材料力学题目及答案

合集下载

材料力学拉伸与扭转题目答案

材料力学拉伸与扭转题目答案

75
2
3
1
A
B
C
P
40
80
80
变形相容条件 变形后三根杆与梁 仍绞接在一起。 变形几何方程
2 l2 l1 l3
2
3
1
A
B
C
l1
P
l2
l3
40
80
80
75
2 l2 l1 l3
补充方程
2 N 2 l2 N1l1 N3l3 EA EA EA
静力平衡方程
N1 N2 N3 P 0 2N2 4N3 P 0
2
3
1
A
B
C
P
40
80
80
N1
N2
N3
P
75
3、阶梯形圆杆AE段为空心,外径 D =140mm,内径 d=100mm。BC段为实心,直径 d=100mm。外力偶矩 mA=18KN.m,mB=32KN.m,mC=14KN.m。已知许用切应力 []=80MPa 。试校核轴的强度。
mA
D
d
A
E
mB mC
二、计算题
1:悬臂吊车如图所示。G=20KN,许用应力 []=120MPa,弹性模量E=200GPa。AB杆为圆钢。试设计 AB杆的直径并计算其伸长量l
A
C
300
3m
D B
2m
G
1、解:计算AB杆的轴力
A
mc 0
3N AB sin300 5G 0
C
300
D
NAB=66.7KN (1) 设计AB杆的直径
d
C B
mAB =18KN.m ,mBD =14KN.m
BC
M nBC Wn

材料力学习题01拉压剪切

材料力学习题01拉压剪切

拉伸与压缩一、 选择题 (如果题目有5个备选答案选出其中2—5个正确答案,有4个备选答案选出其中一个正确答案。

)1.若两等直杆的横截面面积为A ,长度为l ,两端所受轴向拉力均相同,但材料不同,那么下列结论正确的是( )。

A .两者轴力相同应力相同B .两者应变和仲长量不同C .两者变形相同D .两者强度相同E .两者刚度不同2.一圆截面直杆,两端承受拉力作用,若将其直径增大一倍,其它条件不变,则( )。

A .其轴力不变B .其应力将是原来的1/4C .其强度将是原来的4倍D .其伸长量将是原来的1/4E .其抗拉强度将是原来的4倍3.设ε和1ε分别表示拉压杆的轴向线应变和横向线应变,μ为材料的泊松比,则下列结论正确的是( )。

A .εεμ1=B .εεμ1-=C .εεμ1= D .εεμ1-= E .常数时,=≤μσσ p 4.钢材经过冷作硬化处理后,其性能的变化是( )。

A .比例极限提高 B .屈服极限提高C .弹性模量降低D .延伸率提高E .塑性变形能力降低5.低碳钢的拉伸σ-ε曲线如图1-19所示若加载至强化阶段的C 点,然后卸载,则应力回到零值的路径是( )。

A .曲线cbaoB .曲线cbf (bf ∥oa )C .直线ce (ce ∥oa )D .直线cd (cd ∥o σ轴)6.低碳钢的拉伸σ-ε曲线如图l —19,若加载至强化阶段的C 点时,试件的弹性应变 和塑性应变分别是( )。

A .弹性应变是ofB .弹性应变是oeC .弹性应变是edD .塑性应变是ofE .塑性应变是oe7.图l-2l 表示四种材料的应力—应变曲线,则: (1)弹性模量最大的材料是( );(2)强度最高的材料是( ); (3)塑性性能最好的材料是( )。

8.等截面直杆承受拉力,若选用三种不同的截面形状:圆形、正方形、空心圆,比较材料用量,则( )。

A .正方形截面最省料B .圆形截面最省料C .空心圆截面最省料D .三者用料相同9.若直杆在两外力作用下发生轴向拉伸(压缩)变形,则此两外力应满足的条件是 A .等值 B .反向 C .同向D .作用线与杆轴线重合E .作用线与轴线垂直 10.轴向受拉杆的变形特征是( )。

材料力学试题及答案期末

材料力学试题及答案期末

材料力学试题及答案期末期末考试是学生们在学期结束时面临的一项重要考核。

在材料力学这门课程中,试题的设计和答案的准确性对于学生的学习成绩至关重要。

本文将为大家提供一套材料力学试题,并给出详细的答案解析。

试题一:弹性模量的计算1. 弹簧的伸长量随外力的大小而变化,如果给定外力-伸长量的关系图,如下图所示,试求该材料的弹性模量。

(图略)解答:根据胡克定律,应力与应变之间的关系为:σ = Eε其中,σ为应力,E为弹性模量,ε为应变。

弹性模量E的计算公式为:E = σ/ε根据图中的数据,我们可以求得外力-伸长量的关系为:外力(F):10 N,20 N,30 N伸长量(ΔL):0.5 mm,1 mm,1.5 mm根据胡克定律以及弹性模量的计算公式,我们可以得到如下关系式:E = σ/ε = F/A / ΔL/L其中,A为横截面积,L为原长。

假设A与L的值为常数,则可以推导得到:E = F/ΔL * L/A根据给定的数据代入公式计算,可以得到:当F = 10 N 时,E = 10 N / 0.5 mm * L/A = 20 / mm * L/A当F = 20 N 时,E = 20 N / 1 mm * L/A = 20 / mm * L/A当F = 30 N 时,E = 30 N / 1.5 mm * L/A = 20 / mm * L/A由此可见,无论外力的大小,材料的弹性模量均为20 / mm * L/A。

试题二:杨氏模量的测定2. 某学生通过实验测得一块金属试样在受力时的应变与应力之间的关系如下图所示。

试求该金属试样的杨氏模量。

(图略)解答:根据实验数据绘制的应力-应变曲线,可以看出,在线段OA区域内,应力与应变呈线性关系。

通过直线OA的斜率可以求得该材料的杨氏模量。

根据图中的数据,我们可以计算出斜率为:斜率K = Δσ/Δε = (350 MPa - 250 MPa) / (0.0025 - 0.0020) = 400 MPa / 0.0005 = 8 * 10^5 Pa根据公式,杨氏模量E等于斜率K乘以应变ε,即:E = K * ε根据给定的数据代入公式计算,可以得到:E = 8 * 10^5 Pa * 0.0025 = 2 * 10^3 Pa所以该金属试样的杨氏模量为2 * 10^3 Pa。

考研材料力学考试题及答案

考研材料力学考试题及答案

考研材料力学考试题及答案# 考研材料力学考试题及答案## 一、选择题1. 材料力学中,下列哪一项不是材料的基本力学性质?A. 弹性B. 塑性C. 韧性D. 硬度答案: D2. 在单向拉伸试验中,材料的屈服强度是指:A. 材料开始发生永久变形的应力B. 材料发生断裂的应力C. 材料发生弹性变形的应力D. 材料发生塑性变形的应力答案: A## 二、简答题1. 简述材料力学中弹性模量和剪切模量的定义及其物理意义。

答案:弹性模量(E)是指材料在单向拉伸或压缩时,应力与应变的比值。

它反映了材料抵抗变形的能力,数值越大,材料的刚度越大。

剪切模量(G)是材料在剪切状态下,剪切应力与剪切应变的比值,它描述了材料抵抗剪切变形的能力。

2. 描述材料的疲劳破坏现象及其影响因素。

答案:疲劳破坏是指材料在反复加载和卸载过程中,即使应力水平低于材料的屈服强度,也可能发生断裂的现象。

影响疲劳破坏的因素包括应力幅度、循环次数、加载频率、材料的微观结构和环境因素等。

## 三、计算题1. 某材料的弹性模量E=200 GPa,泊松比ν=0.3。

当该材料的一端受到100 MPa的拉伸应力时,求另一端的正应变。

答案:根据胡克定律,正应变ε可以由以下公式计算:\[\epsilon = \frac{\sigma}{E}\]其中,σ为应力,E为弹性模量。

代入数值得到:\[\epsilon = \frac{100 \times 10^6 \text{ Pa}}{200 \times10^9 \text{ Pa}} = 5 \times 10^{-4}\]2. 一个直径为d的圆杆,受到轴向拉伸力P,若材料的许用应力为σ,求该圆杆的许用长度L。

答案:圆杆的许用长度L可以通过以下公式计算:\[L = \frac{P}{\sigma \cdot \frac{\pi d^2}{4}}\]其中,P为轴向拉伸力,σ为许用应力,d为圆杆直径。

## 四、论述题1. 论述材料力学在工程结构设计中的应用及其重要性。

材料力学典型例题与详解(经典题目)

材料力学典型例题与详解(经典题目)
G = [σ ]A(l) − F
所以石柱体积为
V3
=
G ρ
=
[σ ]A(l) − ρ
F
= 1×106 Pa ×1.45 m 2 −1000 ×103 N = 18 m3 25 ×103 N/m3
三种情况下所需石料的体积比值为 24∶19.7∶18,或 1.33∶1.09∶1。 讨论:计算结果表明,采用等强度石柱时最节省材料,这是因为这种设计使得各截面的正应 力均达到许用应力,使材料得到充分利用。 3 滑轮结构如图,AB 杆为钢材,截面为圆形,直径 d = 20 mm ,许用应力 [σ ] = 160 MPa ,BC 杆为木材,截面为方形,边长 a = 60 mm ,许用应力 [σ c ] = 12 MPa 。试计算此结构的许用载
= 1.14 m 2
A
2=
F+ρ [σ ] −
A1 l1 ρ l2
=
1000 ×103 N + 25 ×103 N/m3 ×1.14 m 2 × 5 m 1×106 N/m 2 − 25×103 N/m3 × 5 m
= 1.31 m 2
A
3=
F
+ ρA1l1 + ρA2l2 [σ ] − ρ l3
= 1000 ×103 N + 25 ×103 N/m3 ×1.14 m 2 × 5 m + 25×103 N/m3 ×1.31 m 2 × 5 m = 1.49m 2 1×106 N/m 2 − 25 ×103 N/m3 × 5 m
解:1、计算 1-1 截面轴力:从 1-1 截面将杆截成两段,研究上半段。设截面上轴力为 FN1 ,
为压力(见图 b),则 FN1 应与该杆段所受外力平衡。杆段所受外力为杆段的自重,大

第五版材料力学答案

第五版材料力学答案

第五版材料力学答案1. 什么是材料的弹性模量?材料的弹性模量是描述材料在受力作用下的变形能力的物理量,它是应力和应变之间的比值。

弹性模量越大,材料的刚度越大,变形能力越小;弹性模量越小,材料的刚度越小,变形能力越大。

常见的弹性模量有弹性模量、剪切模量和体积模量等。

2. 什么是材料的屈服强度?材料的屈服强度是指材料在受到外力作用下开始发生塑性变形的应力值。

超过屈服强度后,材料将发生不可逆的塑性变形。

屈服强度是材料的重要力学性能参数,对于材料的强度和使用性能有重要影响。

3. 什么是材料的断裂韧性?材料的断裂韧性是描述材料在受到外力作用下抵抗断裂的能力。

断裂韧性越大,材料在受到外力作用下越不容易发生断裂。

断裂韧性是衡量材料抗断裂能力的重要指标,对于材料的使用安全性具有重要意义。

4. 什么是材料的疲劳强度?材料的疲劳强度是指材料在交变应力作用下能够承受的最大应力值。

材料在长期交变应力作用下容易发生疲劳破坏,疲劳强度是描述材料抗疲劳破坏能力的重要参数,对于材料的使用寿命具有重要影响。

5. 什么是材料的弹性极限?材料的弹性极限是指材料在受到外力作用下发生弹性变形的极限应力值。

超过弹性极限后,材料将发生塑性变形。

弹性极限是描述材料在受力作用下的弹性变形能力的重要参数,对于材料的设计和使用具有重要意义。

6. 什么是材料的刚度?材料的刚度是描述材料在受力作用下的变形能力的物理量,它是应力和应变之间的比值。

刚度越大,材料在受力作用下的变形能力越小;刚度越小,材料在受力作用下的变形能力越大。

刚度是描述材料力学性能的重要参数,对于材料的设计和使用具有重要影响。

7. 什么是材料的蠕变强度?材料的蠕变强度是指材料在高温和持续应力作用下发生蠕变变形的能力。

蠕变强度是描述材料在高温条件下的稳定性能的重要参数,对于材料在高温环境下的使用具有重要影响。

总结,材料力学是工程学、材料学和力学的交叉学科,对于材料的性能分析和设计具有重要意义。

材料力学本科

材料力学本科

材料力学作业一一、填空题1、轴向拉伸的等直杆,杆内的任一点处最大剪应力的方向与轴线成( )。

2、受轴向拉伸的等直杆,在变形后其体积将( )。

3、低碳钢经过冷做硬化处理后,它的( )极限得到了明显的提高。

4、工程上通常把延伸率δ>( )的材料成为塑性材料。

5、一空心圆截面直杆,其内、外径之比为0.8,两端承受力力作用,如将内外径增加一倍,则其抗拉刚度将是原来的( )倍。

二、选择题1、理论力学中的“力和力偶可传性原理”在下面成立的是( ) A 在材料力学中仍然处处适用 B 在材料力学中根本不能适用C 在材料力学中研究变形式可以适用D 在材料力学研究平衡问题时可以适用 2、 下列结论中正确的是( ) A 外力指的是作用与物体外部的力 B 自重是外力C 支座约束反力不属于外力D 惯性力不属于外力3、下列结论中正确的是( )A 影响材料强度的是正应力和切应力的大小。

B 影响材料强度的是内力的大小。

C 同一截面上的正应力必是均匀分布的。

D 同一截面上的剪应力必定是均匀分布的。

4、下列结论中正确的是( )A 一个质点的位移可以分为线位移和角位移B 一个质点可以有线位移,但没有角位移。

C 一根线或一个面元素可以有角位移但没线位移D 一根线或一个面元素可以有线位移但没角位移5、设低碳钢拉伸试件工作段的初始横截面面积为0A ,试件被拉断后端口的最小横截面面积为1A ,试件断裂后所能承受的最大荷载为b P 。

则下列结论正确是( )A 材料的强度极限1/b b P A σ=B 材料的强度极限0/b b P A σ=C 试件应力达到强度极限的瞬时,试件横截面面积为0APD 试件开始断裂时,试件承受的荷载是b参考答案一、填空题1、45度2、增大3、比例4、5%5、4二、选择题1、D2、B3、A4、B5、B材料力学作业二一、是非判断题1、圆杆受扭时,杆内各点处于纯剪切状态。

()2、圆杆扭转变形实质上是剪切变形。

()3、非圆截面杆不能应用圆截面杆扭转切应力公式,是因为非圆截面杆扭转时“平截面假设”不能成立。

材料力学试的题目及答案

材料力学试的题目及答案

一、判断题(正确打“√”,错误打“X ”,本题满分为10分) 1、拉杆伸长后,横向会缩短,这是因为杆有横向应力的存在。

( )2、圆截面杆件受扭时,横截面上的最大切应力发生在横截面离圆心最远处。

( )3、两梁的跨度、承受载荷及支承相同,但材料和横截面面积不同,因而两梁的剪力图和弯矩图不一定相同。

( )4、交变应力是指构件内的应力,它随时间作周期性变化,而作用在构件上的载荷可能是动载荷,也可能是静载荷。

( )5、弹性体的应变能与加载次序无关,只与载荷的最终值有关。

( )6、单元体上最大切应力作用面上必无正应力。

( )7、平行移轴公式表示图形对任意两个相互平行轴的惯性矩和惯性积之间的关系。

( ) 8、动载荷作用下,构件内的动应力与材料的弹性模量有关。

( )9、构件由突加载荷所引起的应力,是由相应的静载荷所引起应力的两倍。

( ) 10、包围一个点一定有一个单元体,该单元体各个面上只有正应力而无切应力。

( ) 二、选择题(每个2分,本题满分16分)1.应用拉压正应力公式A FN =σ的条件是( )。

A 、应力小于比例极限;B 、外力的合力沿杆轴线;C 、应力小于弹性极限;D 、应力小于屈服极限。

2.梁拟用图示两种方式搁置,则两种情况下的最大弯曲正应力之比 )(m ax )(m ax b a σσ 为( )。

A 、1/4; B 、1/16; C 、1/64; D、16。

3、关于弹性体受力后某一方向的应力与应变关系有如下论述:正确的是 。

A 、有应力一定有应变,有应变不一定有应力; B 、有应力不一定有应变,有应变不一定有应力; C 、有应力不一定有应变,有应变一定有应力; D 、有应力一定有应变,有应变一定有应力。

4、火车运动时,其轮轴横截面边缘上危险点的应力有四种说法,正确的是 。

A :脉动循环应力: B :非对称的循环应力; C :不变的弯曲应力;D :对称循环应力h4h(a) h4h(b)5、如图所示的铸铁制悬臂梁受集中力F 作用,其合理的截面形状应为图( )6、对钢制圆轴作扭转校核时,发现强度和刚度均比规定的要求低了20%,若安全因数不变,改用屈服极限提高了30%的钢材,则圆轴的( ) A 、 强度、刚度均足够;B 、强度不够,刚度足够; C 、强度足够,刚度不够;D 、强度、刚度均不够。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学题目及答案Revised on November 25, 2020习题3-1图(a)习题3-2图(a)习题3-3图 习题3-4图 第3章 弹性杆件横截面上的正应力分析3-1 桁架结构受力如图示,其上所有杆的横截面均为20mm ×50mm 的矩形。

试求杆CE 和杆DE 横截面上的正应力。

解:图(a )中,54cos =θ (1)截面法受力图(a )0=∑D M ,03)515(4=⨯+-⨯CE F (2) F CE = 15 kN0=∑x F ,40cos =θDE F (3) (1)代入(3),得F DE = 50 kN∴ 1505.002.010153=⨯⨯==A F CE CE σMPa 50==AFDE DE σMPa3-2 图示直杆在上半部两侧面受有平行于杆轴线的均匀分布载荷,其集度p = 10kN/m ,在自由端D 处作用有集中呼F P = 20 kN 。

已知杆的横截面面积A = ×10-4m 2,l = 4m 。

试求:1.A 、B 、E 截面上的正应力;2.杆内横截面上的最大正应力,并指明其作用位置。

解:由已知,用截面法求得 F N A = 40 kN F N B = 20 kN F N E = 30 kN(1)200100.2104043N =⨯⨯==-A F A A σMPa 100N ==A FB B σMPa150N ==AFE E σMPa(2)200max ==A σσMPa (A 截面)3-3 图示铜芯与铝壳组成的复合材料杆,轴向拉伸载荷F P 通过两端的刚性板加在杆上。

试: 1.写出杆横截面上的正应力与F P 、d 、D 、E c 、E a 的关系式;2.若已知d = 25mm ,D = 60mm ;铜和铝的单性模量分别为E c = 105GPa 和E a = 70GPa ,F P = 171 kN 。

试求铜芯与铝壳横截面上的正应力。

解:1.变形谐调:a a Na c c Nc A E F A E F = (1)P Na Nc F F F =+(2)∴ ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+==-⋅+⋅=+==4)(π4π)(4π4π22a 2c P a a Na a 22a 2c P a a c c P c c Nc cd D E d E F E A F d D E d E F E A E A E F E A F c σσ2. 5.83)025.006.0(π1070025.0π10105101711010542292939c =-⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯=σMPa6.55105705.83c a c a =⨯==E E σσMPa 3-4 图示由铝板钢板组成的复合材料柱,纵向截荷F P 通过刚性平板沿着柱的中心线施加在其上。

试:1.导出复合材料柱横截面上正应力与F P 、b 0、b 1、h 和E a 、E s 之间的关系式;2.已知F P = 385kN ;E a = 70GPa ,E s = 200GPa ;b 0 = 30mm ,b 1 = 20mm ,h = 50mm 。

求铝板与钢板横截面上的最大正应力。

解:变形谐调:aa Na s s Ns A E F A E F = (1)习题3-5图 习题3-6图习题3-7图习题3-8图 (a)P Na Ns F F F =+ (2)1. a1s 0Ps 1a 0s P s s Ns s 22hE b hE b F E h b E h b E F E A F +=⋅+=-=σ 2. 175107005.002.021020005.003.01038502009939s -=⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯-=σMPa (压)25.6120070175175s a a -=-=-=E E σMPa (压) 3-5 从圆木中锯成的矩形截面梁,受力及尺寸如图所示。

试求下列两种情形下h 与b 的比值:1.横截面上的最大正应力尽可能小; 2.曲率半径尽可能大。

解:1.)(66222b d b M bh M W M zz z z -===σ ∴2=bh(正应力尽可能小) 2.zz z EI M =ρ10d d =h I z ,得2243d h = ∴ 3=bh(曲率半径尽可能大)3-6 梁的截面形状为正方形去掉上、下角,如图所示。

梁在两端力偶M z 作用下发生弯曲。

设正方形截面时,梁内最大正应力为0σ;去掉上、下角后,最大正应力变为0max σσk =,试求:1.k 值与h 值之间的关系;2.max σ为尽可能小的h 值,以及这种情形下的k 值。

解:3400h I zh =,3300h W z = )34()34(3)34(3023002300230max h h h h h h h h h h h h k -=-=-==σσ (1)0)338(0=-h h h ,h = 0(舍去),098h h =代入(1):9492.0)812(64381)384()98(1)9834()98(200203=-⨯⨯=-=⨯-=h h h h k3-7 工字形截面钢梁,已知梁横截面上只承受M z = 20 kN ·m 一个内力分量,I z = ×106mm 4,其他尺寸如图所示。

试求横截面中性轴以上部分分布力系沿x 方向的合力。

解:⎰⎰⎰-+-==21 2N d d d A z z A z z A x x A y I MA y I M A F σ 143101433-=⨯-=kN即上半部分布力系合力大小为143 kN (压力),作用位置离中心轴y = 70mm 处,即位于腹板与翼缘交界处。

3-8 图示矩形截面(b ·h )直梁,在弯矩M z 作用的Oxy 平面内发生平面弯曲,且不超出弹性范围,假定在梁的纵截面上有y 方向正应力y σ存在,且沿梁长均匀分布。

试: 1.导出)(y y y σσ=的表达式; 2.证明:max max 4x y hσρσ-≈,ρ为中性面的曲率半径。

解:1.先求)(y y σ表达式:⎰⎰--=⋅⋅+⋅⋅⋅⋅=∑yh x y y y y F 2220d 12sin2cos d 1θσϕϕρσθθ习题3-9图习题3-10图 (a) h t即 0d 2sin 22sin22=-+⎰-y y I M yh z z y y θθρσ,(y I M z z x -=σ)即 0)4(212sin 22sin 222=-⋅-h y I M z z y y θθρσ∴ )4(222y h I M z y z y --=ρσ(a )2.由(a )式,令0d d =yy σ,得y = 0,则max 2max ,44248x z z y z z y z y z y hW M h h I M h I M h σρρρρσ-≈⋅-=⋅-=-= (b )3-9 图示钢管和铝管牢固地粘成复合材料管,在两端力偶M z 作用下发生平面弯曲,试: 1.导出管横截面上正应力与M z 、D 1、D 2、D 3和钢的E s 、铝的E a 之间的关系式;2.已知D 1 = 20mm ,D 2 = 36mm ,D 3 = 44mm ;M z = 800N ·m ;E s = 210GPa ,E a = 70GPa 。

求钢管和铝和铝管横截面上的最大正应力max σ。

解:静力平衡: z M M M =+s a (1)变形谐调:s a ρρ=得ss sa a a I E M I E M =(2) 64)(π4243a D D I -=,64)(π4142s D D I -=(3) 由(2)s ss a a a M I E IE M =(4)代入(1),得 z M M I E I E =+s ss aa )1( aa s s s s s I E I E M I E M z+=(5) ∴ z M I E I E I E M aa s s aa a +=(6)1. )]()([ π644243a 4142s s a a s s s s s s D D E D D E yM E y I E I E M E y I M z z -+--=+-=-=σ,(2221D y D ≤≤) )]()([ π644243a 4142s a a a s s a a a a D D E D D E yM E y I E I E M E y I M z z -+--=+-=-=σ,(2232D y D ≤≤) 2. 13310)]3644(70)2036(210[π1018800210641244443maxs =⨯-⨯+-⨯⨯⨯⨯⨯=--σMPa 1.5410)]3644(70)2036(210[π102280070641244443max a =⨯-⨯+-⨯⨯⨯⨯⨯=--σMPa3-10 由塑料制成的直梁,在横截面上只有M z 作用,如图所示。

已知塑料受拉和受压时的弹性模量分别为E t 和E c ,且已知E c = 2E t ;M z = 600N ·m 。

试求: 1.梁内最大拉、压正应力; 2.中性轴的位置。

解:根据平面假设,应变沿截面高度作直线变化 ∵ E c = 2E t ,εσE =∴ σ沿截面高度直线的斜率不同 ∴中性轴不过截面形心。

1.确定中性轴位置。

设拉压区高度分别为h t 、h c由0=∑x F ,得:02121t max t c max c =⋅⋅+⋅⋅-b h b h σσ即 ccc t max t max c h h h h h -==σσ (1)习题3-11图 习题3-12图 又∵tc max t max c max t t max c c max t max c 22h hE E ===εεεεσσ (2)由(1)、(2),得cc t c c c 22h h h h h h h h -==- 即 2c 2c 2)(h h h =- ⎪⎭⎪⎬⎫=-=∴=-=∴mm 6.58)22(mm 4.41)12(t c h h h h (中性轴的位置)2.⎰⎰⎰⎰⎰⎰⋅+=+=+=ctctctd 2d d d d d c t t t c c t t c t A A A A A A z A E y A yE A yE A yE A y A y M εεεεσσ其中)246(3323233c 3t c t -=⨯+=+bh bh bh I I ∴ )2(1c t t I I E M z +=ρ∴ c ct c c t t c c cmax c 222h I I M h I I M E E h E zz +=+==ρσ69.810)246(310050104.4160021233=⨯-⨯⨯⨯⨯=--MPa (压)∴ 15.6)246(1031005010100)22(60021233t c t t tmax t =-⨯⨯⨯⨯-⨯=+==--h I I M h E z ρσMPa (拉) 3-11 试求图a 、b 中所示的二杆横截面上最大正应力的比值。

相关文档
最新文档