实验一 万用表测量二极管、三极管

合集下载

实验一用万用表测量二极管三极管

实验一用万用表测量二极管三极管
第 第第 第 一 二三 四 色 色色 色 环 环环 环
读法: AB×10C
误差为D
对照色环电阻颜色对应 表读得此电阻阻值为:
22×103=22000=22.3KΩ
色环电阻 22.3KΩ 、1/4W
红 红 橙 金 误差精度:5%
3
A:有效数字第一位 B:有效数字第二位
C:倍率指数 D:误差精度
色 环 电 阻 颜 色 对 应 表
23
插件发光二极管方向之识别
如何识别发光二极管的方向: 正

﹡引脚较长的一端为正
﹡LED灯内部引脚面积较大 的一端为负
*用万用表的二极管档或直接
通电观察是否发光也可加以
判断
红、黄LED灯:额定电压约2V
发光二极管广泛用于 指示灯、显示屏
其它色LED灯:额定电压约3V
24
发光二极管表示之方法
符号 LED
15
电感
符号 LInductance 单位 H (亨利)
电路符号
一般符号
带铁心型
1H=1000mH
1mH=1000µH
电感表现出与电容相反的特性即
通直隔交电路中主要用于整流滤波
在PC板上 我们看不 到这种电 子元件但 线圈就相 当于一个 单绕/两个 双绕的电 感元件
16
二极管
■二极管是半导体电子元件通常也称二极体按 其功能不同可分为:普通二极管、稳压二极管、 发光二极管、瞬态电压抑制二极管等二极管在 电子线路中有着广泛的应用
4
电阻的表示方法
符号 RResistance的缩写 单位 Ω (欧姆)
电路符号
常规表示 国际标准
1MΩ =1000KΩ 1KΩ =1000Ω
5

实验一常用仪器的使用(示波器、万用表)

实验一常用仪器的使用(示波器、万用表)

实验⼀常⽤仪器的使⽤(⽰波器、万⽤表)实验⼀、常⽤电⼦仪器仪表使⽤模拟电⼦技术实验中,常⽤的电⼦仪器仪表主要有双踪⽰波器、低频信号发⽣器、低频交流毫伏表、直流稳压电源、万⽤表等。

这些仪器仪表的主要⽤途以及与实验电路的联系如图所⽰。

⼀、实验⽬的初步了解常⽤电⼦仪器的功能与使⽤⽅法;掌握⽤⽰波器获取稳定波形并测量有关参数的⽅法。

2、会⽤万⽤表测试晶体⼆极管、三极管;学习使⽤半导体特性图⽰仪测试晶体管的⽅法。

⼆、实验仪器双踪⽰波器: GOS620;函数信号发⽣器:SG1651;交流毫伏表: SG2172;直流稳压电源: SS1792C;数字万⽤表: MS8222D 半导体特性图⽰仪:XJ4810或XJ4820三、实验内容及步骤1、⽤交流毫伏表测量低频信号发⽣器输出的正弦信号电压:将低频信号发⽣器(或称信号源)的输出端接⾄交流毫伏表输⼊端(注意:两仪器必须“共地”)。

将信号源波形选择置“正弦”,频率调为“ 1kHz”,输出衰减先置于“0dB”,调节“输出幅度”旋钮,使LED数字表头指⽰值V S 为 11V 左右(峰—峰值)。

然后,将毫伏表量程由最⼤档位100V逐级切换为10V档,观察该表读数,使读数为4V。

依次按下信号源“输出衰减”⾄20dB、40dB、60dB,并相应调整毫伏表量程。

分别记录毫伏表读数,结果填⼊下表:2、⽤⽰波器观察波形将⽰波器“ Y1轴输⼊”端接信号源输出端(两仪器仍必须“共地”),参照附录I.2中有关GOS620双踪⽰波器观察波形的⽅法,调节“Y1灵敏度”,“X灵敏度”及“触发⽅式,触发电平”等旋钮,使荧光屏上得到⼀稳定的正弦波。

保= 4V,依次改变f S为:100Hz、1kHz、10kHz、100kHz,并适当持信号源VS调整X轴扫描速度,观察所测波形。

3、⽤⽰波器测量波形的周期和幅度将频率为 1kHz、幅度为3V左右的正弦信号送⼊⽰波器输⼊端。

将⽰波器扫描开关“T/cm”上的微调旋钮置“校准”位置,此时,“T/cm”的指⽰值即为屏幕上横向每格(1cm)代表的时间,再观察被测波形⼀个周期在屏幕⽔平轴上占据的格数,即可得信号周期T wT w =T/cm×格数调节⽰波器 Y通道的灵敏度开关“V/cm”,使屏幕上的波形⾼度适中,此时,“V/cm”的指⽰值即为屏幕上纵向每格代表的电压值,再观察波形的⾼度(峰—峰)在屏幕纵轴上占据的格数,即可得信号幅度V (峰—峰):V (峰—峰)=V/cm×格数注意:被测信号若经⽰波器 10:1探头输⼊,测得的电压值再乘10,才是实际值。

指针式万用表测二极管(范文8篇)

指针式万用表测二极管(范文8篇)

指针式万用表测二极管(范文8篇)以下是网友分享的关于指针式万用表测二极管的资料8篇,希望对您有所帮助,就爱阅读感谢您的支持。

指针式万用表测二极管(1)由于二极管具有单向导电性能,表现为正向电阻值小;反向电阻值很大。

根据这个特点,可用万用表电阻挡来判断它的好坏和极性。

半导体二极管测试方法如图1所示,万用表置R×100或R×1k挡。

用万用表的负表笔(电池+端)接二极管的“+”极;正表笔接二极管的“-”极,即给二极管施加正向电压,二极管图1 万用表测试处于导通状态,电表读数为其正向电阻值。

如果被测的是硅二极管,电表指针指在表面中间或中间偏右一点,则表明正向特性良好。

然后把正、负表笔倒换,正表笔接二极管“+”端、负表笔接二极管“-”端,此时二极管加了反向电压,处于截止状态,对硅管而言,表针几乎不动,即阻值约为∞;若被测的是锗二极管,则二个特性的阻值均偏小。

两次测试结果如上所述,表明管子具有单向导电特性,说明被测管完好。

否则说明是一只坏管子。

若要判明一只二极管的极性,通过上述两次测试,首先判别出其好坏。

只要管子完好,如果测得结果是小阻值,表示所测的是正向电阻,则万用表负表笔所接的一端是二极管的“+”极(切记万用表的负表笔是表内电池E的+端);如果测得是大阻值,则负表笔所接的是二极管的“-”极。

指针式万用表测二极管(2)万用表测试题()7.在选择电阻档进行测量时,每变换一次量程都需要进行电阻调零。

()8.万用表内有电池,红表笔表示电池的正极。

二、单选题。

1、万用表在使用时,必须,一面造成误差。

同时还要注意避免外界磁场对万用表的干扰。

A、水平放置B、垂直放置C倾斜放置2、万用表使用完毕后,应将转换开关置于的最大档。

A、交流电流B、交流电压C、随便都可以3、选择量程时,如果不能确定被测量的电流时,应该选择去测量。

A、任意量程B、小量程C、大量程4、选择合适的量程,应先量程,再选量程或看铭牌估算。

数字万用表测量三极管和二级管

数字万用表测量三极管和二级管

数字万用表测量三极管和二级管
一、测量二极管
1.将数字万用表拨至二极管测试档位。

2.将红表笔接二极管正极,黑表笔接二极管负极。

3.读取万用表显示的数值,如果显示正向导通电压值,则二极管为正向导通状态;如果显示无穷大或反相击穿电压值,则二极管为反向截止状态。

二、测量三极管
1.将数字万用表拨至三极管测试档位。

2.将红表笔接三极管基极,黑表笔分别接集电极和发射极。

3.读取万用表显示的数值,如果显示正向导通电压值,则三极管为正常工作状态;如果显示无穷大或反相击穿电压值,则三极管可能存在故障。

实验一 半导体二极管与三极管的识别与简单测试

实验一  半导体二极管与三极管的识别与简单测试

图1 二极管外型图 实验一 常用半导体器件的识别与简单测试一. 实验目的1.掌握用万用表判别二极管的极性。

测量二极管的正向压降及稳压管的稳压值。

2.掌握用万用表判别三极管的类型和e 、b 、c 三个管脚。

二. 预备知识半导体二极管和三极管是组成分立元件电子电路的核心器件。

二极管具有单向导电性,可用于整流、检波、稳压、混频电路中。

三极管对信号具有放大作用和开关作用,它们的管壳上都印有规格和型号。

(一).二极管的识别与简单测试1.普通二极管的识别与简单测试普通二极管一般为塑料封装和金属封装两种,它们的外壳上均印有型号和标记。

标记箭头所指方向为阴极,如图1所示。

国外的产品一般在阴极端印有一个标记。

若遇到型号标记不清或不能确定其极性时,我们可以借助数字万用表的“”档作简单判别。

测量原理:该挡测量时输出一个恒定电流约为1mA ,显示值为二极管正向压降近似值,单位是mV ;显示溢出数“1”,表示无穷大。

具体做法是:用红、黑两表笔分别接触二极管的两个引脚。

假如先显示溢出数“1”(反向),再交换两表笔.必然为正向测试。

假设显示的读数为617。

这说明:①二极管是好的。

②二极管的正向压降为617mV 即 O.617 V 。

③显示正向压降时,红表笔所接的引脚为二极管的正极,黑表笔所接则为负极。

假如两次测量均显示溢出数“1”或两次均有较小的压降读数的话,表明该二极管已损坏。

在数字万用表中,“”挡和欧姆档红表笔是高电位,黑表笔低电位,正好与指针式模拟万用表相反。

2.特殊二极管的识别与简单测试特殊二极管的种类较多,在此我们只介绍两种常用的特殊二极管。

①.发光二极管(LED)发光二极管通常是用砷化镓、磷化镓等制成的一种新型器件。

它具有工作电压低、耗电少、响应速度快、抗冲击、耐振动、性能好以及轻而小的特点,被广泛应用于单个显示电路或作成七段矩阵式显示器。

而在电路实验中,常用作逻辑显示器。

发光二极管的电路符号如图2(a )所示。

模电实验内容

模电实验内容

实验一晶体二极管和三极管测试实验内容一、测试晶体二极管(分别测试IN4007和发光二极管)1、判别二极管的极性将万用表欧姆档的量程拨到R×1K、R×100档,并将两表笔分别接到二极管两端。

如图2—1所示。

如果二极管处于正向偏置,呈现低电阻,表针偏转大,此时万用表指示的电阻小于几千欧,若二极管处于反向偏置,呈现高电阻,表针偏转小,此时万用表指示的电阻将达几百千欧以上。

正向偏置时,黑表笔所接的那一端是二极管的正极。

图2—12、判别二极管好坏测得二极管的正向电阻相差越大越好,若测得正反向电阻均为无穷大,则表明二极管内部断路。

如果测得正、反向电阻均为零,此时表明二极管被击穿或短路。

测试In4007时,万用表选用R*1K的量程,测试发光二极管时,万用表选用R*10K 的量程,二、利用万用表测晶体三极管1、用万用表判别管脚及类型(1)基极及管型的判别测试三极管时,可将三极管的结构看作由两个PN结所组成,而PN结的反向电阻都很大,正向电阻很小。

因此可用万用表的R×100或R×1档进行测试。

先将黑表笔接三极管某一极,然后将红表笔接其余两各极。

如图2—2所示。

若测得电阻都大时,则黑表笔所接的是PNP型管子的基极,若测得电阻都小时,则黑表笔所接的是NPN型管子的基极,若两次测得的阻值为一大一小,则黑表笔所接的电极不是三极管的基极,应另接一个电极重新测量,以便确定管子的基极。

图2—2(2)判别集电极和发射极判断集电极和发射极的基本原理是把三极管接成单管放大电路,利用测量管子的电流放大系数β值的大小来判定集电极和发射极。

以NPN为例,如图2—3所示。

基极确定以后,用万用表两表笔分别接另外两个电极,用100KΩ的电阻一端接基极一端接黑表笔。

若万用表指针偏转较大,则黑表笔所接的一端为集电极,则红表笔所接的一端是发射极。

也用手捏住基极与黑表笔(不能使两者相碰)以人体电阻代替100KΩ电阻的作用。

实验一万用表测量二极管三极管

实验一万用表测量二极管三极管

实验一万用表测量二极管、三极管一、实验目的1.熟练掌握指针式万用表和数字万用表的使用方法。

1.熟练掌握用指针式万用表测量普通二极管和三极管。

2.熟练掌握用数字万用表测量普通二极管和三极管。

二、主要元件及仪器1、MF-47指针式万用表2、VC890D数字万用表3、1N4001~1N4007系列普通整流二极管4、1N4735(6.2V)、1N4738(8.2V)稳压二极管5、9011~9014小功率晶体三极管二、实验原理(一)指针式万用表测量二极管:二极管参数的测试可用晶体管图示仪,或其它仪器进行测试。

在没有仪器的情况下也可用万用表来简单检查二极管的好坏,但这种检测方法不能测量二极管的参数。

初学者在业余条件下可以使用万用表测试二极管性能的好坏。

测试前先把万用表的转换开关拨到欧姆档的RX1k档位(注意不要使用RX1档,以免电流过大烧坏二极管,也不要用RX10K,该档电压太高,可能击穿管子),再将红、黑两根表笔短路,进行欧姆调零。

正向特性测试:把万用表的黑表笔(表内正极)搭触二极管的正极,红表笔(表内负极)搭触二极管的负极。

若表针不摆到0值而是停在标度盘的中间,这时的阻值就是二极管的正向电阻,一般小功率锗管的正向电阻为1KΩ左右,硅二极管约为5KΩ左右。

一般正向电阻越小越好。

若正向电阻为0值,说明管芯短路损坏,若正向电阻接近无穷大值,说明管芯断路。

短路和断路的管子都不能使用。

反向特性测试:把万用表的红表笔搭触二极管的正极,黑表笔搭触二极管的负极,若表针指在无穷大值或接近无穷大值,管子就是合格的。

一般小功率锗管的反向电阻为几十KΩ,硅二极管约为500KΩ以上。

1.普通二极管的检测(包括检波二极管、整流二极管、阻尼二极管、开关二极管、续流二极管)是由一个PN结构成的半导体器件,具有单向导电特性。

通过用万用表检测其正、反向电阻值,可以判别出二极管的电极,还可估测出二极管是否损坏。

(1)极性的判别将万用表置于R×100档或R×1k档,两表笔分别接二极管的两个电极,测出一个结果后,对调两表笔,再测出一个结果。

实验一常用元器件的识别与测量及常规电子仪器使用

实验一常用元器件的识别与测量及常规电子仪器使用

实验一常用元器件的识别与测量及常规电子仪器使用一、实验目的1.学习常用元器件的识别方法。

2.掌握常规电子仪器的操作和使用。

3.学会使用万用表进行电路元件的测量。

二、实验仪器与器材1.示波器2.示波器探头3.信号发生器4.功率放大器5.模拟电路实验箱6.工具包(包括万用表)三、实验原理1.元器件的识别与测量常用元器件包括电阻、电容、电感、二极管、三极管等。

通过外观、标志、颜色等特征,可以对这些元器件进行识别。

测量电阻和电容可以使用万用表,在电阻档或电容档进行测量。

电感的测量可以使用LCR测试设备。

二极管和三极管可以使用特殊的仪器进行测量。

2.常规电子仪器的使用常规的电子仪器包括示波器、信号发生器、功率放大器等。

示波器用于显示电压随时间变化的波形,可以观察电路中的信号。

信号发生器用于产生各种类型的信号,可以用来测试和调试电路。

功率放大器用于放大信号的功率,使其能够驱动负载。

四、实验步骤1.识别元器件并测量(1)首先观察并识别电阻、电容、电感、二极管、三极管等元器件的外观和标志,熟悉它们的特征。

(2)使用万用表测量电阻,将万用表选择到电阻档位,将两个测试引线分别与电阻的两端相连接,读取电阻值。

(3)使用万用表测量电容,将万用表选择到电容档位,将两个测试引线分别与电容的两端相连接,读取电容值。

(4)使用LCR测试设备测量电感,将电感与测试设备相连接,读取电感值。

(5)使用特殊仪器测量二极管和三极管。

2.使用示波器观察电路波形(1)将示波器探头的黑色引线接地,将红色引线连接到要测量的点。

(2)打开示波器,并调整水平与垂直控制来观察电路中的波形信号。

(3)调整示波器的触发级别和触发方式,以获取清晰的波形。

3.使用信号发生器调试电路(1)将信号发生器连接到待调试电路的输入端。

(2)调整信号发生器的频率和幅度,观察电路的响应。

(3)根据需要调整电路的参数。

4.使用功率放大器放大信号(1)将信号源接入功率放大器的输入端,将输出端连接到负载。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一万用表测量二极管、三极管
一、实验目的
1.熟练掌握指针式万用表和数字万用表的使用方法。

1.熟练掌握用指针式万用表测量普通二极管和三极管。

2.熟练掌握用数字万用表测量普通二极管和三极管。

二、主要元件及仪器
1、MF-47指针式万用表
2、VC890D数字万用表
3、1N4001~1N4007系列普通整流二极管
4、1N4735(6.2V)、1N4738(8.2V)稳压二极管
5、9011~9014小功率晶体三极管
二、实验原理
(一)指针式万用表测量二极管:
二极管参数的测试可用晶体管图示仪,或其它仪器进行测试。

在没有仪器的情况下也可用万用表来简单检查二极管的好坏,但这种检测方法不能测量二极管的参数。

初学者在业余条件下可以使用万用表测试二极管性能的好坏。

测试前先把万用表的转换开关拨到欧姆档的RX1k档位(注意不要使用RX1档,以免电流过大烧坏二极管,也不要用RX10K,该档电压太高,可能击穿管子),再将红、黑两根表笔短路,进行欧姆调零。

正向特性测试:
把万用表的黑表笔(表内正极)搭触二极管的正极,红表笔(表内负极)搭触二极管的负极。

若表针不摆到0值而是停在标度盘的中间,这时的阻值就是二极管的正向电阻,一般小功率锗管的正向电阻为1KΩ左右,硅二极管约为5KΩ左右。

一般正向电阻越小越好。

若正向电阻为0值,说明管芯短路损坏,若正向电阻接近无穷大值,说明管芯断路。

短路和断路的管子都不能使用。

反向特性测试:
把万用表的红表笔搭触二极管的正极,黑表笔搭触二极管的负极,若表针指在无穷大值或接近无穷大值,管子就是合格的。

一般小功率锗管的反向电阻为几十KΩ,硅二极管约为500KΩ以上。

1.普通二极管的检测(包括检波二极管、整流二极管、阻尼二极管、开关二极管、续流二极管)是由一个PN结构成的半导体器件,具有单向导电特性。

通过用万用表检测其正、反向电阻值,可以判别出二极管的电极,还可估测出二极管是否损坏。

(1)极性的判别将万用表置于R×100档或R×1k档,两表笔分别接二极管的两个电极,测出一个结果后,对调两表笔,再测出一个结果。

两次测量的结果中,有一次测量出的阻值较大(为反向电阻),一次测量出的阻值较小(为正向电阻)。

在阻值较小的一次测量中,黑表笔接的是二极管的正极,红表笔接的是二极管的负极。

(2)单向导电性能的检测及好坏的判断通常,锗材料二极管的正向电阻值为1kΩ左右,反向电阻值为300 kΩ左右。

硅材料二极管的电阻值为5 kΩ左右,反向电阻值为∞(无穷大)。

正向电阻越小越好,反向电阻越大越好。

正、反向电阻值相差越悬殊,说明二极管的单向导电特性越好。

若测得二极管的正、反向电阻值均接近0或阻值较小,则说明该二极管内部已击穿短路或漏电损坏。

若测得二极管的正、反向电阻值均为无穷大,则说明该二极管已开路损坏。

2.稳压二极管的检测
(1)正、负电极的判别测量的方法与普通二极管相同,即用万用表R×1k档,将两表笔分别接稳压二极管的两个电极,测出一个结果后,再对调两表笔进行测量。

在两次测量结果中,阻值较小那一次,黑表笔接的是稳压二极管的正极,红表笔接的是稳压二极管的负极。

若测得稳压二极管的正、反向电阻均很小或均为无穷大,则说明该二极管已击穿或开路损坏。

(2)稳压值的测量用0~30V连续可调直流电源,对于13V以下的稳压二极管,可将稳压电源的输出电压调至15V,将电源正极串接1只1.5kΩ限流电阻后与被测稳压二极管的负极相连接,电源负极与稳压二极管的正极相接,再用万用表
测量稳压二极管两端的电压值,所测的读数即为稳压二极管的稳压值。

若稳压二极管的稳压值高于15V,则应将稳压电源调至20V以上。

(二)指针式万用表测量三极管:
用万用表判别管脚的依据是:NPN型晶体三极管基极到发射极和基极到集电极均为PN结的正向,而PNP型晶体三极管基极到发射极和基极到集电极均为PN
结的反向
1、判断晶体三极管的基极对于小功率在1W以下的中小功率管,可用万用
表的R×100或R×1K档测量,对于功率在1W以上的大功率管,可用万
用表的R×1或R×10档测量。

用黑表笔接触某一管脚,红表笔分别接触另外两个管脚,如表头读数都
很小,则与黑表笔接触的那一管脚是基极,同时可知此晶体三极管NPN
型。

若用红表笔接触某一管脚,黑表笔分别接触另外两个管脚,如表头
读数都很小,则与红表笔接触的那一管脚是基极,同时可知此晶体三极
管PNP型。

用上述方法既判定了晶体三极管的基极,又判定了晶体三极
管的类型。

2、判断晶体三极管发射极和集电极以NPN晶体三极管为例,确定基极后,
假定其余的两只脚中的一只是集电极,将黑表笔接到此脚上,红表笔则
接到假定的发射极上。

用手指把假设的集电极和已测出的基极捏起来
(但不要相碰),看表针指示,并记下此阻值的读数。

然后再作相反假
设,即把原来假设为集电极的脚假设为发射极,作同样的测试并记下此
阻值的读数。

比较两次的读数的大小,若前者阻值较小,说明前者的假
设是对的,那么黑表笔接的一只脚就是集电极,剩下的一只脚便是发射
极。

若需判别的是PNP型晶体三极管,仍用上述方法,但必须把表笔
极性对调一下。

(三)数字万用表测量二极管:
测量时,将数字表万用表量程开关打在“ ” 档,并将黑表笔插入
“COM”插孔,红表笔插入V/Ω插孔。

用红表笔接二极管的一端,黑表笔接另一端,若显示屏的显示是0.2~0.7V左右的读数,则红表笔接的是二极管的正极,黑表笔接的是二极管的负极。

若显示屏的显示的读数为”1”, 则红表笔接的是二极管的负极,黑表笔接的是二极管的正极。

0.2~0.7V是二极管的正向压降。

硅二极管一般正向压降0.5~0.7V,锗二极管的正向压降为
0.2-0.3V,所以测量一下二极管的正向压降,便可判别被测二极管是硅管还
是锗管。

普通硅整流管(1N4000、1N5400系列等)约为0.5V左右,发光二极管约为1.6~2.3V。

(四)数字万用表测量三极管:
首先将万用表打到测试二极管端,直到测试出如下结果:
1、如果三极管的黑表笔接其中一个管脚,而用红表笔测其它两个管脚都导通有电压显示,那么此三极管为PNP三极管,且黑表笔所接的脚为三极管的基极B。

用上述方法测试时其中万用表的红表笔接其中一个脚的电压稍高,那么此脚为三极管的发射极E,剩下的电压偏低的那个管脚为集电极C。

2、如果三极管的红表笔接其中一个管脚,而用黑表笔测其它两个管脚都导通有电压显示,那么此三极管为NPN三极管,且红表笔所接的脚为三极管的基极B。

用上述方法测试时其中万用表的黑表笔接其中一个脚的电压稍高,那么此脚为三极管的发射极E,剩下的电压偏低的那个管脚为集电极C。

另一种方法是使用 hFE 挡来进行判断。

在确定了三极管的基极和管型后,将三极管的基极按照基极的位置和管型插入到电流放大系数测量孔中,其他两个引脚插入到余下的三个测量孔中的任意两个,观察显示屏上数据的大小,找出三极管的集电极和发射极,交换位置后再测量一下,观察显示屏数值的大小,反复测量四次,对比观察。

以所测的数值最大的一次为准,就是三极管的电流放大系数,相对应插孔的电极即是三极管的集电极和发射极。

三、实验步骤
1.万用表测量二极管
(1)先用指针式万用表测量二极管,记下二极管的正向电阻、性能好坏。

(2)再用数字万用表测量二极管,记下二极管的正向压降、材料类型。

(3)整理数据,完成下表。

2.万用表测量三极管
分别用指针式万用表和数字万用表测下表中的三极管,完成下表。

相关文档
最新文档