2020年(财务知识)计量经济学实验教学案例实验四异方差
计量经济学计量经济学教学案例

计量经济学教学案例案例一 简单线性回归模型一、主题与背景用真实数据进行简单线性回归分析,应用Eviews6.0分析软件进行操作,与课本内容相对应,分析模型的截距、斜率以及可决系数,引导学生熟悉Eviews6.0的基本操作,能够解读分析报告,并尝试进行被解释变量的预测,体会变量测度单位的改变和函数形式变化给OLS 估计结果和统计特征的影响。
二、情景描述对于由CEO 构成的总体,令y 代表年薪(salary),单位为千美元。
令x 表示某个CEO 所在公司在过去三年的平均股本回报率(roe ,股本回报率定义为净收入占普通股价的百分比)。
为研究该公司业绩指标和CEO 薪水之间的关系,可以定义以下模型:Salary=0β+1βroe + u . 斜率参数1β衡量当股本回报率增长一个单位(一个百分点)时CEO 年薪的变化量,由于更高的股本回报率预示更高的CEO 年薪,所以,1β>0。
三、教学过程设计(一)数据说明数据集CEOSAL1.RAW 包含1990年209位CEO 的相关信息,该数据来自《商业周刊》(5/6/91),该样本中CEO 年薪的平均值为$1,281,120,最低值和最高值分别为$223,000和$14,822,000,1988、1989和1990年的平均股本回报率是17.18%。
(二)操作建议1:在 eviews6.0命令输入窗口定义变量:data salary roe2、用 edit+/- 编辑数据3、描述统计分析过程:view---descriptive stats---common sample4、画散点图:Scat roe salary5、在eviews6.0命令输入窗口运行简单线性回归 Ls salary c roe6、用resids 观测残差7、产生新序列:S eries lsalary =log(salary)8、改变函数形式:Ls lsalary c lsales9、改变变量测度单位:Ls salary*1000 c roe四、教学研究(一)案例结论1、回归结果估计出的回归线为:salˆary = 963.191 + 18.501 roe(1)截距和斜率保留了3位小数,回归结果显示,如果股本回报率为0,年薪的预测值为截距963.191千美元,可以把年薪的预测变化看做股本回报率变化的函数:∆salˆary = 18.501 (∆roe),这意味着当股本回报率增加1个百分点,即∆roe =1,则年薪的预测变化就是18.5千美元,在线性方程中,估计的变化与初始年薪无关。
实验四异方差性的检验与处理

实验四异方差性的检验与处理集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]实验四 异方差性的检验及处理(2学时)一、实验目的(1)、掌握异方差检验的基本方法; (2)、掌握异方差的处理方法。
二、实验学时:2学时 三、实验要求(1)掌握用MATLAB 软件实现异方差的检验和处理; (2)掌握异方差的检验和处理的基本步骤。
四、实验原理1、异方差检验的常用方法(1) 用X-Y 的散点图进行判断(2). 22ˆ(,)(,)e x e y 或的图形 ,),x )i i y i i ((e 或(e 的图形)(3) 等级相关系数法(又称Spearman 检验)是一种应用较广的方法,既可以用于大样本,也可与小样本。
检验的三个步骤 ① ˆt t y y=-i e②|i x i i 将e 取绝对值,并把|e 和按递增或递减次序排序,计算Spearman 系数rs ,其中:21ni i d =∑s 26r =1-n(n -1)③ 做等级相关系数的显着性检验。
n>8时,/2(2),t t n α>-反之,若||i i e x 说明与之间存在系统关系,异方差问题存在。
(4) 帕克(Park)检验帕克检验常用的函数形式:若在统计上是显着的,表明存在异方差性。
2、异方差性的处理方法: 加权最小二乘法 如果在检验过程中已经知道:222()()()i i i ji u Var u E u f x σσ===则将原模型变形为:121(i i p pi iy x x uf xβββ=+⋅++⋅+在该模型中:即满足同方差性。
于是可以用OLS估计其参数,得到关于参数12,,,pβββ的无偏、有效估计量。
五、实验举例例101i i iy x u=++若用线性模型,研究不同收入家庭的消费情况,试问原数据有无异方差性如果存在异方差性,应如何处理解:(一)编写程序如下:(1)等级相关系数法(详见文件)%%%%%%%%%%%%%%% 用等级相关系数法来检验异方差性 %%%%%%%%[data,head]=xlsread('');x=data(:,1); %提取第一列数据,即可支配收入xy=data(:,2); %提取第二列数据,即居民消费支出yplot(x,y,'k.'); % 画x和y的散点图xlabel('可支配收入x(千元)') % 对x轴加标签ylabel('居民消费支出y(千元)') % 对y轴加标签%%%%%%%% 调用regres函数进行一元线性回归 %%%%%%%%%%%%xdata=[ones(size(x,1),1),x]; %在x矩阵最左边加一列1,为线性回归做准备[b,bint,r,rint,s]=regress(y,xdata);yhat=xdata*b; %计算估计值y% 定义元胞数组,以元胞数组形式显示系数的估计值和估计值的95%置信区间head1={'系数的估计值','估计值的95%置信下限','估计值的95%置信上限'};[head1;num2cell([b,bint])]% 定义元胞数组,以元胞数组形式显示y的真实值,y的估计值,残差和残差的95%置信区间head2={'y的真实值','y的估计值','残差','残差的95%置信下限','残差的95%置信上限'};[head2;num2cell([y,yhat,r,rint])]% 定义元胞数组,以元胞数组形式显示判定系数,F统计量的观测值,检验的P值和误差方差的估计值head3={'判定系数','F统计量的观测值','检验的P值','误差方差的估计值'};[head3;num2cell(s)]%%%%%%%%%%%%% 残差分析 %%%%%%%%%%%%%%%%%%figure;rcoplot(r,rint) % 按顺序画出各组观测值对应的残差和残差的置信区间%%% 画估计值yhat与残差r的散点图figure;plot(yhat,r,'k.') % 画散点图xlabel('估计值yhat') % 对x轴加标签ylabel('残差r') % 对y轴加标签%%%%%%%%%%%% 调用corr函数计算皮尔曼等级相关系数res=abs(r); % 对残差r取绝对值[rs,p]=corr(x,res,'type','spearman')disp('其中rs为皮尔曼等级相关系数,p为p值');(2)帕克(park)检验法(详见文件)%%%%%%%%%%%%%%% 用帕克(park)检验法来检验异方差性 %%%%%%%[data,head]=xlsread(''); %导入数据x=data(:,1);y=data(:,2);%%%%%% 调用regstats函数进行一元线性回归,linear表带有常数项的线性模型,r表残差ST=regstats(y,x,'linear',{'yhat','r','standres'});scatter(x,.^2) % 画x与残差平方的散点图xlabel('可支配收入(x)') % 对x轴加标签ylabel('残差的平方') %对y轴加标签%%%%%%% 对原数据x和残差平方r^2取对数,并对log(x)和log(r^2)进行一元线性回归ST1=regstats(log(.^2),log(x),'linear',{'r','beta','tstat','fstat'})% 输出参数的估计值% 输出回归系数t检验的P值% 输出回归模型显着性检验的P值(3)加权最小二乘法(详见文件)%%%%%%%%%%% 调用robustfit函数作稳健回归 %%%%%%%%%%%%[data,head]=xlsread(''); % 导入数据x=data(:,1);y=data(:,2);% 调用robustfit函数作稳健回归,返回系数的估计值b和相关统计量stats[b,stats]=robustfit(x,y) %调用函数作稳健回归% 输出模型检验的P值%%% 绘制残差和权重的散点图 %%%%%%%plot,,'o') %绘制残差和权重的散点图xlabel('残差')ylabel('权重'(二)实验结果与分析:第一步::用OLS方法估计参数,并保留残差(1)散点图图可支配收入(x)居民消费支出(y)散点图因每个可支配收入x的值,都有5个居民消费收入y与之对应,所以上述散点图呈现此形状。
实验四异方差的检验

LOGO
w1=1/e
表一
themegallery
LOGO
w2=1/e^2
表二
themegallery
LOGO
3、分析
由表一的估计结果如下
Y i 374.89340.737423X i
(211.4532 ) (0.039238)
t = (1.772938) (18.7937)
R20.982523 R 2 =0.999889 F=989.2625
themegallery
LOGO
themegallery
LOGO
2、构造子样本区间,建立回归模型。
本题中样本容量n=20,删除中间的 1/4(20/4=5)的观测值,因为余下的观测 值要平分样本容量n1=n2=8.
LOGO
实验四
下表列出了某年中国部分省市城镇居民每 个家庭平均全年可支配收入X与消费性支出Y的 统计数据
themegallery
LOGO
themegallery
LOGO
(1)使用最小二乘法建立消费性支出与 可支配收入的线性模型;
(2)检验模型是否存在异方差; (3)如果存在异方差,是采用适当的方
themegallery
LOGO
(2)再点击 “view→Representations”,得到居 民人均消费支出与可支配收入的线性模型:
themegallery
LOGO
themegallery
LOGO
由表知参数估计线 性方程为:
Y i 2 7 2 .3 6 3 5 0 .7 5 5 1 2 5 X i
themegallery
LOGO
themegallery
计量经济学异方差实验报告及心得体会

计量经济学异方差实验报告及心得体会一、实验简介本实验旨在通过构建模型来研究经济学中的异方差问题,并通过实证分析来探讨其对模型结果的影响。
实验数据采用随机抽样方法自真实经济数据中获取,共包括两个自变量和一个因变量。
在实验中,我将对模型进行两次回归分析,一次是假设无异方差问题,一次是考虑异方差问题,并比较两个模型的结果。
二、实验过程1.数据准备:根据实验设计,我根据随机抽样方法,从真实经济数据中抽取了一部分样本数据。
2.模型建立:我将自变量Y和X1、X2进行回归分析。
首先,我假设模型无异方差问题,得到回归结果。
然后,我将检验异方差性,若存在异方差问题,则建立异方差模型继续回归分析。
3.模型估计:利用最小二乘法进行参数估计,并计算回归结果的标准差和假设检验。
4.模型比较:对比两个模型的回归结果,分析异方差对模型拟合程度和参数估计的影响。
三、实验结果1.无异方差假设模型回归结果:回归方程:Y=0.9X1+0.5X2+2.1标准差:0.3显著性水平:0.05拟合优度:0.852.考虑异方差问题模型回归结果:回归方程:Y=0.7X1+0.4X2+1.9标准差:0.6显著性水平:0.05拟合优度:0.75四、实验心得体会通过本次实验,我对计量经济学中的异方差问题有了更深入的了解,并进一步认识到其对模型结果的影响。
1.异方差问题的存在会对统计推断结果产生重要影响。
在本次实验中,考虑异方差问题的模型相较于无异方差模型,参数估计值差异较大,并且拟合优度也有所下降。
因此,我们在实证分析中应尽可能考虑异方差问题。
2.在实际应用中,异方差问题可能较为普遍。
经济学中的许多变量存在异方差性,例如,个体收入、消费支出等。
因此,在进行经济学研究时,我们应当警惕并尽量排除异方差问题。
3.针对异方差问题,我们可以采用多种方法进行调整,例如,利用异方差稳健标准误、加权最小二乘法等。
在本次实验中,我们采用了异方差模型进行调整,并得到了相对较好的结果。
计量异方差实验报告

一、实验背景与目的随着经济全球化、信息化的发展,计量经济学在各个领域的应用越来越广泛。
然而,在实际应用中,由于数据的特点和模型设定等因素的影响,异方差现象常常出现。
异方差现象会导致估计结果的偏差和统计推断的无效,因此,对异方差的检验和修正成为计量经济学中的重要问题。
本实验旨在通过实证分析,掌握异方差的检验和修正方法,提高对计量经济学模型的理解和应用能力。
二、实验数据与模型1. 数据来源本实验数据来源于某地区2000-2019年的居民消费数据,包括居民消费性支出、可支配收入、商品价格指数等变量。
2. 模型设定根据数据特点,本实验建立如下线性回归模型:消费性支出= β0 + β1 可支配收入+ β2 商品价格指数+ ε其中,β0为截距项,β1和β2为回归系数,ε为误差项。
三、实验步骤1. 异方差检验(1)图示法首先,将消费性支出与可支配收入、商品价格指数进行散点图绘制,观察是否存在明显的线性关系。
若存在明显的线性关系,则进一步进行异方差检验。
(2)Breusch-Pagan检验对上述线性回归模型进行Breusch-Pagan检验,以判断是否存在异方差。
检验方法如下:H0:模型不存在异方差H1:模型存在异方差计算Breusch-Pagan统计量,并根据自由度和显著性水平查表得到临界值。
若统计量大于临界值,则拒绝原假设,认为模型存在异方差。
2. 异方差修正若检验结果表明模型存在异方差,则采用加权最小二乘法(WLS)进行修正。
(1)确定权重根据异方差检验结果,计算每个观测值的权重。
权重计算公式如下:w_i = 1 / σ_i^2其中,σ_i^2为第i个观测值的方差。
(2)加权最小二乘法估计利用加权最小二乘法对模型进行估计,得到修正后的回归系数。
四、实验结果与分析1. 异方差检验结果根据图示法,消费性支出与可支配收入、商品价格指数之间存在明显的线性关系。
Breusch-Pagan检验结果显示,在5%的显著性水平下,统计量大于临界值,拒绝原假设,认为模型存在异方差。
异方差实验报告

异方差实验报告引言异方差(heteroscedasticity)是指随着自变量的变化,因变量的方差也随之变化的现象。
在统计分析中,假设方差是恒定的是很常见的,但在实际应用中,许多变量的方差是不恒定的,需要进行异方差处理。
本实验旨在通过模拟数据和实际数据来探究异方差的影响并了解异方差检验方法。
实验设计本实验分为两个部分。
第一部分使用模拟数据,提供了不同阶段下的异方差数据集。
第二部分使用实际数据,通过观察数据的模式来判断是否存在异方差。
实验方法模拟数据在模拟数据部分,我们生成了四个数据集,每个数据集都包含一个自变量和一个因变量。
为了模拟异方差,我们设定了不同的标准差,并与自变量呈一定的关系。
具体参数如下:•数据集1:使用正态分布生成自变量和因变量,因变量的标准差为自变量的两倍。
•数据集2:自变量为正态分布,因变量为自变量的2次方,并加入了一个随机误差项,使得方差在自变量变大时也会变大。
•数据集3:自变量为均匀分布,因变量为自变量的指数函数,并加入了一个随机误差项,使得方差在自变量变大时也会变大。
•数据集4:自变量为正态分布,因变量为自变量的对数,并加入了一个随机误差项,使得方差在自变量变大时也会变大。
实际数据在实际数据部分,我们使用了一份销售数据。
该数据包含了不同日期下的产品销售量和价格。
我们首先观察数据的散点图,并通过直观感受来猜测是否存在异方差。
实验结果和分析模拟数据结果分析数据集1数据集1的散点图显示了自变量和因变量之间的线性关系,但由于异方差的存在,随着自变量的增加,因变量的方差也在增大。
这说明了异方差对回归结果的影响。
数据集2数据集2的散点图显示了自变量和因变量之间的非线性关系。
由于自变量的增大,因变量的方差也在增大。
这与模型中设定的异方差关系一致。
数据集3数据集3的散点图显示了自变量和因变量之间的指数关系。
随着自变量的增大,因变量的方差也在增大,符合预期的异方差模式。
数据集4数据集4的散点图显示了自变量和因变量之间的对数关系。
计量经济学》实验报告

计量经济学》实验报告一、经济学理论概述1、需求是指消费者(家庭)在某一特定时期内,在每一价格水平时愿意而且能够购买的某种商品量。
需求是购买欲望与购买能力的统一。
2、需求定理是说明商品本身价格与其需求量之间关系的理论。
其基本内容是:在其他条件不变的情况下,一种商品的需求量与其本身价格之间成反方向变动,即需求量随着商品本身价格的上升而减少,随商品本身价格的下降而增加。
3、需求量的变动是指其他条件不变的情况下,商品本身价格变动所引起的需求量的变动。
需求量的变动表现为同一条需求曲线上的移动。
二、经济学理论的验证方法在此次试验中,我运用了Eviews和Excel软件对相关数据进行处理和分析。
1、拟合优度检验——可决系数R2统计量回归平方和反应了总离差平方和中可由样本回归线解释的部分,它越大,参差平方和越小,表明样本回归线与样本观测值的拟合程度越高。
2、方程总体线性的显着性检验——F检验(1)方程总体线性的显着性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显着成立作出判断。
(2)给定显着性水平α,查表得到临界值Fα(k,n-k-1),根据样本求出F统计量的数值后,可通过F>Fα(k,n-k-1) (或F ≤Fα(k,n-k-1))来拒绝(或接受)原假设H0,以判定原方程总体上的线性关系是否显着成立。
3、变量的显着性检验——t检验4、异方差性的检验——怀特检验怀特检验不需要排序,对任何形式的异方差都适用。
5、序列相关性的检验——图示法和回归检验法6、多重共线性的检验——逐步回归法以Y为被解释变量,逐个引入解释变量,构成回归模型,进行模型估计。
三、验证步骤1、确定变量(1)被解释变量“货币流通量”在模型中用“Y”表示。
(2)解释变量①“货币贷款额”在模型中用“X”表示;1②“居民消费价格指数”在模型中用“2X ”表示;③把由于各种原因未考虑到和无法度量的因素归入随机误差项,在模型中用“μ”。
计量经济学实验报告异方差

《计量经济学》实验报告异方差(五)
二、实验目的
1、掌握异方差出现的来源、后果、检验及修正的原理,以及相关的EViews软件操作方法。
2、建立工作文件,输入数据
3、利用最小二乘法建立方程,进行残差的怀特(white)异方差检验;
4、利用加权最小二乘法修正异方差,列出方程及主要统计量,检验是否消除了异方差性,列出检验结果。
三、实验步骤(简要写明实验步骤)
1、首先建立一个工作文件、建立回归模型;
2、由于这是截面数据,所以要检验是否存在异方差
1)、可以从图形的角度来检验,为此首先生成该残差序列;
2)、WHITE检验
3、消除异方差,WLS估计法
点击resid得到残差项
在上方输入genr e2=resid^2
点击e2和x右键as grop得到散点图
在上方输入genr e1=@abs (resid)
在上方输入ls y c x,点击view中的White检验得到数据
四、实验结果及分析
1、回归估计结果:
y=+
2、残差序列得到的图形为:
表明是否存在异方差:可以发现随着X增加,残差呈现明显的扩大趋势,表明存在递增的异方差
3、WHITE检验得到的结果为:
观察相伴概率P值的大小,这里p=,大于的显着水平
表明不存在异方差。
4、用加权最小二乘法回归得到的结果加以分析看是否消除了异方差:
所对应的White检验显示,P值较大,都超过了,所以接受不存在异方差的原假设,即认为已经消除了回归模型的异方差性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(财务知识)计量经济学实验教学案例实验四异方差
实验四异方差性
【实验目的】
掌握异方差性的检验及处理方法
【实验内容】
建立且检验我国制造业利润函数模型
【实验步骤】
【例1】表1列出了1998年我国主要制造工业销售收入和销售利润的统计资料,请利用统计软件Eviews建立我国制造业利润函数模型。
表1我国制造工业1998年销售利润和销售收入情况
一、检验异方差性
⒈图形分析检验
⑴观察销售利润(Y)和销售收入(X)的关联图(图1):SCATXY
图1我国制造工业销售利润和销售收入关联图
从图中能够见出,随着销售收入的增加,销售利润的平均水平不断提高,但离散程度也逐步扩大。
这说明变量之间可能存于递增的异方差性。
⑵残差分析
首先将数据排序(命令格式为:SORT解释变量),然后建立回归方程。
于方程窗口中点击Resids按钮就能够得到模型的残差分布图(或建立方程后于Eviews工作文件窗口中点击resid对象来观察)。
图2我国制造业销售利润回归模型残差分布
图2显示回归方程的残差分布有明显的扩大趋势,即表明存于异方差性。
⒉Goldfeld-Quant检验
⑴将样本安解释变量排序(SORTX)且分成俩部分(分别有1到10共11个样本合19到28共10个样本)
⑵利用样本1建立回归模型1(回归结果如图3),其残差平方和为2579.587。
SMPL110
LSYCX
图3样本1回归结果
⑶利用样本2建立回归模型2(回归结果如图4),其残差平方和为63769.67。
SMPL1928
LSYCX
图4样本2回归结果
⑷计算F统计量:=63769.67/2579.59=24.72,分别是模型1和模型2的残差平方和。
取时,查F分布表得,而,所以存于异方差性
⒊White检验
⑴建立回归模型:LSYCX,回归结果如图5。
图5我国制造业销售利润回归模型
⑵于方程窗口上点击View\Residual\Test\WhiteHeteroskedastcity,检验结果如图6。
图6White检验结果
其中F值为辅助回归模型的F统计量值。
取显著水平,由于,所以存于异方差性。
实际应用中能够直接观察相伴概率p值的大小,若p值较小,则认为存于异方差性。
反之,则认为不存于异方差性。
⒋Park检验
⑴建立回归模型(结果同图5所示)。
⑵生成新变量序列:GENRLNE2=log(RESID^2)
GENRLNX=log
⑶建立新残差序列对解释变量的回归模型:LSLNE2CLNX,回归结果如图7所示。
图7Park检验回归模型
从图7所示的回归结果中能够见出,LNX的系数估计值不为0且能通过显著性检验,即随即误差项的方差和解释变量存于较强的关联关系,即认为存于异方差性。
⒌Gleiser检验(Gleiser检验和Park检验原理相同)
⑴建立回归模型(结果同图5所示)。
⑵生成新变量序列:GENRE=ABS(RESID)
⑶分别建立新残差序列(E)对各解释变量(X/X^2/X^(1/2)/X^(-1)/X^(-2)/X^(-1/2))的回归模型:LSECX,回归结果如图8、9、10、11、12、13所示。
图8
图9
图10
图11
图12
图13
由上述各回归结果可知,各回归模型中解释变量的系数估计值显著不为0且均能通过显著性检验。
所以认为存于异方差性。
⑷由F值或确定异方差类型
Gleiser检验中能够通过F值或值确定异方差的具体形式。
本例中,图10所示的回归方程F值()最大,能够据次来确定异方差的形式。
二、调整异方差性
⒈确定权数变量
根据Park检验生成权数变量:GENRW1=1/X^1.6743
根据Gleiser检验生成权数变量:GENRW2=1/X^0.5
另外生成:GENRW3=1/ABS(RESID)
GENRW4=1/RESID^2
⒉利用加权最小二乘法估计模型
于Eviews命令窗口中依次键入命令:
LS(W=)YCX
或于方程窗口中点击Estimate\Option按钮,且于权数变量栏里依次输入W1、W2、W3、W4,回归结果图14、15、16、17所示。
图14
图15
图16
图17
⒊对所估计的模型再进行White检验,观察异方差的调整情况
对所估计的模型再进行White检验,其结果分别对应图14、15、16、17的回归模型(如图18、19、20、21所示)。
图18、19、21所对应的White检验显示,P值较大,所以接收不存于异方差的原假设,即认为已经消除了回归模型的异方差性。
图20对应的White 检验没有显示F值和的值,这表示异方差性已经得到很好的解决。
图18
图19
图20
图21。