3m2的值是()A.±48 B.±24 C.48 D.2425、下列各式运算:①﹣2x(x﹣3)=﹣2x2﹣6x,②(x﹣2)(x+3)=x2+x﹣6,③(﹣2x ﹣y)(2x﹣y)=4x2﹣y2,④(﹣a﹣b)2=a2﹣2ab+b2.其中正确的个数是()A.1 B.2 C.3 D.4二、填空题1、若a⋅a3⋅a m=a8,则m=.2、若2x=3,2y=5,则2x+y=___________.3、已知3m=8,9n=2,则3m+2n=.4、计算:(﹣2)2021×(﹣3)2022×(﹣)2023=.5、计算202320222332⎛⎫⎛⎫⨯-⎪ ⎪⎝⎭⎝⎭的结果是___________.6、已知x a=4,x b=3,则x a−2b=____________.7、若2a-3b=2,则5²ᵃ÷5³ᵇ=________________.8、计算:=.9、若实数m,n满足|m﹣2|+(n﹣2023)2=0,则m﹣1+n0=.10、化简x2-(x+2)(x-2)的结果是___________.11、若a2﹣b2=18,a+b=6,则a﹣b=.12、计算:2021×2023﹣20222=.13、已知m2﹣kmn+4n2是一个完全平方式,则k=.14、若a2+b2=13,a﹣b=1,则ab的值是.15、若x2+2(m﹣3)x+16是完全平方式,则m的值等于.16、若x+y=5,则(x﹣y)2+4xy+1的值为.17、已知a﹣b=4,则a2﹣b2﹣8b的值为.18、(9a2﹣6ab)÷3a=.19、在有理数的原有运算法则中,我们定义新运算“@”如下:a@b=ab÷b2,根据这个新规定可知2x@(﹣3x)=.20、观察下列各式:(x ﹣1)(x +1)=x 2﹣1,(x ﹣1)(x 2+x +1)=x 3﹣1,(x ﹣1)(x 3+x 2+x +1)=x 4﹣1,…根据规律可得:(x ﹣1)(x 2023+x 2022+…+x +1)= .三、解答题:1、计算:(1)−x ⁵⋅x ²⋅x ¹⁰; (2)( -2)⁹(-2)⁸·( -2)³;(3)(m ⁴)²+m ⁵·m ³+(-m)⁴·m ⁴; (4)(-m ²)⁴·m-(m ³)²+(-m)²·m ⁴;(5)(-x ²)³÷(-x)²; (6) (-a)·(-a)⁷÷(a ²)³.(7) (-a)⁵·(-a ³)÷(-a)²; (8)(2a ²)³·(a ²)⁴÷(-a ²)⁵;(9)(10) (-3ab)·(-a 2c)·6ab 2. (11)(-4a)·(2a 2+3a-1).(12))23)(23()32)(32(n m n m n m n m +---+;(13))()())((2222a a b a b a -⋅---+;1012312023332---÷-+⨯)()()(π(14)(x﹣3y)(3x+2y)﹣(2x﹣y)2.(15)(x﹣2)2﹣x(x+4).2、化简,求值(1)(a+b)(2a-b)+(2a+b)(a-2b),其中a=-2,b=3(2)求(a+b)2-(a-b)2-4ab的值,其中a=2022,b=2023.(3)[(x+1)(x+4)﹣(3x﹣2)2]÷x,其中x=.(4)[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x=3,y=﹣3.(5)(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),其中x=2133、按要求完成下列各题:(1)已知4x =8,4y =32,求x +y 的值.(2) 已知 a 3⋅a m ⋅a 2m+1=a 25,求 m 的值(3)若x 2n =2,求(3x 3n )2﹣4(x 2)2n的值.(1)已知a m =2,a n =3,求a m +n 的值;a 3m ﹣2n 的值.(2)已知3×9m ×27m =321,(﹣m 2)3÷(m 3•m 2)(3)解方程3x(x+2)+(x+1)(x-1)=4(x 2+8).(7)计算:1)12()12)(12)(12)(12(64842++++++ .(8)已知m满足(3m﹣2023)2+(2022﹣3m)2=5.(1)求(2023﹣3m)(2022﹣3m)的值;(2)求6m﹣4045的值.4、数学活动课上,张老师准备了若干个如图①的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为b,宽为a的长方形,并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图②的大正方形.(1)观察图②,请你写出代数式(a+b)2,a2+b2,ab之间的等量关系是;(2)根据(1)中的等量关系,解决下列问题;①已知a+b=4,a2+b2=10,求ab的值;②已知(x﹣2020)2+(x﹣2018)2=52,求x﹣2019的值.。

2021-2022学年鲁教版(五四)六年级数学下册第六章整式的乘除章节测试试题(含详细解析)

2021-2022学年鲁教版(五四)六年级数学下册第六章整式的乘除章节测试试题(含详细解析)

六年级数学下册第六章整式的乘除章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列运算正确的是()A.(﹣a)2=﹣a2B.2a2﹣a2=2C.a2•a=a3D.(a﹣1)2=a2﹣12、下列运算中正确的是()A.a2•a3=a6B.(a2)3=a5C.(2b)3=6b3D.(﹣a)3÷(﹣a)=a23、在下列运算中,正确的是()A.(x4)2=x6B.x3⋅x2=x6C.x2+x2=2x4D.x6⋅x2=x84、对于一个图形,通过两种不同的方法计算它的面积,可以得到一个等式,例如图①可以得到用完全平方公式进行因式分解的等式a2+2ab+b2=(a+b)2,如图②是由4个长方形拼成的一个大的长方形,用不同的方式表示此长方形的面积,由此不能得到的因式分解的等式是()A .a (m +n )+b (m +n )=(a +b )(m +n )B .m (a +b )+n (a +b )=(a +b )(m +n )C .am +bm +an +bn =(a +b )(m +n )D .ab +mn +am +bn =(a +b )(m +n )5、下列运算正确的是( )A .a 2+a 4=a 6B .22122a a -=C .(﹣a 2)•a 4=a 8D .(a 2b 3c )2=a 4b 6c 26、若()()2105x mx x x n +-=-+,则m n 的值为( )A .6-B .8C .16-D .187、下面计算正确的是( )A .339x x x ⋅=B .4322a a a ÷=C .222236x x x ⋅=D .()2510x x = 8、若3x y +=,1xy =则(12)(12)x y --的值是( )A .1B .1-C .2D .2-9、已知23m =,326n =,则下列关系成立的是( )A .m +1=5nB .n =2mC .m +1=nD .2m =5+n10、下列计算正确的是( )A .235a a a +=B .()3223a b a b =C .238()a a =D .236()a a -=-第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、人类进入5G 时代,科技竞争日趋激烈.据报道,我国已经能大面积生产14纳米的芯片,14纳米即为0.00000014米,将其用科学记数法表示为______米.2、若3m a =,2n a =,则23m n a +=_____.3、母亲节来临之际,某花店购进大量的康乃馨、百合、玫瑰,打算采用三种不同方式搭配成花束,分别是“心之眷恋”、“佳人如兰”、“守候”,三种花束的数量之比为2:3:5,每束花束的总成本为组成花束的康乃馨、百合、玫瑰成本之和(包装成本忽略不计).“心之眷恋”花束包含康乃馨6支、百合1支、玫瑰3支,“佳人如兰”花束包含康乃馨2支、百合2支、玫瑰6支.每束“心之眷恋”的成本是每支康乃馨成本的15倍,销售的利润率是60%;每束“佳人如兰”的售价是成本的74倍:每束“守候”在成本的基础上提价70%标价后打9折出售,获利为每支康乃馨成本的5.3倍.为了促进这三种花束的销售,商家在每束花束中分别赠送一支康乃馨作为礼物,销售结束时,这些花束全部卖完,则商家获得的总利润率为___.4、如图1,将边长为x 的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示长方形.这两个图能解释一个等式是______.5、关于x 的多项式2x m -与35x +的乘积,一次项系数是25,则m 的值为______.三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:()()()()23222x y x x y x y x y y ⎡⎤+--++-÷⎣⎦,其中1x y ==-.2、先化简,再求值:()()()()()()22231313523x x x x x x ⎡⎤----+---⎣⎦,其中12x =-. 3、街心花园有一块长为a 米,宽为b 米(a >b )的长方形草坪,经统一规划后,长方形的长减少x 米,宽增加x 米(x >0),改造后仍得到一块长方形的草坪.(1)求改造后长方形草坪的面积;(2)小明认为无论x 取何值,改造前与改造后两块长方形草坪的面积相同.你认为小明的观点正确吗?请说明理由.4、计算:[7m •m 4﹣(﹣3m 2)2]÷2m 2.5、阅读以下材料:苏格兰数学家纳皮尔(J .Npler ,1550-1617年)是对数的创始人.他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler ,1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若x a N =(0a >且1a ≠),那么x 叫做以a 为底N 的对数,记作log a x N =,比如指数式4216=可以转化为对数式24log 16=,对数式32log 9=可以转化为指数式239=.我们根据对数的定义可得到对数的一个性质:()()log log log 0,1,0,0a a a M N M N a a M N ⋅=+>≠>>,理由如下:设log a M m =,log a N n =,则m M a =,n N a =,∴m n m n M N a a a +⋅=⋅=,由对数的定义得()log a m n M N +=⋅.又∵log log a a m n M N +=+,∴()log log log a a a M N M N ⋅=+.根据上述材料,结合你所学的知识,解答下列问题:(1)填空:①2log 64= ,②3log 27= ,③7log 1= ;(2)求证:()log log log 0,1,0,0a a a M M N a a M N N=->≠>>;(3)拓展运用:计算455log 64log 7log 35+-.-参考答案-一、单选题1、C【解析】【分析】根据乘方的意义,合并同类项,同底数幂的乘法,完全平方公式逐项分析即可.【详解】解:A.(﹣a )2=a 2,故不正确;B. 2a 2﹣a 2=a 2,故不正确;C. a 2•a =a 3,正确;D.(a ﹣1)2=a 2﹣2 a +1,故不正确;故选C .【点睛】本题考查了整式的运算,熟练掌握运算法则是解答本题的关键.同底数的幂相乘,底数不变,指数相加;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.完全平方公式是(a ±b )2=a 2±2ab +b 2.2、D【解析】【分析】利用同底数幂的乘法法则,幂的乘方与积的乘方的法则,同底数幂的除法法则对各项进行运算即可.【详解】解:A、a2•a3=a5,故A不符合题意;B、(a2)3=a6,故B不符合题意;C、(2b)3=8b3,故C不符合题意;D、(﹣a)3÷(﹣a)=a2,故D符合题意;故选:D.【点睛】此题主要考查同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法运算等幂的运算法则,熟练掌握运算法则是解答本题的关键.3、D【解析】【分析】由题意依据幂的乘方和同底数幂的乘法以及合并同类项逐项进行判断即可.【详解】解:A. (x4)2=x8,故A选项错误;B. x3⋅x2=x5,故B选项错误;C. x2+x2=2x2,故C选项错误;D. x6⋅x2=x8,故D选项正确.故选:D.【点睛】本题考查幂的运算和整式的加法,熟练掌握幂的乘方和同底数幂的乘法以及合并同类项运算法则是解题的关键.4、D【解析】【分析】由面积的和差关系以及S长方形ABCD=(a+b)(m+n)求解即可【详解】解:如图②,S长方形ABCD=(a+b)(m+n),A.S长方形ABCD=S长方形ABFH+S长方形HFCD=a(m+n)+b(m+n)=(a+b)(m+n),不符合题意;B.S长方形ABCD=S长方形AEGD+S长方形BCGE=m(a+b)+n(a+b)=(a+b)(m+n),不符合题意;C.S长方形ABCD=S长方形AEQH+S长方形HQGD+S长方形EBFQ+S长方形QFCG=am+bm+an+bn=(a+b)(m+n),不符合题意;D.不能得到ab+mn+am+bn=(a+b)(m+n),故D符合题意;故选:D.【点睛】本题考查了因式分解,整式乘法与图形的面积,数形结合是解题的关键.5、D【解析】【分析】由题意合并同类项原则和积的乘方以及幂的乘方和负指数幂运算逐项进行运算判断即可.【详解】解:A. 无法合并同类项,故本选项运算错误; B. 2222a a -=,故本选项运算错误; C. (﹣a 2)•a 4=6a -,故本选项运算错误;D. (a 2b 3c )2=a 4b 6c 2,故本选项运算正确.故选:D.【点睛】本题考查整式加法和积的乘方以及幂的乘方和负指数幂运算,熟练掌握相关运算法则是解题的关键.6、D【解析】【分析】根据多项式乘以多项式展开,根据多项式相等即可求得对应字母的值,进而代入代数式求解即可.【详解】解:()()2555x x n x nx x n -+=+--,()()2105x mx x x n +-=-+,5nx x mx ∴-=,510n -=-,5n m ∴-=,2n =,解得:3m =-,2n =,3128m n -∴==. 故选:D .【点睛】本题考查了多项式乘以多项式,负整数指数幂,掌握以上知识是解题的关键.7、D【解析】【分析】利用同底数幂乘法、单项式除以单项式、单项式乘以单项式、幂的乘方等运算法则分别计算,判断即可.【详解】解:A 、336x x x ⋅=,原式计算错误,不符合题意;B 、4322a a a ÷=,原式计算错误,不符合题意; C 、2242?36x x x =,原式计算错误,不符合题意;D 、()2510x x =,计算正确,符合题意;故选:D .【点睛】本题考查了同底数幂乘法、单项式除以单项式、单项式乘以单项式、幂的乘方等知识点,熟练掌握相关运算法则是解本题的关键.8、B【解析】【分析】 ()()()1212124x y x y xy --=-++,代值求解即可.【详解】解:∵()()()1212124123411x y x y xy --=-++=-⨯+⨯=-∴(1−2x)(1−2x)=−1故选B.【点睛】本题考查了代数式求值.解题的关键在于将代数式化成与已知式子相关的形式.9、A【解析】【分析】利用积的乘方、幂的乘方把32n=6化成25n=6,2m=3化成2m+1=6,再比较求解即可.【详解】解:∵32n=6,∴25n=6,∵2m=3,∴2m×2=3×2,即2m+1=6,∴2m+1=25n,∴m+1=5n,故选:A.【点睛】本题主要考查了积的乘方、幂的乘方,关键是掌握计算法则,并能熟练应用.10、D【解析】【分析】根据合并同类项、同底数幂的乘法、同底数幂的除法、积的乘方分别计算即可.解:A 、2a 与3a 不属于同类项,不能合并,故A 不符合题意;B 、2363()a b a b =,故B 不符合题意;C 、236()a a =,故C 不符合题意;D 、236()a a -=-,故D 符合题意.故选:D .【点睛】本题主要考查了合并同类项,幂的乘方与积的乘方,解答的关键是对相应的运算法则的掌握.二、填空题1、81.410-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10−n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000014=1.4×10−8,故答案为:1.4×10−8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.2、72【解析】根据同底数幂的乘法法则和幂的乘方法则求解.【详解】解:23m n a +,23m n a a =⋅,23()()m n a a =⨯,98=⨯,72=.故答案为:72.【点睛】本题考查了幂的乘方和同底数幂的乘法的逆运算,解题的关键是掌握运算法则.3、59.67%【解析】【分析】设康乃馨、百合、玫瑰的单价分别为x ,y ,z ,由心之春恋的成本得y +3z =9x ,佳人如兰的成本为20x ,佳人如兰的利润为:(714-)×20x =15x ,由守候的利润为5.3x ,得守候的成本为10x ,求出总成本及总利润,根据利润率公式得到答案.【详解】解:∵三种花束的数量比固定后单种花束的数量并不影响总利润率,∴按题目顺序设三种花束分别为2,3,5束,设康乃馨、百合、玫瑰的单价分别为x ,y ,z ,则心之春恋的成本为:6x +y +3z =15x ,∴y +3z =9x ,佳人如兰的成本为:2x +2y +6z =2x +2(y +3z )=20x ,佳人如兰的利润为:(714-)×20x =15x ,由题意得守候的利润为5.3x ,守候的成本为:()5.310170%0.91x x =+⨯-, ∴总成本为2×15x +3×20x +5×10x +1(2+3+5)x =150x ,∵总利润为:2×9x +3×15x +5×5.3x =89.5x , ∴总利润率为:89.5100%59.67%150x x⨯≈. 故答案为:59.67%.【点睛】此题考查了列代数式,整式的混合运算,正确理解题意,掌握利润问题的计算公式正确解答是解题的关键.4、()()2111x x x -=+-【解析】【分析】根据图形可以用代数式表示出图1和图2的面积,由此得出等量关系即可.【详解】解:由图可知,图1的面积为:x 2−12,图2的面积为:(x +1)(x −1),所以x 2−1=(x +1)(x −1).故答案为:x 2−1=(x +1)(x −1).【点睛】本题考查平方差公式的几何背景,解答本题的关键是明确题意,列出相应的代数式.5、5-【解析】【分析】先求出两个多项式的积,再根据一次项系数为25,得到关于m 的一次方程,求解即可.【详解】解:(2x −m )(3x +5)=6x 2−3mx +10x −5m=6x 2+(10−3m )x −5m .∵积的一次项系数为25,∴10−3m =25.解得m =−5.故答案为:-5.【点睛】本题考查了多项式乘以多项式和解一元一次方程,掌握多项式乘多项式法则是解决本题的关键.三、解答题1、45y x +,-9【解析】【分析】先根据完全平方公式和平方差公式以及单项式乘以多项式的计算法则去小括号,然后根据整式的加减计算法则合并,再计算多项式除以单项式,最后代值计算即可.【详解】解:()()()()23222x y x x y x y x y y ⎡⎤+--++-÷⎣⎦()2222269242x xy y x xy x y y =++-++-÷()28102y xy y =+÷45y x =+,当1x y ==-时,原式()()4151459=⨯-+⨯-=--=-.【点睛】本题主要考查了整式的化简求值和去括号,乘法公式,熟知相关计算法则是解题的关键.2、-14x -5,2【解析】【分析】先根据平方差公式,多项式乘多项式和完全平方公式进行计算,再合并同类项,去括号,再合并同类项,最后代入求出答案即可.【详解】解:(2x )2-[(3x -1)(3x -1)-(x +3)(x -5)-(2x -3)2]=4x 2-(9x 2-1-x 2+5x -3x +15-4x 2+12x -9)=4x 2-(4x 2+14x +5)=4x 2-4x 2-14x -5=-14x -5,当x =12-时,原式=-14×(12-)-5=7-5=2.【点睛】本题考查了整式的化简与求值,能正确根据整式的运算法则进行化简是解此题的关键,注意运算顺序.3、 (1)(ab +ax ﹣bx ﹣x 2)米2(2)不正确,理由见解析【解析】【分析】(1)根据长×宽可得面积;(2)根据矩形的面积公式和作差法比较大小可得结论.(1)依题意得:改造后长方形草坪的面积=(a ﹣x )(b +x )=(ab +ax ﹣bx ﹣x 2)米2.(2)小明的观点不正确,理由如下:设改造前长方形草坪的面积为S 前,改造后长方形草坪的面积为S 后,则S 后-S 前22()()ab ax bx x ab ax bx x x a b x =+---=--=--.∵x >0,a >b ,∴当a ﹣b ﹣x >0,即0<x <a ﹣b 时,S 后﹣S 前>0,即S 后>S 前;当a ﹣b ﹣x =0,即x =a ﹣b 时,S 后﹣S 前=0,即S 后=S 前;当a ﹣b ﹣x <0,即x >a ﹣b 时,S 后﹣S 前<0,即S 后<S 前.【点睛】本题考查了列代数式和多项式乘以多项式,解决问题的关键是读懂题意,找到所求的量的等量关系. 4、327922m m -【解析】【分析】根据同底数幂的乘法,幂的乘方和积的乘方,整式的除法计算即可.【详解】解:原式542(79)2m m m =-÷52427292m m m m =÷-÷327922m m =-. 【点睛】本题考查了同底数幂的乘法,幂的乘方和积的乘方,整式的除法,掌握()n n n ab a b =是解题的关键.5、 (1)①6;②3;③0(2)见解析(3)2【解析】【分析】(1)利用对数的定义,即可求解;(2)设log a M m =,log a N n =,则m M a =,n N a =,可得m n M a N -=,从而得到log a M m n N-=,即可求证;(3)根据对数的定义,代入即可求解.(1)解:①∵6264= ,∴2log 646=;②∵3327=∴3log 273=;③∵021= ,∴7log 10=;(2)设log a M m =,log a N n =,则m M a =,n N a =, ∴mm n n M a a N a-==, 由对数的定义得log a M m n N-=. 又∵log log a a m n M N -=- ∴log log log aa a M M N N =-; (3)455log 64log 7log 35+-()5533log 5log 7=--53log 5=-31=-2= .【点睛】本题主要考查了幂的运算,同底数幂相除,明确题意,理解对数的定义是解题的关键.。

【精品】2019-2020初一年级数学第二学期数学六年级下册第六章《整式的乘除》单元测试

【精品】2019-2020初一年级数学第二学期数学六年级下册第六章《整式的乘除》单元测试

第六章《整式的乘除》单元测试一、选择题:(1)=∙-nm a a 5)(( ) (A )m a +-5 (B )m a +5 (C ) n m a +5 (D )n m a +-5(2)下列运算正确的是( )(A )954a a a =+ (B )33333a a a a =⨯⨯ (C )954632a a a =⨯ (D )743)(a a =- (3)=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20032003532135( )(A )1- (B )1 (C )0 (D)2003(4)设A b a b a +-=+22)35()35( ,则=A ( ) (A )ab 30 (B )ab 60 (C ) ab 15 (D )ab 12(5)用科学记数方法表示0000907.0,得( )(A )41007.9-⨯ (B )51007.9-⨯ (C )6107.90-⨯ (D )7107.90-⨯(6)已知)(3522=+=-=+y x xy y x ,则,(A )25(B )25-(C )19(D )19-(7)计算34(510)(710)⨯⨯的正确结果是 ( )(A) 73510⨯ (B) 83.510⨯ ( C). 90.3510⨯ (D). 73.510⨯(8))(5323===-b a b a x x x ,则,已知(A )2527 (B )109 (C )53 (D )52 (9)以下各题中运算正确的是( )(A )2266)23)(32(y x y x y x -=+- (B )46923232))((a a a a a a a +-=--(C ) 2222512531009)2.03.0(y xy x y x ++=-- (D )ca bc ab c b a c b a ---++=--2222)((10)+-=+22)32()32(b a b a ,横线上应填的式子是( ) ab D ab C ab B ab A 18)(12)(24)(6)((11))()23)(23(=---b a b a (A )2269b ab a -- (B )2296a ab b -- (C )2249b a - (D )2294a b -(12)=-+1221)()(n n x x ( )(A)n x 4 (B)34+n x(C)14+n x (D)14-n x (13)===+b a b a 2310953,,( )(A)50 (B)-5 (C)15 (D)b a +27(14)一个多项式的平方是22124m ab a ++,则=m ( )。

2022六年级数学下册第六章整式的乘除达标检测卷鲁教版五四制(含答案)

2022六年级数学下册第六章整式的乘除达标检测卷鲁教版五四制(含答案)

六年级数学下学期鲁教版五四制:第六章达标检测卷一、选择题(每题3分,共30分) 1.计算(-x 2y )3的结果是( )A .x 6y 3B .x 5y 3C .-x 6y 3D .-x 2y 32.下列运算正确的是( )A .x 2+x 2=x 4B .(a -b )2=a 2-b 2C .(-a 2)3=-a 6D .3a 2·2a 3=6a 63.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯是目前世上最薄、最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34 m ,这个数据用科学记数法可以表示为( )A .0.34×10-9mB .3.4×10-9m C .3.4×10-10m D .3.4×10-11m4.在下列计算中,不能用平方差公式计算的是( ) A .(m -n )(-m +n ) B .()x 3-y 3()x 3+y 3C .(-a -b )(a -b )D .()c 2-d 2()d 2+c 25.如果x +m 与x +3的乘积中不含x 的一次项,那么m 的值为( )A .-3B .3C .0D .16.若a =-0.32,b =(-3)-2,c =⎝ ⎛⎭⎪⎫-13-2,d =⎝ ⎛⎭⎪⎫-130,则( )A .a <b <c <dB .a <b <d <cC .a <d <c <bD .c <a <d <b7.在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ,如图①),把余下部分拼成一个长方形(如图②),根据两个图形中阴影部分的面积相等,可以验证公式( ) A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b ) D .(a +2b )(a -b )=a 2+ab -2b28.一个正方形的边长增加了2 cm ,面积相应增加了32 cm 2,则原正方形的边长为( )A .6 cmB .5 cmC .8 cmD .7 cm9.已知A =2x ,B 是多项式,在计算B +A 时,小马虎同学把B +A 看成了B ÷A ,结果得x2+12x ,则B +A =( ) A .2x 3+x 2+2x B .2x 3-x 2+2xC .2x 3+x 2-2xD .2x 3-x 2-2x10.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是( )A .2B .4C .6D .8二、填空题(每题3分,共24分) 11.计算:(2a )3·(-3a 2)=________.12.已知a +b =32,ab =1,计算(a -2)(b -2)的结果是________.13.计算:82 021×(-0.125)2 022=________.14.若(a 2-1)0=1,则a 的取值范围是________. 15.若a +3b -2=0,则3a ·27b=________.16.已知x 2-x -1=0,则代数式-x 3+2x 2+2 018的值为__________. 17.如果()2a +2b +1()2a +2b -1=63,那么a +b 的值为________.18.用如图所示的正方形和长方形卡片若干张,拼成一个长为(2a +b ),宽为(a +b )的长方形(要求:所拼图形中,卡片之间不能重叠,不能有空隙),则需要A 类卡片、B 类卡片、C 类卡片的张数分别为________.三、解答题(第26题10分,其余每题8分,共66分) 19.计算:(1)-23+13(2 022+3)0-⎝ ⎛⎭⎪⎫-13-2; (2)992-69×71;(3)⎝ ⎛⎭⎪⎫52x 3y 3+4x 2y 2-3xy ÷(-3xy ); (4)(2x +3)(2x -3)-4x (x -1)+(x -2)2.20.先化简,再求值:(1)[(a +b )2-(a -b )2]·a ,其中a =-1,b =5;(2)(x -1)(3x +1)-(x +2)2-4,其中x 2-3x =1. 21.(1) 已知a +b =7,ab =12.求下列各式的值:①a 2-ab +b 2;②(a -b )2.(2)已知a =275,b =450,c =826,d =1615,比较a ,b ,c ,d 的大小.22.先阅读再解答问题.我们已经知道,根据几何图形的面积关系可以说明完全平方公式,实际上还有一些等式也可以用这种方式加以说明,例如(2a +b )(a +b )=2a 2+3ab +b 2,就可以用图①的面积关系来说明.(1)根据图②写出一个等式:__________________________;(2)已知等式:(x +p )(x +q )=x 2+(p +q )x +pq ,请你画出一个相应的几何图形加以说明.23.已知M =x 2+3x -a ,N =-x ,P =x 3+3x 2+5,且M ·N +P 的值与x 的取值无关,求a的值.24.如图,某校一块边长为2a m 的正方形空地是七年级四个班的清洁区,其中分给七(1)班的清洁区是一块边长为(a -2b )m 的正方形.(0<b <a2)(1)分别求出七(2)班、七(3)班的清洁区的面积.(2)七(4)班的清洁区的面积比七(1)班的清洁区的面积多多少?25.利用我们学过的知识,可以导出下面这个形式优美的等式:a 2+b 2+c 2-ab -bc -ac =12[(a -b )2+(b -c )2+(c -a )2],该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美. (1)请你检验这个等式的正确性;(2)若a =2 020,b =2 021,c =2 022,你能很快求出a 2+b 2+c 2-ab -bc -ac 的值吗?26.探索:(x -1)(x +1)=x 2-1; (x -1)(x 2+x +1)=x 3-1; (x -1)(x 3+x 2+x +1)=x 4-1; (x -1)(x 4+x 3+x 2+x +1)=x 5-1; …(1)试写出第五个等式;(2)试求26+25+24+23+22+2+1的值; (3)判断22 023+22 022+22 021+…+22+2+1的值的个位数字是几.答案一、1.C2.C 点拨:A.x 2+x 2=2x 2,错误;B.(a -b )2=a 2-2ab +b 2,错误;C.(-a 2)3=-a 6,正确;D.3a 2·2a 3=6a 5,错误.故选C. 3.C4.A 点拨:A 中m 和-m 符号相反,-n 和n 符号相反,而平方差公式中需要有一项是相同的,另一项互为相反数.5.A 点拨:(x +m )(x +3)=x 2+(3+m )x +3m ,因为乘积中不含x 的一次项,所以m +3=0.所以m =-3.故选A. 6.B 7.C 8.D9.A 点拨:由题意,得B ÷A =x 2+12x ,所以B =A ⎝ ⎛⎭⎪⎫x 2+12x =2x ⎝ ⎛⎭⎪⎫x 2+12x =2x 3+x 2,所以B+A =2x 3+x 2+2x .10.C 点拨:(2+1)(22+1)(24+1)(28+1)+1 =(2-1)(2+1)(22+1)(24+1)(28+1)+1 =(22-1)(22+1)(24+1)(28+1)+1 =(24-1)(24+1)(28+1)+1 =(28-1)(28+1)+1 =216-1+1 =216.因为216的末位数字是6,所以原式末位数字是6. 二、11.-24a 512.213.18 点拨:82 021×(-0.125)2 022=82 021×⎝ ⎛⎭⎪⎫182 022=⎝ ⎛⎭⎪⎫8×182 021×18=18. 14.a ≠±1 15.916. 2 019 点拨:由已知得x 2-x =1,所以-x 3+2x 2+2 018=-x (x 2-x )+x 2+2 018=-x +x 2+2 018=2 019.17.±4 点拨:因为()2a +2b +1()2a +2b -1=()2a +2b 2-1=63,所以2a +2b =±8.所以a +b =±4.18.2,3,1 点拨:由(2a +b )(a +b )=2a 2+3ab +b 2可知,需A 类卡片2张、B 类卡片3张、C 类卡片1张.三、19.解 :(1)原式=-8+13-9=-17+13=-503.(2)原式=(100-1)2-(70-1)×(70+1)=10 000-200+1-4 900+1=4 902. (3)原式=-56x 2y 2-43xy +1.(4)原式=4x 2-9-4x 2+4x +x 2-4x +4=x 2-5. 20.解:(1)原式=4a 2b ,当a =-1,b =5时,原式=4×(-1)2×5=20. (2)原式=2x 2-6x -9,当x 2-3x =1时,原式=2(x 2-3x )-9=2×1-9=-7.21.解:(1) ①a 2-ab +b 2=a 2+b 2-ab =(a +b )2-3ab =72-3×12=13.②(a -b )2=(a +b )2-4ab =72-4×12=1.点拨:完全平方公式常见的变形:①(a +b )2-(a -b )2=4ab ;②a 2+b 2=(a +b )2-2ab =(a -b )2+2ab .解答本题的关键是利用完全平方公式的整体变换求式子的值. (2)因为a =275,b =450=(22)50=2100,c =826=(23)26=278,d =1615=(24)15=260,100>78>75>60,所以2100>278>275>260. 所以b >c >a >d .22.解:(1)(2a +b )(a +2b )=2a 2+5ab +2b 2(2)如图.(所画图形不唯一)23.解:M ·N +P =(x 2+3x -a )(-x )+x 3+3x 2+5=-x 3-3x 2+ax +x 3+3x 2+5=ax +5. 因为M ·N +P 的值与x 的取值无关,所以a =0. 24.解:(1)因为2a -(a -2b )=a +2b ,所以七(2)班、七(3)班的清洁区的面积均为(a +2b )(a -2b )=(a 2-4b 2)(m 2). (2)因为(a +2b )2-(a -2b )2=a 2+4ab +4b 2-(a 2-4ab +4b 2)=8ab (m 2),所以七(4)班的清洁区的面积比七(1)班的清洁区的面积多8ab m 2.25.解:(1)等式右边=12(a 2-2ab +b 2+b 2-2bc +c 2+a 2-2ac +c 2)=12(2a 2+2b 2+2c 2-2ab-2bc -2ac )=a 2+b 2+c 2-ab -bc -ac =等式左边,所以等式是成立的. (2)原式=12[(2 020-2 021)2+(2 021-2 022)2+(2 022-2 020)2]=3.26.解:(1)(x -1)(x 5+x 4+x 3+x 2+x +1)=x 6-1.(2)26+25+24+23+22+2+1=(2-1)×(26+25+24+23+22+2+1)=27-1=127. (3)22 023+22 022+22 021+…+22+2+1 =(2-1)(22 023+22 022+22 021+…+22+2+1)=22 024-1.2 024÷4=506,所以22 024的个位数字是6.所以22 024-1的个位数字是5,即22 023+22 022+22 021+…+22+2+1的值的个位数字是5.。

鲁教版6年级数学下册整式的混合运算 (习题及答案)

鲁教版6年级数学下册整式的混合运算 (习题及答案)

整式的混合运算(习题)➢ 例题示范例1:先化简再求值:2(32)(32)5()(2)x y x y x x y x y +-----,其中13x =-,1y =-.例2:若2m n x -=,2n x =,则m n x +=_______________.➢➢➢➢➢➢ 巩固练习1. 计算:①2(3)(3)(3)23a b a b a b a b ⎡⎤----++÷-⎣⎦;②222(1)(1)21()xy xy x y xy ⎡⎤+--+÷-⎣⎦;③2(12)(21)(41)1a a a -++-;④2222225049484721-+-++-…;⑤222016201640282014-⨯+.2、化简求值:①22234(2)(2)()(42)()a b a b ab ab a b ab +--⋅-÷,其中a =1,b =2.②3222(44)()(2)xy x y xy x y -+÷---,其中x =2,y =1.2. 如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a b >),剩余部分拼成图2的形状,利用这两个图形中面积的等量关系,能验证一个公式,这个公式是_______________.3. 若22(33)(3)x x x x m ++-+的展开式中不含x 2项,则m =_____.4. 若322(3)(21)ax x x x ---的展开式中不含x 4项,则a =______.图2图15. (1)若32x =,则23x =______;若34y =,则33y =______.(2)若32x =,34y =,则233x y +=______,323y x -=______.(3)若2n a =,5n b =,则10n =___________.6. 若9m x =,3n x =,则3m n x -=________; 若232x y a +=,2x a =,则y a =___________.7. 若344x y +=,则2279x y ⋅=_____________;若23m n +=,则39m n ⋅=_______.8. 要使2144a ma ++成为一个完全平方式,则m =_____. 9. 要使224a ab mb ++成为一个完全平方式,则m =_____.10. 实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为0.000 00156米,其中0.000 001 56米用科学记数法可表示为___________________米.【参考答案】➢ 巩固练习1. ①9a ; ②-1; ③-16a 4; ④1 275; ⑤42. ①0; ②-43. 22()()a b a b a b -=+-4. 65. 32- 6. (1)4,64(2)256,16 (3)ab7.13;8 8. 81;27 9. 2±10. 11611. 61.5610-⨯ ➢ 思考小结合并,抵消,加上,相反数,正,负,绝对值,0,负因数,负因数,负,负因数,正,乘以,倒数;m n a +,m n a -,mn a ,m m a b ,相加,不变,系数,系数,字母,字母,乘法分配律,22()()a b a b a b +-=-,222()2a b a ab b +=++,222()2a b a ab b -=-+例1:先化简再求值:2(32)(32)5()(2)x y x y x x y x y +-----,其中13x =-,1y =-. 【过程书写】解:原式22222(94)(55)(44)x y x xy x xy y =-----+22222945544x y x xy x xy y =--+-+-295xy y =- 当13x =-,1y =-时, 原式219(1)5(1)3⎛⎫=⨯-⨯--⨯- ⎪⎝⎭35=-2=-例2:若2m n x -=,2n x =,则m n x +=_______________.【思路分析】① 观察所求式子,根据同底数幂的乘法,m n m n x x x +=⋅,我们需要求出m x ,n x 的值;② 观察已知条件,由2m n m n x x x -=÷=,2n x =,可求出4m x =;③ 代入,求得8m n x x ⋅=,即8m n x +=.例3:若249x mx ++是一个完全平方式,则m =________.【思路分析】① 完全平方公式是由首平方,尾平方,二倍的乘积组成,观察式子结构,首尾两项是平方项.② 将24x ,9写成平方的形式224(2)x x =,293=,故mx 应为二倍的乘积. ③ 对比完全平方公式的结构,完全平方公式有两个.222()2a b a ab b ±=±+因此223mx x =±⋅⋅,所以12m =±.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《整式的运算》测试题
一、填空(3′×9)
1、3-2=____;
2、有一单项式的系数是2,次数为3,这个单项式可能是_______;
3、____÷a=a3;
4、一种电子计算机每秒可做108次计算,用科学记数法表示它8分钟可做_______次运算;
5、一个十位数字是a,个位数学是b的两位数表示为10a+b,交换这个两位数的十位数字和个位数字,又得一个新的两位数,它是_______,这两个数的差是_______;
6、有一道计算题:(-a4)2,李老师发现全班有以下四种解法,
①(-a4)2=(-a4)(-a4)=a4·a4=a8;
②(-a4)2=-a4×2=-a8;
③(-a4)2=(-a)4×2=(-a)8=a8;
④(-a4)2=(-1×a4)2=
(-1)2·(a4)2=a8;
你认为其中完全正确的是(填序号)__
_____;
7、我国北宋时期数学家贾宪在他的著作
《开方作法本源》中的“开方作法本源图”如下图⑴所示,通过观察你认为图中a=_______;
8、有二张长方形的纸片(如图⑵),
把它们叠合成图⑶的形状,这时图
形的面积是_______;
9、小华把一张边长是a厘米的正
方形纸片(如图⑷)的边长减少1
厘米后,重新得到一个正方形纸
片,这时纸片的面积是______厘米;二、选择题(3′×3)
10、下列运算正确的是()
A 、a5·a5=a25 B、a5+a5=a10 C、 a5·a5=a10 D、 a5·a3=a15
11、计算 (-2a2)2的结果是()
A 2a4
B -2a4
C 4a4
D -4a4
12、用小数表示3×10-2的结果为()
A -0.03
B -0.003
C 0.03
D 0.003
三、计算下列各题(8′×5)
13、(2a+1)2-(2a+1)(-1+2a)
14、(3xy2)·(-2xy)
15、(2a6x3-9ax5)÷(3ax3)
16、(-8a4b5c÷4ab5)·(3a3b2)
17、(x-2)(x+2)-(x+1)(x-3)
四、(6′)七年级学生小颖是一个非常喜欢思考问题而又乐于助人的同学,一天邻居家正在读小学的小明,请小颖姐姐帮忙检查作业:
7×9= 63 8×8=64
11×13=143 12×12=144
23×24=624 25×25=625
小颖仔细检查后,夸小明聪明仔细,作业全对了!小颖还从这几道题发现了一个规律。

你知道小颖发现了什么规律吗?请用字母表示这一规律,并说明它的正确性。

用心爱心专心 1
五、(7′)古人云:凡事宜先预后立。

我们做任何事都
要先想清楚,然后再动手去做,才可能避免盲目性。


天,需要小华计算一个L形的花坛的面积,在动手测量
前小明依花坛形状画了如下示意图,并用字母表示了将
要测量的边长(如图所标示),小明在列式进行面积计
算时,发现还需要再测量一条边的长度,你认为他还需测哪条边的长度?请你在图中标示出来,并用字母n表示,然后再求出它的面积。

六、(6′)如图所示的长方形或正方形三类卡片各有若干张,请你用这些卡片,拼成一个长方形或正方形图形。

要求:所拼图形中每类卡片都要有,卡片之间不能重叠。

画出示意图,并计算出它的面积。

七、(7′)小华看着电视里的舞蹈节目:七个身穿不同民族服装的舞蹈演员正在面对观众进行队列变换,他陷入了沉思:这7个演员面对观众一共会有几种队列变换呢?……为了解决这一问题,他是这样思考和探索的:
①若只有一个演员A,那就只有队列变换A,共1种;
②若有二个演员A、B,那就有队列变换:AB和BA,共2种;
③若有三个演员A、B、C,那就有队列变换:ABC、ACB、BAC、BCA、CAB、
CBA,共6种;
④若有四个演员A、B、C、D,那就有队列变换(小华把这四个字母在纸上不停的变换顺序地排列着、写着)……数数看,哇!有24种,变化如此之快呀,五个、六个、七个演员呢?看来不可再强攻,否则就……,还是智取吧……
再应用表格吧,记得书上有这样的例子,老师也曾示范过,它能更加清楚地反映其中的数字规律呢:
……
⑴你知道这7个舞蹈演员面对观众一共会有几种队列变换吗?说说你的理
由。

⑵请你先仔细体会小华的解题策略,然后再探索:220的末位数字是多少?说
说你是怎样想的。

例如:25的末位数字是5;2043的末位数字是3。

用心爱心专心 2。

相关文档
最新文档