《数学史概论》初中读后感
数学史概论读书心得

数学史概论读书心得数学史概论是一本介绍数学发展历史的经典著作,通过阅读这本书,我对数学的起源、发展过程和重要里程碑有了更深入的了解。
本文将从数学的起源、古代数学、中世纪数学、近代数学以及现代数学等方面进行详细阐述。
首先,数学的起源可以追溯到古代文明时期。
在古代,人们开始意识到使用数字和符号来进行计数和测量的重要性。
最早的数学发展可以追溯到古埃及和古巴比伦的文明,他们使用简单的算术和几何概念来解决实际问题。
例如,古埃及人使用简单的分数和几何形状来测量土地和建筑物的大小。
其次,古代希腊是数学发展的重要阶段。
希腊数学家如毕达哥拉斯、欧几里得和阿基米德等人对几何学和数论作出了重要贡献。
毕达哥拉斯定理是希腊数学中最著名的定理之一,它描述了直角三角形的性质。
欧几里得的《几何原本》是一部集大成的几何学著作,对后世的数学发展产生了深远影响。
中世纪数学主要受到阿拉伯数学家的影响。
阿拉伯数学家通过翻译和扩展古希腊和印度的数学著作,将这些知识传播到欧洲。
他们引入了阿拉伯数字系统和十进制计数法,这对于现代数学的发展起到了重要作用。
阿拉伯数学家还在代数学、三角学和算术等领域做出了重要贡献。
近代数学的发展与科学革命和工业革命密切相关。
在这个时期,数学家们开始使用符号和符号代数来表示数学概念,这为解决复杂问题提供了更强大的工具。
著名的数学家如牛顿、莱布尼茨和欧拉等人在微积分、概率论和数论等领域做出了重要贡献。
现代数学是一个广泛而复杂的领域,涵盖了许多不同的分支和应用。
数学的发展在20世纪迅猛发展,特别是在抽象代数学、拓扑学和数理逻辑等领域。
这些发展使得数学在科学、工程和经济等领域中发挥着重要作用。
通过阅读数学史概论,我深刻认识到数学作为一门学科的重要性和广泛应用性。
数学不仅仅是一种工具,它还是一种思维方式和解决问题的方法。
数学的发展受到历史、文化和科技的影响,它的进步推动了人类社会的进步。
总结而言,数学史概论是一本引人入胜的书籍,通过对数学发展历史的深入了解,我对数学的重要性和广泛应用有了更深刻的认识。
《数学史概论》读书笔记

《数学史概论》读书笔记王振红数学源自于人类早期的生产活动,早期古希腊、古巴比伦、古埃及、古印度及中国古代都对数学有所研究。
数学是研究数量、结构、变化以及空间模型等概念的一门学科。
通过抽象化和逻辑推理的运用,由计数、计算、量度和对物体形状及运动的观察中产生。
数学的基本要素是:逻辑和直观、分析和推理、共性和个性。
以下对李文林著《数学史概论》作一个读后的总结。
一、《数学史概论》简介及其特点《数学史概论(第2版)》以重大数学思想的发展为主线,阐述了从远古到现代数学的历史。
书中对古代希腊和东方数学有精炼的介绍和恰当的分析;同时充分论述了文艺复兴以来近现代数学的演进与变革,尤其是20世纪数学的概观,内容新颖。
《数学史概论(第2版)》中西合炉,将中国数学放在世界数学的背景中述说,更具客观性与启发性。
《数学史概论(第2版)》脉络分明,重点突出,并注意引用生动的史实和丰富的图片。
本书共分十五章,其中第一章“数学的起源与早期发展”介绍了人类在蒙昧时期由于生产生活的需要,逐渐形成了数与形的概念,从最早的手指计数到石头计数,再到结绳计数直到距今大约五千多年前,出现了书写计数以及相应的计数系统。
在灿烂的“河谷文明”中,重点介绍了埃及数学和美索不达米亚数学。
第二章“古代希腊数学”,介绍了雅典时期和亚历山大时期的数学,其中重点对数学家泰勒斯、毕达哥拉斯、欧几里得、阿基米德及阿波罗尼奥斯及其成就作了详尽的介绍。
第三章“中世纪的中国数学”,从古代著作《世本》中提到的黄帝使“隶首作算数”,殷商甲骨文中使用的完整的十进制计数,到两汉时期、魏晋南北朝时期以及宋元时期达到了发展的高潮。
介绍的著作主要有《周髀算经》,《九章算术》,《算经十书》,介绍了刘徽的“割圆术”和他在面积、体积公式推证的成就,祖冲之父子推算“圆周率”,在推导几何图形体积公式时提出了“出入相补”及“祖氏原理”;第四章“印度与阿拉伯的数学”;第五章“近代数学的兴起”,讲述了中世纪的欧洲,从代数学、三角学、透视学、射影几何等方面的发展向近代数学的过渡,以至解析几何的诞生;第六章“微积分的创立”,分别介绍了牛顿和莱布尼茨从不同的角度提出的微积分原理;第七章“分析时代”;第八章至第十章,分别以代数、几何、分析这三大领域的变革为主要线索,介绍了19世纪数学的发展;第十一章至十三章是“20世纪数学概观”,分别介绍了纯粹数学的主要趋势、空前发展的应用数学、现代数学成果十例;第十四章“数学与社会”,第十五章“中国现代数学的开拓”。
数学史读后感范文(通用10篇)

数学史读后感范文(通用10篇)数学史读后感篇1从小到大,在学习数学的过程中,接触大量的数学题,对数学的历史很少提及。
《数学史》,一本专门研究数学的历史,娓娓道来,满足了我的好奇,把数学的发展过程展示出来。
本书于1958年出版,作者J.F.斯科特。
书中主要阐述西方数学的发展历史,但也专门用一章讲述印度和中国的数学发展。
沿着时间轴,数学的发展经历了从初等到高等的过程。
上古时代的古埃及人和古巴比伦人在平时的生产劳作中运用到了数学知识。
古希腊人继承这些数学知识并不断拓展,成为数学史上一个“黄金时代”,涌现出毕达哥拉斯、柏拉图、亚里士多德、欧几里得、阿基米德,丢番图等一系列耳熟能详的名字。
在黑暗的中世纪,数学发展处于停滞状态,而斐波那契的出现把数学带上复兴。
文艺复兴,数学又进入一个蓬勃发展的时期,对解三次方程和四次方程、三角学、数学符号、记数方法的研究没有停步。
“+”、“-”、“=”、“”、“>”的符号是在那个时候出现的,同时出了一名数学家韦达——韦达定理的发明者。
7世纪,解析几何出现、力学兴起、小数和对数发明。
这些都为微积分的发明奠定了基础。
牛顿和莱布尼兹两位大师的研究,在数学领域开辟了一个新纪元。
8世纪,为完善微积分中的概念,各路数学家在数学分析方法上有所发展。
欧拉、拉格朗日,柯西等大师采用极限、级数等方法让微积分更加严谨。
同时,非欧几何的理论开始萌芽。
纵观全书,数学的发展是由一群人搭建起来的。
前人的工作为后人的研究奠定了基础。
后人在前人的工作上不断突破和创新。
另外,数学中也有哲理,天地有大美而不言。
当看到欧拉时,想到欧拉公式;看到韦达,想到韦达定理。
公式很简洁,但把规律说清楚了。
数学爱好者可以试着解里面的数学题,看看古人在当时是如何研究的,有的方法很笨拙,有的方法很巧妙。
读完后,发现学习数学,会解几道数学题是不够的,还要学会去培养自己的思维。
毕竟数学家的思维也会受到历史的局限。
比如负数开根号,当时被人看来是无法接受,后来发明了虚数。
数学史读后感6篇

数学史读后感6篇《数学史读后感6篇》这是优秀的读后感文章,希望可以对您的学习工作中带来帮助!第1篇数学史读后感数学是一门枯燥的学科,我从小就这样认为。
但是通过这个寒假,这本《这才是好读的数学史》,打开了知识文化的一扇大门,让我对数学有了更深入的了解与思考,并且领悟到了其中的魅力。
数学的历史非常悠久,从很久很久以前就已经有了数学。
那时候的人们刚刚接触到了它,而随着时代的变迁,数学的文化越来越博大精深。
正是因为那些伟大的数学家们所做出的巨大贡献,才让后代的人类将数学发展得越来越好。
例如一位亚历山大的希腊数学家欧几里得,他从一小部分公理中总结了欧几里德几何的原理,还写了另外五部关于球面几何、透视、数论、圆锥截面和严谨性的作品。
欧几里得因此被人们称为“几何学之父”。
数学文化奇幻无穷。
最让我印象深刻的便是阿拉伯数学文化。
阿拉伯数学家不仅让代数成为数学的重要组成部分,而且还在几何学和三角学方面做出了重要的贡献。
同时,“帕斯卡三角形”也就是“杨辉”三角也被他们所了解。
阿拉伯数学文化的特点则是能够从其他数学的知识中汲取到最有用的精华,并且发展它。
数学中有很多被数学家们所发现和证明的公式、定义,我们都认为那是枯燥的、繁琐的。
但是数学有自己的灵魂与存在的意义,普罗鲁克斯曾说过“数学赋予它所发现的真理以生命;它唤起心神,澄清智慧;它给我们的内心思想增添光辉;它涤尽我们有生以来的蒙昧与无知。
”因为有了数学,人类的民族发展得越来越顺利;因为有了数学,人类的生活变化得多姿多彩……数学的发展并不是我们想象中的那么顺利,而是经历了无数的困难和挫折,才成为了我们现代的数学。
它的成就则是数学家们日日夜夜的研究与思考所造就的,让数学真正地显露出了它的价值。
中国的数学源远流长,拥有着它自己的特色与意义。
重大的数学定义、理论总是在继承与发展原有的理论的基础所建立起来的,它们不但不会改变原本的理论,而且经常将最初的理论思想包含进去。
正是因为我们不断地为它注入灵魂力量,它才能越来越强大,越来越辉煌!数学史的学习让我们更加理解数学的意义,从而在知识的海洋中不断发现、不断进取、不断研究,逐渐形成对数学的热爱!第2篇数学史读后感在这个寒假,我阅读了一本名叫《这才是好读的数学史》这本书叫这个名字确实是名副其实,他为人们介绍了最全面的数学史,以及名人与数学之前的故事,还有各国数学的起源到发展。
《数学史》读书报告(共5篇)

《数学史》读书报告(共5篇)第一篇:《数学史》读书报告《数学史》读书报告——以李文林著《数学史概论》为例本学期我选修了陈静安教授的“数学史与数学方法论”,一共选读了李文林著《数学史概论》与钱佩玲《中学数学思想方法》两本书,以下对李文林著《数学史概论》作一个读后的总结。
一、《数学史概论》简介及其特点《数学史概论(第2版)》以重大数学思想的发展为主线,阐述了从远古到现代数学的历史。
书中对古代希腊和东方数学有精炼的介绍和恰当的分析;同时充分论述了文艺复兴以来近现代数学的演进与变革,尤其是20世纪数学的概观,内容新颖。
《数学史概论(第2版)》中西合炉,将中国数学放在世界数学的背景中述说,更具客观性与启发性。
《数学史概论(第2版)》脉络分明,重点突出,并注意引用生动的史实和丰富的图片。
本书共分十五章,其中第一章“数学的起源与早期发展”介绍了人类在蒙昧时期由于生产生活的需要,逐渐形成了数与形的概念,从最早的手指计数到石头计数,再到结绳计数直到距今大约五千多年前,出现了书写计数以及相应的计数系统。
在灿烂的“河谷文明”中,重点介绍了埃及数学和美索不达米亚数学。
第二章“古代希腊数学”,介绍了雅典时期和亚历山大时期的数学,其中重点对数学家泰勒斯、毕达哥拉斯、欧几里得、阿基米德及阿波罗尼奥斯及其成就作了详尽的介绍。
第三章“中世纪的中国数学”,从古代著作《世本》中提到的黄帝使“隶首作算数”,殷商甲骨文中使用的完整的十进制计数,到两汉时期、魏晋南北朝时期以及宋元时期达到了发展的高潮。
介绍的著作主要有《周髀算经》,《九章算术》,《算经十书》,介绍了刘徽的“割圆术”和他在面积、体积公式推证的成就,祖冲之父子推算“圆周率”,在推导几何图形体积公式时提出了“出入相补”及“祖氏原理”;第四章“印度与阿拉伯的数学”;第五章“近代数学的兴起”,讲述了中世纪的欧洲,从代数学、三角学、透视学、射影几何等方面的发展向近代数学的过渡,以至解析几何的诞生;第六章“微积分的创立”,分别介绍了牛顿和莱布尼茨从不同的角度提出的微积分原理;第七章“分析时代”;第八章至第十章,分别以代数、几何、分析这三大领域的变革为主要线索,介绍了19世纪数学的发展;第十一章至十三章是“20世纪数学概观”,分别介绍了纯粹数学的主要趋势、空前发展的应用数学、现代数学成果十例;第十四章“数学与社会”,第十五章“中国现代数学的开拓”。
《数学史》读后感(26篇)

《数学史》读后感(26篇)《数学史》读后感篇1本书上篇数学简史共12章节,以时间挨次讲解并描述。
从3.7万年到如今,人类在不断进步,而数学也随着人类的进步而进步。
在这本书中,强调了数学的抽象性与神奇性。
我们如今学习的学问都是先辈们经过漫长探究、讨论、商量总结出的。
书中消失的故事和公式使人眼前一新。
比方古埃及人求圆的面积时,事实上是求圆的近似值。
如今大家都知道π·r,古埃及人却是用(8/9·d)求S圆的近似值。
可以发觉古埃及人在这个公式里并没有使用到“π”,这样反而要便利些。
我留意到的一个故事是:21世纪开头,克莱学院确定在克莱的领导下,选择7个数学课题,并予每个课题100万美金的奖金,而那7个数学课题是关于“千禧年问题”书中并没有提到7个问题分别是什么,于是便上网查了查。
分别是:戴雅猜测、霍奇猜测、纳维尔-斯托克斯方程、P与NP问题、庞家莱猜测、黎曼假设、杨-米尔斯理论。
这7个问题是真的难,连题目都看不懂的那种难。
有一个问题与开普勒猜测有关:如何将最大数量的球体放置在最小的空间中,我认为这和奇点有些相像,但看起来不成立的样子。
但在那些数学家的眼里,这仿佛是一个非常好玩,又值得思索的问题。
托马斯·黑尔斯最终证明白它。
数学是抽象的,也是无限的,他们的消失也许是我们的祖先为了便利生活而创造出来的。
到如今,数学在不断的进步,但还是有很多非常困难的问题在等着我们去解答。
数学不仅在生活中扮演着重要的角色,还是世界通用的语言。
《数学史》读后感篇2在这个寒假,我阅读了一本名叫《这才是好读的数学史》这本书叫这个名字的确是名副其实,他为人们介绍了最全面的数学史,以及名人与数学之前的故事,还有各国数学的起源到进展。
数学的样子和名称以及关于计数和算数运算的基本概念好像是人类的遗产。
早在公元前500年,数学就消失了,随着社会的不断进展,就需要一些方法来统计拖款欠税的数额等等,这时候数学就开头消失了。
数学史概论读书心得

竭诚为您提供优质文档/双击可除数学史概论读书心得篇一:“数学史概论”读后感“数学史后五章”读后感数学史是数学专业的学生必须学习的一门课程。
但是数学史相对于数学的专业知识来说,这门课程全是一些历史和人物、及人物的著作介绍,相对来说枯燥乏味,但是认真的阅读还是发现有一些的趣味和能够了解很知识。
纯粹数学是19世纪的遗产,在20世纪得到巨大的发展。
在1990年8月,德国数学家希尔布特在巴黎国际数学大会上的演讲,对各类数学问题的意义、源泉及研究方法发表了许多精辟的见解,提出23个数学问题,激发着数学家们浓厚的研究兴趣。
这23个问题是:1连续统假设、2算术公理的相容性、3两等底等高四面体体积之相等、4直线为两点间的最短距离、5不要定义群的函数的可微性假设的李群概念、6物理公理的数学处理、7某些数的无理性与超越性、8素数问题、9任意数域中最一般的互反律之证明、10丢番图方程可解性的判别、11素数为任意代数数的二次型、12阿贝尔域上的克罗内克定理在任意代数有理域上的推广、13不可能用仅有两个变数的函数解一般的七次方程、14证明某类完全函数系的有限性、15舒伯特计数演算的严格基础、16代数曲线与曲面的拓扑、17正定形式的平方表示、18由全等多面体构造空间、19正则变分问题的解是否一定解析、20一般边值问题、21具有给定单值群的微分方程的存在性、22解析关系的单值化、23变分问题的进一步发展。
这23问题涉及到数学的大多分支领域,它的解决和研究大大的推动这些分支的发展,同时在未能包括拓扑学、微分几何等在20世纪也得到极大的发展,并成为前沿学科的领域中的数学问题。
与19世纪相比,20世纪的纯粹数学在发展表现出的主要特征和趋势有:更高的抽象性、更高的统一性、更深入的基础探讨。
更高的抽象主要受到集合论观点和公理化方法两大因素的影响,包含有分支勒贝格积分与实变函数论、泛函分析、抽象代数、拓扑学、公理化概率论;更高的统一性涉及有微分拓扑与代数拓扑、整体微分几何、代数几何、多复变函数论、动力系统、偏微分方程与泛函数分析、随机分析;对基础的深入探讨有集合论悖论、三大学派(逻辑主义、直觉主义、形式主义),数理逻辑的发展(公理化集合论、证明论、模型论、递归论)。
数学史概论读后感

数学史概论读后感《数学史概论》是一部介绍数学发展历史的著作,作者对数学史的发展做了详细的介绍和分析。
通过阅读这部著作,我对数学的起源、发展和演变有了更清晰的认识,也对数学史的重要性有了更深刻的理解。
数学是一门古老而又神秘的学科,它的发展历程充满了无数的故事和传奇。
在《数学史概论》中,作者通过对古代数学家和数学思想的介绍,让我对数学的起源有了更清晰的认识。
古代的数学家们在没有现代科学技术的条件下,依靠着自己的智慧和勤奋,创造了许多令人惊叹的数学成就。
他们发明了许多数学概念和方法,为后人的数学发展奠定了坚实的基础。
通过了解古代数学家的故事,我深刻地感受到了数学的伟大和深远影响。
除了古代数学家的故事,书中还介绍了数学在不同历史时期的发展情况,以及数学与其他学科的关系。
通过对这些内容的了解,我对数学的演变过程有了更深刻的认识。
数学的发展不仅仅是一种知识的积累和技术的进步,更是一种思想的交流和文化的传承。
数学与哲学、物理、工程等学科之间存在着密切的联系和相互影响,这也是数学能够不断发展和壮大的重要原因之一。
通过了解数学与其他学科的关系,我对数学的综合性和多样性有了更深刻的认识。
在阅读《数学史概论》的过程中,我还对数学史的意义有了更深刻的理解。
数学史不仅仅是对数学发展历程的回顾,更是对人类智慧和文明的展示。
通过了解数学史,我们可以更清晰地认识到数学的重要性和价值,也可以更深刻地感受到人类对知识的追求和探索。
数学史的研究不仅可以帮助我们更好地理解数学的发展规律和演变过程,更可以激发我们对数学的兴趣和热爱,促进数学的发展和创新。
通过了解数学史,我们可以更深刻地认识到数学的伟大和不朽,也可以更清晰地认识到数学对人类文明的重要性和影响力。
总的来说,阅读《数学史概论》让我对数学的发展历程有了更清晰的认识,也让我对数学史的重要性有了更深刻的理解。
数学史不仅可以帮助我们更好地了解数学的起源和发展规律,更可以激发我们对数学的兴趣和热爱,促进数学的发展和创新。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学史概论》初中读后感 篇一:《数学史概论》读后感
当我们学习过数学史后,自然会有这样的感觉:数学的发展并不合逻辑,或 者说, 数学 发展的实际情况与我们今日所学的数学教科书很不一致。
我们今日 中学所学的数学内容基本 上属于 17 世纪微积分学以前的初等数学知识,而大 学数学系学习的大部分内容则是 17、18 世纪的高等数学。
这些数学教材业已 经过千锤百炼, 是在科学性与教育要求相结合的原则指 导下经过反复编写的, 是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂 的知识体 系,这样就必然舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历 程 以及导致其演化的各种因素,因此仅凭数学教材的学习,难以获得数学的原 貌和全景,同时 忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料 与方法, 而弥补这方面不足的 最好途径就是通过数学史的学习。
在一般人看 来, 数学是一门枯燥无味的学科, 因而很多人视其为畏途, 从某种程度上说, 这是由于我们的数学教科书教授的往往是一些僵化的、 一成不变的数学内容, 如果在数学教 学中渗透数学史内容而让数学活起来, 这样便可以激发学生的学 习兴趣, 也有助于学生对数 学概念、方法和原理的理解与认识的深化。
科学 史是一门文理交叉学科, 从今天的教育现状来看, 文科与理科的鸿沟导致我们 的教 育所培养的人才已经越来越不能适应当今自然科学与社会科学高度渗透的 现代化社会, 正是 由于科学史的学科交叉性才可显示其在沟通文理科方面的作 用。
通过数学史学习, 可以使数 学系的学生在接受数学专业训练的同 时, 获得人文科学方面的修养, 文科或其它专业的学生 通过数学史的学 习可以了解数学概貌, 获得数理方面的修养。
而历史上数学家的业绩与品德 也 会在青少年的人格培养上发挥十分重要的作用。
中国数学有着悠久的历史,14 世纪以前一直是世界上数学最为发达的国家,出现过许 多杰出数学家,取得了 很多辉煌成就,其源远流长的以计算为中心、具有程序性和机械性的 算法化数 学模式与古希腊的以几何定理的演绎推理为特征的公理化数学模式相辉映, 交 替影 响世界数学的发展。
由于各种复杂的原因, 16 世纪以后中国变为数学入超 国, 经历了漫长 而艰难的发展历程才渐渐汇入现代数学的潮流。
由于教育上的 失误, 致使接受现代数学文明 熏陶的我们,往往数典忘祖,对祖国的传统科学 一无所知。
数学史可以使学生了解中国古代 数学的辉煌成就, 了解中国近代数 学落后的原因, 中国现代数学研究的现状以及与发达国家 数学的差距, 以激发
1/6
学生的爱国热情,振兴民族科学。
《数学家徐利治的故事》,知道了徐老先生在数学上为祖国做出了贡献,他 写的许多论 文在国际上引起了反响, 他还培养出一批成材的学生。
徐老先生为 什么能成为数学家?为什么能做出这样大的贡献?原因之一, 就是他小时候不 怕 困难, 刻苦学习。
文章里写道: “他在读书时常把伯父给他的午饭钱省下来, 用来买书和买 练习本,为了节省用纸,他常用手指在睡觉的凉席上练字,夜深 人静, 同学们早已进入甜蜜 的梦乡, 徐利治却来到走廊, 在灯光下认真地学习。
白天,他泡在图书馆里用馒头、白开水 充饥……”可以看出,徐老先生小时候 学习条件很不好,连买书、买练习本的钱都缺乏,只 好节省午饭钱,然而,他 勤奋学习,并不因学习条件差而气馁。
在我们这时代,家庭生活比较富裕,很 多家只有一个孩子,零花钱比较多,这些钱我们不是 去打电子游戏,就是去买 好吃的。
平时,也很浪费,一张纸不是写几个字就扔了,就是折纸 飞机玩,一 点也不知道节省。
在学习上,现在很多同学都不认真学习,学习目的不明确, 我也是这样, 做题稍微遇到 一点困难就气馁了。
我们的学习态度和徐老先生那 种废寝忘食的学习精神相比, 真有十万八 千里的差距。
篇二:《数学史概论》读后感 此书是《数学史教程》的第二版,这本书还得到了诸多数学界有望人士的高 度赞扬。
嘉兴学院名誉校长,国际数学大师陈省身先生为此书惠赠了墨宝:了解 历史的变化是了解这门科学的一个步骤。
此外, 吴文俊院士也在百忙中赶写了读 后感,对《数学史概论》一书在数学史学科研究上的肯定,并称之“翻阅此书都 会开卷有益并感到乐趣”。
数学是一门历史性或者说积累性很强的学科, 重大的数学理论总是在继承和 发展原有理论的基础上建立起来的, 它们不仅不会推翻原有理论, 而且总是包容 原先的理论。
所以说数学是历史最悠久的人类知识领域之一。
因此也有数学史家 认为“在大多数学科里, 一代人的建筑为下一代所摧毁, 一个人的创造被另一个 人所破坏,但是有些学科就像数学,每一代人都在古老的大厦上添加一层楼”。
作者是按如下的数学史分期为线索进行展开论述的: 一、数学的起源和发展; 二、初等数学时期; 1、古希腊数学,2、中世纪东方数学,3、欧洲文艺复兴时期。
三、近代数学时期; 四、现代数学时期。
此书从上古的巴比伦、希腊、中国、印度、阿拉伯,以至当代数学,对于数
2/6
学的贡献与影响都有中肯的评论和解说。
在原始社会, 从原始的“数觉”到抽象 的“数”概念的形成;随着计数的慢慢发展, 出现了石子记数和结绳记事等记数方法; 接着经验算术与几何法的发现; 再 在此基础上加工升华为具有初步逻辑结构的论证数学体系; 随之发展而来的便是 近代数学;之后数学的发展更是迅猛:微积分的创立,代数学的新生,几何学的 变革...... 在很多人看来数学总是那么枯燥乏味的, 没有多大的兴致看完这本书。
而此 书中作者不仅对数学史实有详尽而忠实的介绍,还借助各种例子来让读者理解, 甚至加入了很多生动有趣的故事及奇闻轶事, 例如阿基米德解决皇冠难题的故事, 牛顿苹果落地的故事等等。
读之趣味盎然,大大增强了书本的可读性。
书中还写 到了很多著名的数学家,并就其学术成就做了概括的介绍,尤其重要成就,不惜 花了很多篇幅以详细说明。
最后, 作者还就数学与社会的关系及两者互相之间的影响发表了论述。
他精 辟地阐述为:数学的发展与社会的进步有着密切的联系,这种联系是双向的,即 一方面,数学的发展依赖于社会环境,受着社会经济、政治和文化等诸多因素的 影响; 另一方面, 数学的发展又反过来对人类社会物质文明和精神文明两大方面 的影响。
接着,作者从数学与社会进步,数学发展中心的迁移,数学的社会化三 方面进行了展开说明。
我想我本是数学系的学生, 多少是得对数学史有所了解。
虽没有过于仔细的 拜读,但我想通过这次翻阅还是受益匪浅的。
3/6
4/6
5/6
6/6
。