材料力学资料例题
材料力学例题

0.75m 1m
A
D 1.5m
B
F
横梁BC为刚杆,自重Q=2KN,力P=10KN可在横 梁BC上自由移动。AB杆的许用应力为[σ]=100MP a,设计AB杆的横截面面积。如果AB杆采用直径 为10毫米的细丝,需要几根?
P C
30°
B
• [例] 长为 L=2m 的圆杆受均布力偶 m=20Nm/m 的作用,如图,若杆的内外径之比为 =0.8 ,
例题 空心圆杆AB和CD杆焊接成整体结构,受力如图.AB杆的外径 D=140mm,内外 径之比α= d/D=0.8,材料的许用应力[] = 160MPa。试用第三强度理论校核AB杆的 强度。 解:(1)外力分析 将力向AB杆的B截面形心简化得
10kN
0.8m A
B D
F 25kN
M e 15 1 . 4 10 0 . 6 15 kN m
G=80GPa ,许用剪应力 []=30MPa,试设计杆
的外径;若[]=2º /m ,试校核此杆的刚度,并
求右端面转角。
[例题] 某传动轴设计要求转速n = 500 r / min,输入功率P1 = 500 马力, 输出功率分别 P2 = 200马力及 P3 = 300马力,已 知:G=80GPa ,[ ]=70M Pa,[ ]=1º /m ,试确定: ①AB 段直径 d1和 BC 段直径 d2 ? ②若全轴选同一直径,应为多少? ③主动轮与从动轮如何安排,轴的受力合理? P2 A 500 B 400 P3 C
y Me A x B l/2 F1
F2
D F2 D M e C ( F1 F 2 ) 2 2 20 F2 kN 3 F 20kN
轴产生扭转和垂直纵向对称面内的平 面弯曲
材料力学(资料例题)

材料力学(一)轴向拉伸与压缩【内容提要】材料力学主要研究构件在外力作用下的变形、受力与破坏、失效的规律。
为设计既安全可靠又经济合理的构件,提供有关强度、刚度与稳定性分析的基本理论与方法。
【重点、难点】重点考察基本概念,掌握截面法求轴力、作轴力图的方法,截面上应力的计算。
【内容讲解】一、基本概念强度——构件在外力作用下,抵抗破坏的能力,以保证在规定的使用条件下,不会发生意外的断裂或显著塑性变形。
刚度——构件在外力作用下,抵抗变形的能力,以保证在规定的使用条件下不会产生过分的变形。
稳定性——构件在外力作用下,保持原有平衡形式的能力,以保证在规定的使用条件下,不会产生失稳现象。
杆件——一个方向的尺寸远大于其它两个方向的尺寸的构件,称为杆件或简称杆。
根据轴线与横截面的特征,杆件可分为直杆与曲杆,等截面杆与变截面杆。
二、材料力学的基本假设工程实际中的构件所用的材料多种多样,为便于理论分析,根据它们的主要性质对其作如下假设。
(一)连续性假设——假设在构件所占有的空间内均毫无空隙地充满了物质,即认为是密实的。
这样,构件内的一些几何量,力学量(如应力、位移)均可用坐标的连续函数表示,并可采用无限小的数学分析方法。
(二)均匀性假设——很设材料的力学性能与其在构件中的位置无关。
按此假设通过试样所测得的材料性能,可用于构件内的任何部位(包括单元体)。
(三)各向同性假设——沿各个方向均具有相同力学性能。
具有该性质的材料,称为各向同性材料。
综上所述,在材料力学中,一般将实际材料构件,看作是连续、均匀和各向同性的可变形固体。
三、外力内力与截面法(一)外力对于所研究的对象来说,其它构件和物体作用于其上的力均为外力,例如载荷与约束力。
外力可分为:表面力与体积力;分布力与集中力;静载荷与动载荷等。
当构件(杆件)承受一般载荷作用时,可将载荷向三个坐标平面(三个平面均通过杆的轴线,其中两个平面为形心主惯性平面)内分解,使之变为两个平面载荷和一个扭转力偶作用情况。
材料力学试题和答案解析7套

材料⼒学试题和答案解析7套材料⼒学试卷1⼀、绘制该梁的剪⼒、弯矩图。
(15分)⼆、梁的受⼒如图,截⾯为T 字型,材料的许⽤拉应⼒[σ+]=40MPa ,许⽤压应⼒[σ-]=100MPa 。
试按正应⼒强度条件校核梁的强度。
(20分)m8m 2m2M三、求图⽰单元体的主应⼒及其⽅位,画出主单元体和应⼒圆。
(15分)四、图⽰偏⼼受压柱,已知截⾯为矩形,荷载的作⽤位置在A 点,试计算截⾯上的最⼤压应⼒并标出其在截⾯上的位置,画出截⾯核⼼的形状。
(15分) 30170302002m3m1m30五、结构⽤低碳钢A 3制成,A 端固定,B 、C 为球型铰⽀,求:允许荷载[P]。
已知:E=205GPa ,σs =275MPa ,σcr=338-1.12λ,,λp =90,λs =50,强度安全系数n=2,稳定安全系数n st =3,AB 梁为N 016⼯字钢,I z =1130cm 4,W z =141cm 3,BC 杆为圆形截⾯,直径d=60mm 。
(20分)六、结构如图所⽰。
已知各杆的EI 相同,不考虑剪⼒和轴⼒的影响,试求:D 截⾯的线位移和⾓位移。
(15分)材料⼒学2⼀、回答下列各题(共4题,每题4分,共16分)1、已知低碳钢拉伸试件,标距mm l 1000=,直径mm d 10=,拉断后标距的长度变为mm l 1251=,断⼝处的直径为mm d 0.61=,试计算其延伸率和断⾯收缩率。
2、试画出图⽰截⾯弯曲中⼼的位置。
aa3、梁弯曲剪应⼒的计算公式zzQS =τ,若要计算图⽰矩形截⾯A 点的剪应⼒,试计算z S 。
4、试定性画出图⽰截⾯截⾯核⼼的形状(不⽤计算)。
4/h矩形圆形矩形截⾯中间挖掉圆形圆形截⾯中间挖掉正⽅形⼆、绘制该梁的剪⼒、弯矩图。
(15分)三、图⽰⽊梁的右端由钢拉杆⽀承。
已知梁的横截⾯为边长等于0.20m 的正⽅形,q=4OKN/m,弹性模量E 1=10GPa ;钢拉杆的横截⾯⾯积A 2=250mm 2,弹性模量E 2=210GPa 。
材料力学考试典型题目

2
(4)
Fx 2 EIw Flx C1 (3) 2 2 3 Flx Fx EIw C 1x C 2 2 6 边界条件 x 0, w 0
x 0, w 0
(4)
将边界条件代入(3)(4)两式中,可得 C1 0 梁的转角方程和挠曲线方程分别为
C2 0
ql 2 q 3 EIw x x C 4 6
ql 3 q 4 EIw x x Cx D 12 24
边界条件x=0 和 x=l时, w
0
x
q
wmax B
梁的转角方程和挠曲线方程 A 分别为
A
l
B
q 2 3 3 (6lx 4 x l ) 24 EI qx w (2lx 2 x 3 l 3 ) 24 EI
FN 3 l3 -4 1.58 10 m uB ΔlCD Δl BC -0.3mm EA3
-4
Δl AD Δl AB Δl BC ΔlCD -0.47 10 mm
例题5 图示等直杆,已知直径d=40mm,a=400mm,材料的剪切弹性
模量G=80GPa,DB=1°. 试求:
x= l , M = 0
M 0
+
Mb l
梁上集中力偶作用处左、右两侧
FRA
A a
M
FRB
C b l B
横截面上的弯矩值(图)发生突变,其
突变值等于集中力偶矩的数值.此处 剪力图没有变化.
M /l
+ +
Mb l
Ma l
例题1 图示一抗弯刚度为 EI 的悬臂梁, 在自由端受一集中力 F 作用.试求梁的挠曲线方程和转角方程, 并确定其最大挠度 wmax 和最大转角 max w
材料力学习题集

2-11、试求图示各杆1-1和2-2横截面上的轴力,并做轴力图。
(1) (2)2-62、图示拉杆承受轴向拉力F =10kN ,杆的横截面面积A =100mm 2。
如以α表示斜截面与横截面的夹角,试求当α=10°,30°,45°,60°,90°时各斜截面上的正应力和切应力,并用图表示其方向。
2-83、一木桩受力如图所示。
柱的横截面为边长200mm 的正方形,材料可认为符合胡克定律,其弹性模量E =10GPa 。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力; (3)各段柱的纵向线应变;(4)柱的总变形。
2-104、(1)试证明受轴向拉伸(压缩)的圆截面杆横截面沿圆周方向的线应变d ε,等于直径方向的线应变d ε。
(2)一根直径为d =10mm 的圆截面杆,在轴向拉力F 作用下,直径减小0.0025mm 。
如材料的弹性摸量E =210GPa ,泊松比ν=0.3,试求轴向拉力F 。
(3)空心圆截面钢杆,外直径D =120mm,内直径d =60mm,材料的泊松比ν=0.3。
当其受轴向拉伸时, 已知纵向线应变ε=0.001,试求其变形后的壁厚δ。
2-145、图示A和B两点之间原有水平方向的一根直径d=1mm的钢丝,在钢丝的中点C加一竖直荷载F。
已知钢丝产生的线应变为ε=0.0035,其材料的弹性模量E=210GPa,钢丝的自重不计。
试求:(1) 钢丝横截面上的应力(假设钢丝经过冷拉,在断裂前可认为符合胡克定律);(2) 钢丝在C点下降的距离∆;(3) 荷载F的值。
2-196、简易起重设备的计算简图如图所示.一直斜杆AB应用两根63mm×40mm×4mm不等边角钢组[σ=170MPa。
试问在提起重量为P=15kN的重物时,斜杆AB是否满足强度成,钢的许用应力]条件?2-217、一结构受力如图所示,杆件AB,AD均由两根等边角钢组成。
材料力学例题

B
DC
1
3
2
A
B
DC
1
3
2
A
1 32
A
Δl1
Δl3
F
A'
A'
变形几何方程为 Δl1 Δl3 cos
物理方程为
Δl1
FN1l1 EA1
Δl3
FN3l cos
E3 A3
(3)补充方程
FN1
FN 3
EA E3 A3
cos2
(4)联立平衡方程与补充方程求解 B
DC
FN1 FN2
FN1 cos FN2 cos FN3 F 0
d
[] = 60MPa ,许用挤压应力为 [bs]= 200MPa .试校核销钉的
强度.
F
B
A
d1
d d1
F
解: (1)销钉受力如图b所示
F
剪切面
F
d
F
F
2
2
挤压面
d
B
A
d1
d d1
F
(2)校核剪切强度
剪切面
F
由截面法得两个面上的剪力
FS
F 2
d
剪切面积为 A d 2
4
FS 51MPa
3
2
1
l
a
a
B
C
A
F
解:(1) 平衡方程
Fx 0 Fx 0 l
3 a
2 a
1
Fy 0
B
C
A
FN1 FN2 FN3 F 0
MB 0
F FN3
FN2
FN1
3 a
2 a
1
工程力学材料力学-知识点-及典型例题

作出图中AB杆的受力图。
A处固定铰支座B处可动铰支座作出图中AB、AC杆及整体的受力图。
B、C光滑面约束A处铰链约束DE柔性约束作图示物系中各物体及整体的受力图。
AB杆:二力杆E处固定端C处铰链约束(1)运动效应:力使物体的机械运动状态发生变化的效应。
(2)变形效应:力使物体的形状发生和尺寸改变的效应。
3、力的三要素:力的大小、方向、作用点。
4、力的表示方法:(1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!)(2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。
5、约束的概念:对物体的运动起限制作用的装置。
6、约束力(约束反力):约束作用于被约束物体上的力。
约束力的方向总是与约束所能限制的运动方向相反。
约束力的作用点,在约束与被约束物体的接处7、主动力:使物体产生运动或运动趋势的力。
作用于被约束物体上的除约束力以外的其它力。
8、柔性约束:如绳索、链条、胶带等。
(1)约束的特点:只能限制物体原柔索伸长方向的运动。
(2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。
()9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。
(1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。
被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。
(2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。
()10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。
约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。
()11、固定铰支座(1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。
(2)约束反力的特点:固定铰支座的约束反力同中间铰的一样,也是方向未定的一个力;用一对正交的力来表示,指向假定。
()12、可动铰支座(1)约束的构造特点把固定铰支座的底部安放若干滚子,并与支撑连接则构成活动铰链支座约束,又称锟轴支座。
材料力学典型例题与详解(经典题目)

所以石柱体积为
V3
=
G ρ
=
[σ ]A(l) − ρ
F
= 1×106 Pa ×1.45 m 2 −1000 ×103 N = 18 m3 25 ×103 N/m3
三种情况下所需石料的体积比值为 24∶19.7∶18,或 1.33∶1.09∶1。 讨论:计算结果表明,采用等强度石柱时最节省材料,这是因为这种设计使得各截面的正应 力均达到许用应力,使材料得到充分利用。 3 滑轮结构如图,AB 杆为钢材,截面为圆形,直径 d = 20 mm ,许用应力 [σ ] = 160 MPa ,BC 杆为木材,截面为方形,边长 a = 60 mm ,许用应力 [σ c ] = 12 MPa 。试计算此结构的许用载
= 1.14 m 2
A
2=
F+ρ [σ ] −
A1 l1 ρ l2
=
1000 ×103 N + 25 ×103 N/m3 ×1.14 m 2 × 5 m 1×106 N/m 2 − 25×103 N/m3 × 5 m
= 1.31 m 2
A
3=
F
+ ρA1l1 + ρA2l2 [σ ] − ρ l3
= 1000 ×103 N + 25 ×103 N/m3 ×1.14 m 2 × 5 m + 25×103 N/m3 ×1.31 m 2 × 5 m = 1.49m 2 1×106 N/m 2 − 25 ×103 N/m3 × 5 m
解:1、计算 1-1 截面轴力:从 1-1 截面将杆截成两段,研究上半段。设截面上轴力为 FN1 ,
为压力(见图 b),则 FN1 应与该杆段所受外力平衡。杆段所受外力为杆段的自重,大
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学(一)轴向拉伸与压缩【内容提要】材料力学主要研究构件在外力作用下的变形、受力与破坏、失效的规律。
为设计既安全可靠又经济合理的构件,提供有关强度、刚度与稳定性分析的基本理论与方法。
【重点、难点】重点考察基本概念,掌握截面法求轴力、作轴力图的方法,截面上应力的计算。
【内容讲解】一、基本概念强度——构件在外力作用下,抵抗破坏的能力,以保证在规定的使用条件下,不会发生意外的断裂或显著塑性变形。
刚度——构件在外力作用下,抵抗变形的能力,以保证在规定的使用条件下不会产生过分的变形。
稳定性——构件在外力作用下,保持原有平衡形式的能力,以保证在规定的使用条件下,不会产生失稳现象。
杆件——一个方向的尺寸远大于其它两个方向的尺寸的构件,称为杆件或简称杆。
根据轴线与横截面的特征,杆件可分为直杆与曲杆,等截面杆与变截面杆。
二、材料力学的基本假设工程实际中的构件所用的材料多种多样,为便于理论分析,根据它们的主要性质对其作如下假设。
(一)连续性假设——假设在构件所占有的空间内均毫无空隙地充满了物质,即认为是密实的。
这样,构件内的一些几何量,力学量(如应力、位移)均可用坐标的连续函数表示,并可采用无限小的数学分析方法。
(二)均匀性假设——很设材料的力学性能与其在构件中的位置无关。
按此假设通过试样所测得的材料性能,可用于构件内的任何部位(包括单元体)。
(三)各向同性假设——沿各个方向均具有相同力学性能。
具有该性质的材料,称为各向同性材料。
综上所述,在材料力学中,一般将实际材料构件,看作是连续、均匀和各向同性的可变形固体。
三、外力内力与截面法(一)外力对于所研究的对象来说,其它构件和物体作用于其上的力均为外力,例如载荷与约束力。
外力可分为:表面力与体积力;分布力与集中力;静载荷与动载荷等。
当构件(杆件)承受一般载荷作用时,可将载荷向三个坐标平面(三个平面均通过杆的轴线,其中两个平面为形心主惯性平面)内分解,使之变为两个平面载荷和一个扭转力偶作用情况。
在小变形的情况下,三个坐标平面内的力互相独立,即一个坐标平面的载荷只引起这一坐标平面内的内力分量,而不会引起另一坐标平面内的内力分量。
此即小变形条件的叠加法。
(二)内力与截面法内力在外力作用下,构件发生变形,同时,构件内部相连各部分之间产生相互作用力,由于外力作用,构件内部相连两部分之间的相互作用力,称为内力。
截面法将构件假想地截(切)开以显示内力,并由平衡条件建立内力与部分外力间的关系或由部分外力确定内力的方法,称为截面法。
由连续性假设可知,内力是作用在切开面截面上的连续分布力。
称连续分布内力。
将连续分布内力向横截面的形心C简化,得主矢与主矩。
为了分析内力,沿截面轴线建立轴,在所切横截面内建立轴和轴,并将主矢与主矩沿x、y、z三轴分解,得内力分量,以及内力偶矩分量。
这些内力及内力偶矩分量与作用在保留杆段上的部分外力,形成平衡力系,并由相应的平衡方程,建立内力与部分外力间的关系,或由部分外力确定内力。
内力分量及内力偶矩分量,统称为内力分量。
(三)应力正应力与剪应力为了描述内力的分布情况,引入内力分布集度即应力的概念。
平均应力在截面m—m上任一点K的周围取一微面积△A,设作用于该面积上的内力为△P,则△A内的平均应力:单元体(微体)围绕某点(如K).切取一无限小的六面体,称为单元体(或微体)。
为全面研究一点处在不同方位的截面上的应力(称为一点的应力状态)而切取的研究对象之一。
四、轴向拉伸与压缩的力学模型轴向拉伸与压缩是杆件受力或变形的一种最基本的形式。
受力特征作用于等直杆两端的外力或其合力的作用线沿杆件的轴线,一对大小相等、矢向相反。
变形特征受力后杆件沿其轴向方向均匀伸长(缩短)即杆件任意两横截面沿杆件轴向方向产生相对的平行移动。
拉压杆以轴向拉压为主要变形的杆件,称为拉压杆或轴向受力杆。
作用线沿杆件轴向的载荷,称为轴向载荷五、轴力轴力图㈠轴力拉压杆横截面上的内力,其作用线必是与杆轴重合,称为轴力。
用N_表示。
是拉压杆横截面上唯一的内力分量。
轴力N符号规定拉力为正,压力为负。
根据截面法和轴力N正负号规定,可得计算拉压杆轴力N的法则:横截面上的轴力N,在数值上等于该截面的左侧(或右侧)杆上所有轴向外力的代数和。
无论左侧或右侧杆上,方向背离截面的轴向外力均取正值:反之则取负值。
(二)轴力图表示沿杆件轴向各横截面上轴力变化规律的图线。
称为轴力图或N图。
以x轴为横坐标平行于杆轴线,表示横截面位置,以N轴为纵坐标,表示相应截面上的轴力值。
六、拉压杆横截上、斜截面上的应力(一) 拉压杆横截上的应力(二)拉压杆斜截面上的应力由拉压杆横截面上的应力均匀分布,可推断斜截面上的应力,也为均匀分布,且其方向必与杆轴平行。
斜截面上剪应力符号规定:将截面外法线,沿顺时方向旋转900,与该方向同向的剪应力为正。
七、材料拉压时力学性能强度条件㈠破坏(失效)许用应力由于脆性材料均匀性较差,且断裂又是突然发生的,其达到极限应力时的危险性要比塑性材料大的多,因此,在普通荷载作用下,比大,一般取 =1.5~2.0;对脆性材料规定取 =2.5~3.0,甚至更大。
㈡强度条件利用上述条件,可解决以下三类问题。
1.校核强度_当已知拉压杆所受外力,截面尺寸和许用应力,通过比较工作应力与许用应力大小,以判断该杆在所受外力作用下能否安全工作。
2.选择截面尺寸若已知拉压杆所受外力和许用应力,由强度条件确定该杆所需截面面积。
对于等截面拉压杆,其所需横截面面积为3.确定承载能力若已知拉压杆截面尺寸和许用应力,由强度条件可以确定该杆所能承受的最大轴力,其值为八、轴向拉压变形轴向拉压应变能当杆件承受轴向载荷后,其轴向与横向尺寸均发生变化,杆件沿轴向方向的变形称为轴向变形或纵向变形;垂直于轴向方向的变形称为横向变形。
与此同时,杆件因变形而贮存的能量,称为应变能。
(一)轴向变形与胡克定律试验表明:轴向拉伸时,轴向伸长,横向尺寸减小;轴向压缩时,轴向缩短,横向尺寸增大,即横向线应变与轴向线应变恒为异号。
且在比例极限内,横向线应变与轴向线应变成正比。
比例系数用表示,称为泊松比。
它是一个常数,其值随材料而异,由试验测定。
材料的弹性模量E、泊松比v与剪变模量G之间存在如下关系:当已知任意两个弹性常数,即可由上式确定第三个弹性常数,可见各向同性材料只有两个独立的弹性常数。
(三)轴向拉压应变能应变能在外力作用下,杆件发生变形,力在相应的位移上作功,同时在杆内贮存的能量称为应变能。
用W表示外力功,用U表示相应应变能。
在线弹性范围内,在静载荷作用下,杆内应变能等于外力功轴向拉压应变能:【例题1】等直杆承受轴向载荷如图,其相应轴力图为()。
A. (A)B. (B)C. (C)D. (D)答案:A【例题5】在相距2m的AB两点之间,水平地悬挂一根直径d=1mm的钢型在中点C逐渐增加荷载P。
设钢丝在断裂前服从虎克定律,E=2x 1O5MPa,在伸长率达到0.5%时拉断,则断裂时钢丝内的应力和C点的位移分别为( )A.26.5B. 51C. 63.6D. 47.1答案:B【例题8】低碳钢拉伸经过冷作硬化后,以下四种指标中得到提高为在()。
A. 强度极限B. 比例极限C. 断面收缩率D. 伸长率(延伸率)答案:B(二)剪切【内容提要】本讲主要讲连接件和被连接件的受力分析,区分剪切面与挤压面的区别,剪切和挤压的计算分析,剪力互等定理的意义及剪切虎克定律的应用。
【重点、难点】本讲的重点是剪切和挤压的受力分析和破坏形式及其实用计算,难点是剪切面和挤压面的区分,挤压面积的计算。
一、实用(假定)计算法的概念螺栓、销钉、铆钉等工程上常用的连接件及其被连接的构件在连接处的受力与变形一般均较复杂,要精确分析其应力比较困难,同时也不实用,因此,工程上通常采用简化分析方法或称为实用(假定)计算法。
具体是:1.对连接件的受力与应力分布进行简化假定,从而计算出各相关部分的“名义应力”;2.对同样连接件进行破坏实验,由破坏载荷采用同样的计算方法,确定材料的极限应力。
然后,综合根据上述两方面,建立相应的强度条件,作为连接件设计的依据。
实践表明,只要简化假定合理,又有充分的试验依据,这种简化分析方法是实用可靠的。
二、剪切与剪切强度条件当作为连接件的铆钉、螺栓、销钉、键等承受一对大小相等、方向相反、作用线互相平行且相距很近的力作用时,当外力过大;其主要破坏形式之一是沿剪切面发生剪切破坏,如图2-1所示的铆钉连接中的铆钉。
因此必须考虑其剪切强度问题。
连接件(铆钉)剪切面上剪应力r:假定剪切面上的剪应力均匀分布。
于是,剪应力与相应剪应力强度条件分别为(2-1)(2-2)式中:为剪切面上内力剪力;为剪切面的面积;[ ]为许用剪应力,其值等于连接件的剪切强度极限除以安全系数。
如上所述,剪切强度极限值,也是按式(2-1)由剪切破坏载荷确定的。
需要注意,正确确定剪切面及相应的剪力。
例如图2-1(a)中铆钉只有一个剪切面,而图2-1(b) 中铆钉则有两个剪切面。
相应的剪力值均为P。
三、挤压与挤压强度条件在承载的同时,连接件与其所连接的构件在相互直接接触面上发生挤压,因而产生的应力称为挤压应力。
当挤压应力过大时,将导致两者接触面的局部区域产生显著塑性变形,因而影响它们的正常配合工作,连接松动。
为此必须考虑它们的挤压强度问题。
如图2—2所示的铆钉连接中的铆钉与钢板间的挤压。
连接件与其所连接的构件,挤压面上挤压应力。
:假定挤压面上的挤压应力均匀分布。
于是;挤压应力,与相应的挤压强度条件分别为式中:Pc为挤压面上总挤压力;Ac为挤压面的面积。
当挤压面为半圆柱形曲面时取垂直挤压力方向直径投影面积。
如图2—2所示的取Ac=dt。
[]为许用挤压应力其值等于挤压极限应力除以安全系数。
在实用(假定)计算中的许用剪应力[]、许用挤压应力[ ],与许用拉应力[]之间关系有:对于钢材[ ]=(0.75~0.80)[ ][]=(1.70~2.00)[]四、纯剪切与剪应力互等定理(一) 纯剪切:若单元体上只有剪应力而无正应力作用,称为纯剪切。
如图2-3(a)所示,是单元体受力最基本、最简单的形式之一。
在剪应力作用下.相邻棱边所夹直角的改变量.称为剪应变,用表示,其单位为rad。
如图2-3(b)所示。
(二)剪应力互等定理:在互相垂直的两个平面上,垂直于两平面交线的剪应力,总是大小相等,而方向则均指向或离开该交线(图2-3),即证明:设单元体边长分别为,单元体顶、底面剪应力为,左、右侧面的剪应力为(图2-4a)则由平衡方程得同理可证,当有正应力作用时(图2-3b),剪应力互等定理仍然成立五、剪切胡克定律试验表明,在弹性范围内,剪应力不超过材料的剪应力比例极限,剪应力与剪应变成正比,即式中G称为材料的剪变模量。