材料力学习题解答[第五章]。

合集下载

材料力学第五版课后习题答案

材料力学第五版课后习题答案

二、轴向拉伸和压缩2-1 试求图示各杆 1-1 和2-2 横截面上的轴力,并作轴力图。

( a)解:;;(b)解:;;( c)解:;。

(d) 解:。

2-2 试求图示等直杆横截面1-1 ,2-2 和 3-3 上的轴力,并作轴力图。

若横截面面积,试求各横截面上的应力。

解:返回1-1 ,2-2 和 3-3 2-3试求图示阶梯状直杆横截面上的轴力,并作轴力图。

若横截面面积,,,并求各横截面上的应力。

解:返回2-4 图示一混合屋架结构的计算简图。

屋架的上弦用钢筋混凝土制成。

下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个75mm×8mm的等边角钢。

已知屋面承受集度为的竖直均布荷载。

试求拉杆AE和 EG横截面上的应力。

解:=1)求内力取 I-I 分离体得(拉)取节点 E 为分离体,故 (拉) 2) 求应力75 × 8等边角钢的面积 A2=11.5 cm( 拉 )(拉)返回2-5(2-6)图示拉杆承受轴向拉力,杆的横截面面积。

如以表示斜截面与横截面的夹角,试求当,30 ,45 ,60 ,90 时各斜截面上的正应力和切应力,并用图表示其方向。

解:返回2-6(2-8) 一木桩柱受力如图所示。

柱的横截面为边长 200mm的正方形,材料可认为符合胡克定律,其弹性模量 E=10 GPa。

如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形。

解:(压)(压)返回2-7(2-9) 一根直径,其伸长为、长的圆截面杆,承受轴向拉力。

试求杆横截面上的应力与材料的弹性模量E。

解:2-8(2-11) 受轴向拉力 F 作用的箱形薄壁杆如图所示。

已知该杆材料的弹性常数为E,,试求 C 与D两点间的距离改变量。

解:横截面上的线应变相同因此返回2-9(2-12)图示结构中,AB为水平放置的刚性杆,杆,,材料相同,其1 2 3弹性模量 E ,已知,,,=210GPa。

材料力学习题及答案

材料力学习题及答案

资料力学-学习指导及习题答案之马矢奏春创作第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M 的力偶作用。

试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。

解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。

1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。

解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。

试问杆件横截面上存在何种内力分量,并确定其大小。

图中之C点为截面形心。

解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×××103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。

试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。

解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。

解:(a) F N AB=F,F N BC=0,F N,max=F(b) F N AB=F,F N BC=-F,F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN,F N CD=3 kN,F N,max=3 kN(d) F N AB=1 kN,F N BC=-1 kN,F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。

材料力学性能习题及解答库

材料力学性能习题及解答库

第一章习题答案一、解释下列名词1、弹性比功:又称为弹性比能、应变比能,表示金属材料吸收弹性变形功的能力。

2、滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。

3、循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力,称为金属的循环韧性。

4、包申格效应:先加载致少量塑变,卸载,然后在再次加载时,出现σe升高或降低的现象。

5、解理刻面:大致以晶粒大小为单位的解理面称为解理刻面。

6、塑性、脆性和韧性:塑性是指材料在断裂前发生不可逆永久(塑性)变形的能力。

韧性:指材料断裂前吸收塑性变形功和断裂功的能力,或指材料抵抗裂纹扩展的能力7、解理台阶:高度不同的相互平行的解理平面之间出现的台阶叫解理台阶;8、河流花样:当一些小的台阶汇聚为在的台阶时,其表现为河流状花样。

9、解理面:晶体在外力作用下严格沿着一定晶体学平面破裂,这些平面称为解理面。

10、穿晶断裂和沿晶断裂:沿晶断裂:裂纹沿晶界扩展,一定是脆断,且较为严重,为最低级。

穿晶断裂裂纹穿过晶内,可以是韧性断裂,也可能是脆性断裂。

11、韧脆转变:指金属材料的脆性和韧性是金属材料在不同条件下表现的力学行为或力学状态,在一定条件下,它们是可以互相转化的,这样的转化称为韧脆转变。

二、说明下列力学指标的意义1、E(G):E(G)分别为拉伸杨氏模量和切变模量,统称为弹性模量,表示产生100%弹性变形所需的应力。

2、σr、σ0.2、σs: σr :表示规定残余伸长应力,试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距百分比时的应力。

σ0.2:表示规定残余伸长率为0.2%时的应力。

σs:表征材料的屈服点。

3、σb:韧性金属试样在拉断过程中最大试验力所对应的应力称为抗拉强度。

4、n:应变硬化指数,它反映了金属材料抵抗继续塑性变形的能力,是表征金属材料应变硬化行为的性能指标。

5、δ、δgt、ψ:δ是断后伸长率,它表征试样拉断后标距的伸长与原始标距的百分比。

材料力学性能学习题与解答[教材课后答案]

材料力学性能学习题与解答[教材课后答案]

度越高。
3、计算: 某低碳钢的摆锤系列冲击实验列于下表, 温度(℃) 60 40 35 25 试计算: a. 绘制冲击功-温度关系曲线; 冲击功(J) 75 75 70 60 温度(℃) 10 0 -20 -50 冲击功(J) 40 20 5 1
冲击吸收功—温度曲线 80 70 60 50
Ak
40 30 20 10 0 -6 -5 -4 -3 -2 -1 0 10 20 30 40 50 60 70 0 0 0 0 0 0 t/℃
第三章 冲击韧性和低温脆性 1、名词解释: 冲击韧度 冲击吸收功 低温脆性
解: 冲击韧度:一次冲断时,冲击功与缺口处截面积的比值。 冲击吸收功:冲击弯曲试验中,试样变形和断裂所吸收的功。 低温脆性:当试验温度低于某一温度时,材料由韧性状态转变为脆性状态。 韧脆转变温度:材料在某一温度 t 下由韧变脆,冲击功明显下降。该温度即韧脆转 变温度。 迟屈服:用高于材料屈服极限的载荷以高加载速度作用于体心立方结构材料时,瞬 间并不屈服,需在该应力下保持一段时间后才屈服的现象。
2) 简述扭转实验、弯曲实验的特点?渗碳淬火钢、陶瓷玻璃试样研究其力学 性能常用的方法是什么? 1 扭转实验的应力状态软性系数较拉伸的应力状态软性系数高。可 解: 扭转实验的特点是○
2 扭转实验 对表面强化处理工艺进行研究和对机件的热处理表面质量进行检验。 ○ 3 圆柱试样在扭转时,不产生缩颈现象,塑 时试样截面的应力分布为表面最大。○
韧脆转变温度 迟屈服
2、简答 1) 缺口冲击韧性实验能评定哪些材料的低温脆性?哪些材料不能用此方法 检验和评定?[提示:低中强度的体心立方金属、Zn 等对温度敏感的材料,高强 度钢、铝合金以及面心立方金属、陶瓷材料等不能]
解:缺口冲击韧性实验能评定中、低强度机构钢的低温脆性。面心立方金属及合金如氏 体钢和铝合金不能用此方法检验和评定。

材力习题集.

材力习题集.

第一章 绪论1-1矩形平板变形后为平行四边形,水平轴线在四边形AC 边保持不变。

求(1)沿AB边的平均线应变; (2)平板A 点的剪应变。

(答案:εAB =7.93×10-3 γXY =-1.21×10-2rad )第二章 拉伸、压缩与剪切2-1 试画图示各杆的轴力图,并指出轴力的最大值。

2-2 一空心圆截面杆,内径d=30mm ,外径D=40mm ,承受轴向拉力F=KN 作用,试求横截面上的正应力。

(答案:MPa 7.72=σ)2-3 题2-1 c 所示杆,若该杆的横截面面积A=502m m ,试计算杆内的最大拉应力与最大压应力(答案:MPa t 60max ,=σ MPa c 40max ,=σ)2.4图示轴向受拉等截面杆,横截面面积A=5002m m ,载荷F=50KN 。

试求图示截面m-m 上的正应力与切应力,以及杆内的最大正应力与最大切应力。

(答案:MPa MPa MPa MPa 50 ; 100 ; 24.49 ; 32.41max max ==-==τστσαα)2.5如图所示,杆件受轴向载荷F 作用。

该杆由两根木杆粘接而成,若欲使粘接面上的正应力为其切应力的二倍,则粘接面的方位角θ应为何值(答案: 6.26=θ)2.6 等直杆受力如图所示,试求各杆段中截面上的轴力,并绘出轴力图。

2.7某材料的应力-应变曲线如图所示,图中还同时画出了低应变去区的详图,试确定材料的弹性模量E 、屈服极限s σ、强度极限b σ、与伸长率δ,并判断该材料属于何种类型(塑性或脆性材料)。

2.8某材料的应力-应变曲线如图所示,试根据该曲线确定: (1)材料的弹性模量E 、比例极限P σ与屈服极限2.0σ; (2)当应力增加到MPa 350=σ时,材料的正应变ε, 以及相应的弹性应变e ε与塑性应变p ε2.9图示桁架,杆1与杆2的横截面均为圆形,直径分别为d1=30mm 与d2=20mm ,两杆材料相同,许用应力[]σ=160MPa ,该桁架在节点A 处承受铅垂方向的载荷F=80KN 作用。

材料力学习题及答案

材料力学习题及答案

资料力学-学习指导及习题谜底之迟辟智美创作第一章绪论1-1 图示圆截面杆,两端接受一对方向相反、力偶矩矢量沿轴线且年夜小均为M的力偶作用.试问在杆件的任一横截面m-m上存在何种内力分量,并确定其年夜小.解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其年夜小即是M.1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ.解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零.试问杆件横截面上存在何种内力分量,并确定其年夜小.图中之C点为截面形心.解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×××103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示.试求棱边AB与AD的平均正应变及A 点处直角BAD的切应变.解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最年夜值.解:(a) F N AB=F,F N BC=0,F N,max=F=F(b) F N AB=F,F N BC=-F,F N,max(c) F N AB=-2 kN, F N2BC=1 kN,F N CD=3 kN,F N=3 kN,max(d) F N AB=1 kN,F N BC=-1 kN,F N=1 kN,max2-2 图示阶梯形截面杆AC,接受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm.如欲使BC与AB段的正应力相同,试求BC段的直径.解:因BC与AB段的正应力相同,故2-3 图示轴向受拉等截面杆,横截面面积A=500 mm2,载荷F=50 kN.试求图示斜截面m-m上的正应力与切应力,以及杆内的最年夜正应力与最年夜切应力.解:2-4(2-11)图示桁架,由圆截面杆1与杆2组成,并在节点A接受载荷F=80kN作用.杆1、杆2的直径分别为d1=30mm和d2=20mm,两杆的资料相同,屈服极限σ=320MPa,平安因数n s.试校核桁架的强度.s解:由A点的平衡方程可求得1、2两杆的轴力分别为由此可见,桁架满足强度条件.2-5(2-14)图示桁架,接受载荷F作用.试计算该载荷的许用值[F].设各杆的横截面面积均为A,许用应力均为[σ].解:由C点的平衡条件由B点的平衡条件1杆轴力为最年夜,由其强度条件2-6(2-17)图示圆截面杆件,接受轴向拉力F作用.设拉杆的直径为d,端部墩头的直径为D,高度为h,试从强度方面考虑,建立三者间的合理比值.已知许用应力[σ]=120MPa,许用切应力[τ]=90MPa,许用挤压应力[σbs]=240MPa.解:由正应力强度条件由切应力强度条件由挤压强度条件式(1):式(3)得式(1):式(2)得故D:h:d::12-7(2-18)图示摇臂,接受载荷F1与F2作用.试确定轴销B的直径d.已知载荷F1=50kN,F2,许用切应力[τ]=100MPa,许用挤压应力[σ]=240MPa.bs解:摇臂ABC受F1、F2及B点支座反力F B三力作用,根据三力平衡汇交定理知F B的方向如图(b)所示.由平衡条件由切应力强度条件由挤压强度条件故轴销B的直径第三章轴向拉压变形3-1 图示硬铝试样,厚度δ=2mm,试验段板宽b=20mm,标距l=70mm.在轴向拉F=6kN的作用下,测得试验段伸长Δl,板宽缩短Δb.试计算硬铝的弹性模量E与泊松比μ.解:由胡克定律3-2(3-5) 图示桁架,在节点A处接受载荷F作用.从试验中测得杆1与杆2的纵向正应变分别为ε1×10-4与ε2×10-4.试确定载荷F及其方位角θ之值.已知杆1与杆2的横截面面积A1=A2=200mm2,弹性模量E1=E2=200GPa.解:杆1与杆2的轴力(拉力)分别为由A点的平衡条件(1)2+(2)2并开根,便得式(1):式(2)得3-3(3-6) 图示变宽度平板,接受轴向载荷F作用.试计算板的轴向变形.已知板的厚度为δ,长为l,左、右真个宽度分别为b1与b2,弹性模量为E.解:3-4(3-11) 图示刚性横梁AB,由钢丝绳并经无摩擦滑轮所支持.设钢丝绳的轴向刚度(即发生单位轴向变形所需之力)为k,试求当载荷F作用时端点B的铅垂位移.解:设钢丝绳的拉力为T,则由横梁AB的平衡条件钢丝绳伸长量由图(b)可以看出,C点铅垂位移为Δl/3,D点铅垂位移为2Δl/3,则B点铅垂位移为Δl,即 3-5(3-12) 试计算图示桁架节点A的水平与铅垂位移.设各杆各截面的拉压刚度均为EA.解:(a) 各杆轴力及伸长(缩短量)分别为因为3杆不变形,故A点水平位移为零,铅垂位移即是B点铅垂位移加2杆的伸长量,即(b)点的水平与铅垂位移分别为(注意AC杆轴力虽然为零,但对A位移有约束)3-6(3-14) 图a所示桁架,资料的应力-应变关系可用方程σn=Bε暗示(图b),其中n和B为由实验测定的已知常数.试求节点C的铅垂位移.设各杆的横截面面积均为A.(a) (b)解:2根杆的轴力都为2根杆的伸长量都为则节点C的铅垂位移3-7(3-16) 图示结构,梁BD为刚体,杆1、杆2与杆3的横截面面积与资料均相同.在梁的中点C接受集中载荷F作用.试计算该点的水平与铅垂位移.已知载荷F=20kN,各杆的横截面面积均为A=100mm2,弹性模量E=200GPa,梁长l=1000mm.解:各杆轴力及变形分别为梁BD作刚体平动,其上B、C、D三点位移相等3-8(3-17) 图示桁架,在节点B和C作用一对年夜小相等、方向相反的载荷F.设各杆各截面的拉压刚度均为EA,试计算节点B和C间的相对位移ΔB/C.解:根据能量守恒定律,有3-9(3-21) 由铝镁合金杆与钢质套管组成一复合杆,杆、管各载面的刚度分别为E1A1与E2A2.复合杆接受轴向载荷F作用,试计算铝镁合金杆与钢管横载面上的正应力以及杆的轴向变形.解:设杆、管接受的压力分别为F N1、F N2,则F N1+F N2=F (1)变形协调条件为杆、管伸长量相同,即联立求解方程(1)、(2),得杆、管横截面上的正应力分别为杆的轴向变形3-10(3-23) 图示结构,杆1与杆2的弹性模量均为E,横截面面积均为A,梁BC为刚体,载荷F=20kN,许用拉应力[σt]=160MPa,许用压应力[σc]=110MPa.试确定各杆的横截面面积.解:设杆1所受压力为F N1,杆2所受拉力为F N2,则由梁BC的平衡条件得变形协调条件为杆1缩短量即是杆2伸长量,即联立求解方程(1)、(2)得因为杆1、杆2的轴力相等,而许用压应力小于许用拉应力,故由杆1的压应力强度条件得3-11(3-25) 图示桁架,杆1、杆2与杆3分别用铸铁、铜和钢制成,许用应力分别为[σ1]=40MPa,[σ2]=60MPa,[σ3]=120MPa,弹性模量分别为E1=160GPa,E2=100GPa,E3=200GPa.若载荷F=160kN,A1=A2=2A3,试确定各杆的横截面面积.解:设杆1、杆2、杆3的轴力分别为F N1(压)、F N2(拉)、F N3(拉),则由C点的平衡条件杆1、杆2的变形图如图(b)所示,变形协调条件为C点的垂直位移即是杆3的伸长,即联立求解式(1)、(2)、(3)得由三杆的强度条件注意到条件 A1=A2=2A3,取A1=A2=2A3=2448mm2.3-12(3-30) 图示组合杆,由直径为30mm的钢杆套以外径为50mm、内径为30mm的铜管组成,二者由两个直径为10mm的铆钉连接在一起.铆接后,温度升高40°,试计算铆钉剪切面上的切应力.钢与铜的弹性模量分别为E s=200GPa与E c=100GPa,线膨胀系数分别为αl s×10-6℃-1与αl c=16×10-6℃-1.解:钢杆受拉、铜管受压,其轴力相等,设为F N,变形协调条件为钢杆和铜管的伸长量相等,即铆钉剪切面上的切应力3-13(3-32) 图示桁架,三杆的横截面面积、弹性模量与许用应力均相同,并分别为A、E与[σ],试确定该桁架的许用载荷[F].为了提高许用载荷之值,现将杆3的设计长度l酿成l+Δ.试问当Δ为何值时许用载荷最年夜,其值[F max]为何.解:静力平衡条件为变形协调条件为联立求解式(1)、(2)、(3)得杆3的轴力比杆1、杆2年夜,由杆3的强度条件若将杆3的设计长度l酿成l+Δ,要使许用载荷最年夜,只有三杆的应力都到达[σ],此时变形协调条件为第四章扭转4-1(4-3) 图示空心圆截面轴,外径D=40mm,内径d=20mm,扭矩T=1kN•m.试计算横截面上的最年夜、最小扭转切应力,以及A点处(ρA=15mm)的扭转切应力.解:因为τ与ρ成正比,所以4-2(4-10) 实心圆轴与空心圆轴通过牙嵌离合器连接.已知轴的转速n=100 r/min,传递功率P=10 kW,许用切应力[τ]=80MPa,d1/d2.试确定实心轴的直径d,空心轴的内、外径d1和d2.解:扭矩由实心轴的切应力强度条件由空心轴的切应力强度条件4-3(4-12) 某传动轴,转速n=300 r/min,轮1为主动轮,输入功率P1=50kW,轮2、轮3与轮4为从动轮,输出功率分别为P2=10kW,P3=P4=20kW.(1) 试求轴内的最年夜扭矩;(2) 若将轮1与轮3的位置对换,试分析对轴的受力是否有利.解:(1) 轮1、2、3、4作用在轴上扭力矩分别为轴内的最年夜扭矩若将轮1与轮3的位置对换,则最年夜扭矩酿成最年夜扭矩变小,固然对轴的受力有利.4-4(4-21) 图示两端固定的圆截面轴,接受扭力矩作用.试求支反力偶矩.设扭转刚度为已知常数.解:(a) 由对称性可看出,M A=M B,再由平衡可看出M A=M B=M(b)显然M A=M B,变形协调条件为解得(c)(d)由静力平衡方程得变形协调条件为联立求解式(1)、(2)得4-5(4-25) 图示组合轴,由套管与芯轴并借两端刚性平板牢固地连接在一起.设作用在刚性平板上的扭力矩为M=2kN·m,套管与芯轴的切变模量分别为G1=40GPa与G2=80GPa.试求套管与芯轴的扭矩及最年夜扭转切应力.解:设套管与芯轴的扭矩分别为T1、T2,则T1+T2 =M=2kN·m (1)变形协调条件为套管与芯轴的扭转角相等,即联立求解式(1)、(2),得套管与芯轴的最年夜扭转切应力分别为4-6(4-28) 将截面尺寸分别为φ100mm×90mm 与φ90mm×80mm的两钢管相套合,并在内管两端施加扭力矩M0=2kN·m后,将其两端与外管相焊接.试问在去失落扭力矩M0后,内、外管横截面上的最年夜扭转切应力.解:去失落扭力矩M0后,两钢管相互扭,其扭矩相等,设为T,设施加M0后内管扭转角为φ0.去失落M0后,内管带动外管回退扭转角φ1(此即外管扭转角),剩下的扭转角(φ0-φ1)即为内管扭转角,变形协调条件为内、外管横截面上的最年夜扭转切应力分别为4-7(4-29) 图示二轴,用突缘与螺栓相连接,各螺栓的资料、直径相同,并均匀地排列在直径为D=100mm的圆周上,突缘的厚度为δ=10mm,轴所接受的扭力矩为M=5.0 kN·m,螺栓的许用切应力[τ]=100MPa,许用挤压应力 [σbs]=300MPa.试确定螺栓的直径d.解:设每个螺栓接受的剪力为F S,则由切应力强度条件由挤压强度条件故螺栓的直径第五章弯曲应力1(5-1)、平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox坐标取向如图所示.试分析下列平衡微分方程中哪一个是正确的.解:B正确.平衡微分方程中的正负号由该梁Ox坐标取向及分布载荷q(x)的方向决定.截面弯矩和剪力的方向是不随坐标变动的,我们在处置这类问题时都按正方向画出.可是剪力和弯矩的增量面和坐标轴的取向有关,这样在对梁的微段列平衡方程式时就有所分歧,参考下图.当Ox坐标取向相反,向右时,相应(b),A是正确的.但无论A、B弯矩的二阶导数在q向上时,均为正,反之,为负.2(5-2)、对接受均布载荷q的简支梁,其弯矩图凸凹性与哪些因素相关?试判断下列四种谜底中哪一种是毛病的.解:A是毛病的.梁截面上的弯矩的正负号,与梁的坐标系无关,该梁上的弯矩为正,因此A是毛病的.弯矩曲线和一般曲线的凸凹相同,和y轴的方向有关,弯矩二阶导数为正时,曲线开口向着y轴的正向.q(x)向下时,无论x轴的方向如何,弯矩二阶导数均为负,曲线开口向着y轴的负向,因此B、C、D都是正确的.3(5-3)、应用平衡微分方程画出下列各梁的剪力图和弯矩图,并确定|F Q|max和|M|max.(本题和下题内力图中,内力年夜小只标注相应的系数.)解:4(5-4)、试作下列刚架的弯矩图,并确定|M|max.解:5(5-5)、静定梁接受平面载荷,但无集中力偶作用,其剪力图如图所示.若已知A端弯矩M(0)=0,试确定梁上的载荷(包括支座反力)及梁的弯矩图.解:6(5-6)、已知静定梁的剪力图和弯矩图,试确定梁上的载荷(包括支座反力).解:7(5-7)、静定梁接受平面载荷,但无集中力偶作用,其剪力图如图所示.若已知E端弯矩为零.请:(1)在Ox坐标中写出弯矩的表达式;(2)试确定梁上的载荷及梁的弯矩图.解:8(5-10) 在图示梁上,作用有集度为m=m(x)的分布力偶.试建立力偶矩集度、剪力及弯矩间的微分关系.解:用坐标分别为x与x+d x的横截面,从梁中切取一微段,如图(b).平衡方程为9(5-11) 对图示杆件,试建立载荷集度(轴向载荷集度q或扭力矩集度m)与相应内力(轴力或扭矩)间的微分关系.解:(a) 用坐标分别为x与x+d x的横截面,从杆中切取一微段,如图(c).平衡方程为(b) 用坐标分别为x与x+d x的横截面,从杆中切取一微段,如图(d).平衡方程为10(5-18) 直径为d的金属丝,环绕在直径为D的轮缘上.试求金属丝内的最年夜正应变与最年夜正应力.已知资料的弹性模量为E.解:11(5-23) 图示直径为d的圆木,现需从中切取一矩形截面梁.试问:(1) 如欲使所切矩形梁的弯曲强度最高,h和b应分别为何值;(2) 如欲使所切矩形梁的弯曲刚度最高,h和b应分别为何值;解:(1) 欲使梁的弯曲强度最高,只要抗弯截面系数取极年夜值,为此令(2) 欲使梁的弯曲刚度最高,只要惯性矩取极年夜值,为此令12(5-24) 图示简支梁,由№18工字钢制成,在外载荷作用下,测得横截面A底边的纵向正应变ε×10-4,试计算梁内的最年夜弯曲正应力.已知钢的弹性模量E=200GPa,a=1m.解:梁的剪力图及弯矩图如图所示,从弯矩图可见:13(5-32) 图示槽形截面铸铁梁,F=10kN,M e=70kN·m,许用拉应力[σt]=35MPa,许用压应力[σc]=120MPa.试校核梁的强度. 解:先求形心坐标,将图示截面看成一年夜矩形减去一小矩形惯性矩弯矩图如图所示,C 截面的左、右截面为危险截面. 在 C 左截面,其最年夜拉、压应力分别为夜拉、压应力分别为在 C 右截面,其最年 故14(5-35) 图示简支梁,由四块尺寸相同的木板胶接而成,试校核其强度. 已 知 载 荷 F=4kN , 梁 跨 度 l=400mm , 截 面 宽 度 b=50mm , 高 度 h=80mm,木板的许用应力[σ]=7MPa,胶缝的许用切应力[τ]=5MPa.解:从内力图可见木板的最年夜正应力由剪应力互等定理知:胶缝的最年夜切应力即是横截面上的最年夜切 应力 可见,该梁满足强度条件.15(5-41) 图示简支梁,接受偏斜的集中载荷 F 作用,试计算梁内的最年 夜弯曲正应力.已知 F=10kN,l=1m,b=90mm,h=180mm.解: 16(5-42) 图示悬臂梁,接受载荷 F1 与 F2 作用,已知 F1=800N,F2,l=1m,许用应力[σ]=160MPa.试分别按下列要求确定截面尺寸: (1) 截面为矩形,h=2b; (2) 截面为圆形.解:(1) 危险截面位于固定端(2)17(5-45) 一铸铁梁,其截面如图所示,已知许用压应力为许用拉应力 的 4 倍,即[σc]=4 [σt].试从强度方面考虑,宽度 b 为何值最佳. 解: 又因 y1+y2=400 mm,故 y1=80 mm,y2=320 mm.将截面对形心轴 z 取静 矩,得18(5-54) 图示直径为 d 的圆截面铸铁杆,接受偏心距为 e 的载荷 F 作用. 试证明:当 e≤d/8 时,横截面上不存在拉应力,即截面核心为 R=d/8 的圆形区域. 解: 19(5-55) 图示杆件,同时接受横向力与偏心压力作用,试确定 F 的许用 值.已知许用拉应力[σt]=30MPa,许用压应力[σc]=90MPa. 解:故 F 的许用值为.第 七 章 应力、应变状态分析7-1(7-1b) 已知应力状态如图所示(应力单位为 ),试用解析法计算 图中指定截面的正应力与切应力.解: 与 截面的应力分别为:;;;MPa7-2(7-2b)已知应力状态如图所示(应力单位为 ),试用解析法计算 图中指定截面的正应力与切应力.解: 与 截面的应力分别为:;;;7-3(7-2d)已知应力状态如图所示(应力单位为 ),试用图解法计算 图中指定截面的正应力与切应力.解:如图,得: 指定截面的正应力 切应力7-4(7-7) 已知某点 A 处截面 AB 与 AC 的应力如图所示(应力单位为 ),试用图解法求主应力的年夜小及所在截面的方位.解:由图,根据比例尺,可以获得:,,最年夜切应力.7-5(7态如图 向应力 力、最10c)已知应力状 所示,试画三 圆,并求主应 年夜正应力与解:对图示应力状态, 是主应力状态,其它两个主应力由 、 、 确定.在 平面内,由坐标( , )与( , )分别确定 和 点,以 为直径画 圆与 轴相交于 和 .再以 及 为直径作圆,即得三向应力圆.由上面的作图可知,主应力为,,,7-6(7-12)已知应力状态如图所示(应力单位为 ),试求主应力的年 夜小.解: 与 截面的应力分别为:;;;在 截面上没有切应力,所以是主应力之一.;;;7-7(7-13)已知构件概况某点处的正应变,,切应变,试求该概况处 方位的正应变 与最年夜应变 及其所在方位.解:得:7-8(7-20)图示矩形截面杆,接受轴向载荷 F 作用,试计算线段 AB 的正 应变.设截面尺寸 b 和 h 与资料的弹性常数 E 和μ均为已知.解:,,,AB 的正应酿成7-9(7-21)在构件概况某点 O 处,沿 , 与 方位,粘贴三个应变片,测得该三方位的正应变分别为,与,该概况处于平面应力状态,试求该点处的应力 , 与 .已知资料的弹性模量,泊松比解:显然,,并令,于是得切应变:7-10(7-6)图示受力板件,试证明 A 点处各截面的正应力与切应力均为零.证明:若在尖点 A 处沿自由鸿沟取三角形单位体如图所示,设单位体 、 面上的应力分量为 、 和 、 ,自由鸿沟上的应力分量为 ,则有由于、,因此,必有 、 、.这时,代表 A 点应力状态的应力圆缩为 坐标的原点,所以 A 点为零应力状态.7-11(7-15)构件概况某点 处,沿 , , 与 方位粘贴四个应变片,并测得相应正应变依次为,,与,试判断上述测试结果是否可靠.解:很明显,,得:又得:根据实验数据计算获得的两个 结果纷歧致,所以,上述丈量结果不 成靠.第 八 章应力状态与强度理论 1、 (8-4)试比力图示正方形棱柱体在下列两中情况下的相当应力 , 弹性常数 E 和μ均为已知. (a) 棱柱体轴向受压; (b) 棱柱体在刚性方模中轴向受压.解:对图(a)中的情况,应力状态如图(c) 对图(b)中的情况,应力状态如图(d)所以,,2、 (8-6)图示钢质拐轴,接受集中载荷 F 作用.试根据第三强度理论确 定轴 AB 的直径.已知载荷 F=1kN,许用应力[σ]=160Mpa. 解:扭矩弯矩 由 得:所以,3、 (8-10)图示齿轮传动轴,用钢制成.在齿轮Ⅰ上,作用有径向力、切向力;在齿轮Ⅱ上,作用有切向力、径向力.若许用应力[σ]=100Mpa,试根据第四强度理论确定轴径.解:计算简图如图所示,作 、 、 图.从图中可以看出,危险截面为 B 截面.其内力分量为: 由第四强度理论 得:4、8-4 圆截面轴的危险面上受有弯矩My、扭矩Mx 和轴力FNx 作 用,关于危险点的应力状态有下列四种.试判断哪一种是正确的. 请选择正确谜底. (图中微元上平行于纸平面的面对应着轴的横截面) 答:B5、 (8-13)图示圆截面钢杆,接受载荷 , 与扭力矩 作用.试根据第三强度理论校核杆的强度.已知载荷N,,扭力矩,许用应力[σ]=160Mpa.解:弯矩满足强度条件.6、 (8-25)图示铸铁构件,中段为一内径 D=200mm、壁厚δ=10mm 的圆筒,圆筒内的压力p=1Mpa,两真个轴向压力F=300kN,资料的泊松比μ,许用拉应力[σt]=30Mpa.试校核圆筒部份的强度.解:,,由第二强度理论:满足强度条件.7、(8-27)图薄壁圆筒,同时接受内压p与扭力矩M作用,由实验测得筒壁沿轴向及与轴线成方位的正应变分别为和.试求内压p与扭力矩M之值.筒的内径为D、壁厚δ、资料的弹性模量E与泊松比μ均为已知.解:,,,很显然,8、(8-22)图示油管,内径D=11mm,壁厚δ,内压p,许用应力[σ]=100Mpa.试校核油管的强度.解:,,由第三强度理论,满足强度条件.9、(8-11)图示圆截面杆,直径为d,接受轴向力F与扭矩M作用,杆用塑性资料制成,许用应力为[σ].试画出危险点处微体的应力状态图,并根据第四强度理论建立杆的强度条件.解:危险点的应力状态如图所示.,由第四强度理论,,可以获得杆的强度条件:10、(8-17)图示圆截面圆环,缺口处接受一对相距极近的载荷作用.已知圆环轴线的半径为,截面的直径为,资料的许用应力为,试根据第三强度理论确定的许用值.解:危险截面在A或B截面A:,,截面B:,由第三强度理论可见,危险截面为A截面.,得:即的许用值为:11、(8-16)图示等截面刚架,接受载荷与作用,且.试根据第三强度理论确定的许用值.已知许用应力为,截面为正方形,边长为,且.解:危险截面在A截面或C、D截面,C截面与D截面的应力状态一样. C截面:由第三强度理论,得:A截面:由第三强度理论,得:比力两个结果,可得:的许用值:12、(8-25)球形薄壁容器,其内径为,壁厚为,接受压强为p之内压.试证明壁内任一点处的主应力为,.证明:取球坐标,对球闭各点,以球心为原点.,,由于结构和受力均对称于球心,故球壁各点的应力状态相同.且由于球壁很薄.,对球壁上的任一点,取通过该点的直径平面(如图),由平衡条件对球壁内的任一点,因此,球壁内的任一点的应力状态为:,证毕.。

材料力学习题及答案

材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。

试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。

解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。

1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。

解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。

试问杆件横截面上存在何种内力分量,并确定其大小。

图中之C点为截面形心。

解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。

试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。

解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。

解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。

车辆材料力学-第5,6章习题课


习题6-6图
第6章 梁的应力分析及强度计算
第6章 习题课
第6章 梁的应力分析及强度计算
第6章 习题课
6-7 图示外伸梁承受集中载荷FP作用,尺寸如图所 示。已知FP =20 kN,许用应力 [σ]=160 MPa,试选 择工字钢的号码。
习题6-7图
第6章 梁的应力分析及强度计算
第6章 习题课
第5章 梁的剪力图及弯矩图
第5章 习题课
l2 l2 l2
第5章 梁的剪力图及弯矩图
第5章 习题课
第5章 梁的剪力图及弯矩图
第5章 习题课
第5章 梁的剪力图及弯矩图
第5章 习题课
5-2 试写出以下各梁的剪力方程、弯矩方程。
第5章 梁的剪力图及弯矩图
第5章 习题课
第5章 梁的剪力图及弯矩图
第6章 梁的应力分析及强度计算
第6章 习题课
第6章 梁的应力分析及强度计算
第6章 习题课
6-4 圆截面外伸梁,其外伸部分是空心的,梁的 受力与尺寸如图所示。图中尺寸单位为mm。已知 FP=10kN,q=5kN/m,许用应力[σ]=140MPa,
试校核梁的强梁的应力分析及强度计算
第6章 习题课
6-8 图示之AB 为简支梁,当载荷FP 直接作用在梁 的跨度中点时,梁内最大弯曲正应力超过许用应
力30%。为减小AB 梁内的最大正应力,在AB 梁 配置一辅助梁CD,CD 也可以看作是简支梁。试 求辅助梁的长度a。
习题6-8图
感谢您的聆听
汇报人:xx
第6章 梁的应力分析及强度计算
第6章 习题课
第6章 梁的应力分析及强度计算
第6章 习题课
6-2加热炉炉前机械操作装置如图所示,图中的尺 寸单位为mm。其操作臂由两根无缝钢管所组成。 外伸端装有夹具,夹具与所夹持钢料的总重FP= 2200 N,平均分配到两根钢管上。求:梁内最大 正应力(不考虑钢管自重)。

材料力学 历年试卷汇总带答案

32
4

AC 外

I pAC 2


199 103 7.95 10

30 2
- 11 -
机械工程学院材料力学习题
图 3.3.2
3、如图所示圆轴,一端固定。圆轴横截面的直径 d=100mm,所受的外力偶矩 M1=7000 N•m M2=5000 N•m。试求圆轴横截面上的最大扭矩和最大切应力。 答:最大扭矩为 最大切应力为 N•m。 Mpa。
图 3.3.3
4、某传动轴为实心圆轴,轴内的最大扭矩 T =1.5kN m ,许用切应力 τ = 50MPa , 试确定该轴的横截面直径。 5、圆轴 AB 传递的功率为 P = 7.5kW,转速 n = 360r/min。轴的 AC 段为实心圆截面, CB 段为空心圆截面, 如图所示。 已知 D= 30mm。 试计算 AC 段横截面边缘处的切应力。
4、如图所示的厂房柱子中,由两等直杆组成的阶梯杆,已知 P1 =100KN,P2 =80KN, 上段(AB 段)的横截面面积为 16×16cm2 的正方形,底段(BC 段)的横截面面积为 35×25cm2 的矩形。试求每段杆横截面上的应力。 答:AB 段杆横截面上的应力为 BC 段杆横截面上的应力为 Mpa; Mpa。
2、构件具有足够的抵抗变形的能力,我们就说构件具有足够的
3、单位面积上的内力称之为
4、与截面垂直的应力称之为
5、轴向拉伸和压缩时,杆件横截面上产生的应力为
6、胡克定律在下述哪个范围内成立?
7、当低碳钢试样横截面上的实验应力 σ =σs 时,试样将 A、完全失去承载能力, C、产生较大变形,
8、脆性材料具有以下哪种力学性质? A、试样拉伸过程中出现屈服现象, B、抗冲击性能比塑性材料好, C、若构件开孔造成应力集中现象,对强度没有影响。 D、抗压强度极限比抗拉强度极限大得多。 9、灰铸铁压缩实验时,出现的裂纹 A、沿着试样的横截面, C、裂纹无规律, B、沿着与试样轴线平行的纵截面, D、沿着与试样轴线成 45。角的斜截面。

材料力学 第五章ppt课件

A A
s

A

(对称面)
2 Ey E2 EI z M ( d A ) y d A y d A M z A A
s
A

EIz
A

2 Iz y A 轴 惯 性矩 d
1 Mz EI z
M y s x I z
… …(3)
杆的抗弯刚度。
. . . . . . ( 4 )
d4
64
d
Iz d3 W z ym a x 32
4 D 4 空心圆 I ( 1 a ) z
d D
ad
64
D
3 I D 4 z W ( 1 a ) z y max 32
11
三、常见截面的IZ和WZ:
3 bh 矩形 Iz 12
b b
2 Iz bh W z y 6 m ax
§5-3 横力弯曲时梁横截面上的正应力 一、正应力近似公式:
M y s x I z . . . . . . ( 4 )
二、横截面上最大正应力:
M s max Wz
… …(5)
I z W z 抗 弯 截 面 模 量 。 y m a x
10
三、常见截面的IZ和WZ:
圆 Iz
M 60 4 1 s 10 92 . 6 MP 1 max
M 67 . 5 4 max s 10 104 . 2 MP max W 6 . 48 z
120 M
求曲率半径
qL 8
+
2
EI 5 . 832 z 200 10 194 . 4 m 1 M 60 1
力状态。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档