材料力学复习题(附答案)
材料力学题库题库练习题复习题带答案

拉伸与压缩一、选择填空1、 轴向拉伸细长杆件如图所示,__________A .1-1、2-2面上应力皆均匀分布;B .1-1面上应力非均匀分布,2-2面上应力均匀分布;C .1-1面上应力均匀分布,2-2面上应力非均匀分布;D .1-1、2-2面上应力皆非均匀分布。
2、塑性材料试件拉伸试验时,在强化阶段发生__________A .弹性变形;B .塑性变形;C .线弹性变形;D .弹性与塑性变形3、图示平板,两端收均布载荷q 作用,若变形前在板的表面上画上两条平行线AB 和CD (如图所示),则变形后 A AB //CD ,α角减小 B AB //CD ,α角不变 C AB //CD ,α角增大 D AB 不平行于CD ,4、图示超静定直杆的横截面面积为A ,AC 段和CB 段材料相同,在集中力P 作用时,A 、B 两端的支反力为B DCA qqαA. 2P R R B A == B. 322PR R B A ==C. 433PR R B A ==D. 54PR R B A ==5、设杆件横截面面积为A ,轴力为N;该横截面上某点B 处的微小面积为∆A ,∆A 上的微小内力为∆N ,则下列结论中正确的是 (1).=AN为该横截面上的平均正应力. (2).B σ=AN∆∆为点B 处微小面积上的平均正应力.(3).ANA B ∆∆=→∆0limσ为点B 处的正应力.(4).点B 可选在横截面上的任一点处,故横截面上某点处的正应力可表示为A NA ∆∆=→∆0limσ A 、(1),(2) 。
B 、(3),(4)。
C 、(1),(2),(3)。
D 、全对。
6、图示桁架,1、2两杆为铝杆,3杆为钢轩今欲使3杆的内力增大,正确的做法是 。
7、阶梯形杆(如图所示),横截面面积分别为A A A A ==212,,长度分别为l 和2/l ,材料的弹性模量均为E 。
杆件受轴向拉力P 作用时,最大的线应变是 。
材料力学复习题(答案)

工程力学B 第二部分:材料力学扭转1、钢制圆轴材料的剪切弹性模量G=80Gpa,[τ]=50Mpa,mo1][='ϕ,圆轴直径d=100mm;求(1)做出扭矩图;(2)校核强度;(3)校核刚度;(4)计算A,B两截面的相对扭转角.解:3maxmax361030.57[]50(0.1)16tTMPa MPaWττπ⨯===<=⨯030max00 max941806101800.44[]18010(0.1)32m mpTGIϕϕπππ⨯''=⨯=⨯=<=⨯⨯⨯3094(364)2101800.0130.738010(0.1)32ABpTlradGIφππ+-⨯⨯===⨯=⨯⨯⨯∑2、图示阶梯状实心圆轴,AB段直径d1=120mm,BC段直径d2=100mm 。
扭转力偶矩M A=22 kN•m,M B=36 kN•m,M C=14 kN•m。
材料的许用切应力[τ ] = 80MPa ,(1)做出轴的扭矩图;(2)校核该轴的强度是否满足要求。
解:(1)求内力,作出轴的扭矩图(2)计算轴横截面上的最大切应力并校核强度AB段:11,max1tTWτ=()333221064.8MPaπ1201016-⨯==⨯⨯[]80MPaτ<=BC段:()322,max332141071.3MPaπ1001016tTWτ-⨯===⨯⨯[]80MPaτ<=综上,该轴满足强度条件。
3、传动轴的转速为n=500r/min,主动轮A输入功率P1=400kW,从动轮B,C 分别输出功率P2=160kW,P3=240kW。
已知材料的许用切应力[τ]=70MP a,单位长度的许可扭转角[ϕ, ]=1º/m,剪切弹性模量G=80GP a。
(1)画出扭矩图。
(2)试确定AB段的直径d1和BC段的直径d2;(3)主动轮和从动轮应如何安排才比较合理?为什么?解:(1)mNnPM.7639500400954995491e1=⨯==,mNnPM.3056500160954995492e2=⨯==mNnPM.4583500240954995493e3=⨯==,扭矩图如下(2)AB段,按强度条件:][163maxτπτ≤==dTWTt,3][16τπTd≥,mmd2.821070763916361=⨯⨯⨯≥π按刚度条件:m p d GT GI T 004max1][18032180='≤⨯=⨯='ϕπππϕ,4218032π⨯⨯≥G T d mm d 4.86108018076393242901=⨯⨯⨯⨯≥π综合强度和刚度条件得到:mm d 871= BC 段,按强度条件:mm d 3.691070458316362=⨯⨯⨯≥π; 按刚度条件:mm d 0.76108018045833242902=⨯⨯⨯⨯≥π综合强度和刚度条件得到:mm d 762=(3)将主动轮放置中央B 点,受力合力,此时m N T .4583max =弯曲内力4、(1)做出梁的剪力图和弯矩图;(2)求最大剪力maxsF 和弯矩maxM数值。
材料力学复习题答案

材料力学复习题答案1. 材料力学中,材料的弹性模量(E)表示材料抵抗形变的能力,其单位是帕斯卡(Pa)。
若某材料的弹性模量为200 GPa,试计算该材料在受到10 MPa应力作用下产生的应变。
答案:根据胡克定律,应变(ε)等于应力(σ)除以弹性模量(E),即ε = σ/E。
将给定的数值代入公式,得到ε = 10 MPa / 200 GPa = 0.00005 或5×10^-5。
2. 简述材料在拉伸过程中的四个阶段,并说明各阶段的特点。
答案:材料在拉伸过程中的四个阶段包括弹性阶段、屈服阶段、强化阶段和断裂阶段。
弹性阶段中,材料在外力作用下发生形变,当外力移除后,材料能恢复原状。
屈服阶段开始时,材料的形变不再与应力成正比,即使应力不再增加,形变也会继续增加。
强化阶段中,材料在屈服后继续承受应力,需要更大的应力才能使形变继续增加。
最后,在断裂阶段,材料因无法承受进一步的应力而发生断裂。
3. 计算圆轴在扭转时的剪切应力。
已知圆轴的直径为50 mm,材料的剪切模量为80 GPa,扭矩为500 N·m。
答案:圆轴在扭转时的剪切应力(τ)可以通过公式τ = T·r/J计算,其中T为扭矩,r为圆轴的半径,J为极惯性矩。
对于直径为50 mm的圆轴,半径r = 25 mm = 0.025 m。
极惯性矩J = π·r^4/2 = π·(0.025)^4/2 ≈ 9.82×10^-6 m^4。
代入公式得到τ = 500 N·m × 0.025 m / 9.82×10^-6 m^4 ≈ 127.6 MPa。
4. 描述梁在弯曲时的正应力和剪切应力的分布规律。
答案:梁在弯曲时,正应力沿着梁的横截面高度线性分布,最大正应力出现在横截面的最外层纤维上,且与中性轴的距离成正比。
剪切应力在梁的横截面上分布不均匀,最大剪切应力出现在中性轴处,向两侧逐渐减小至零。
(完整版)材料力学试题及答案

一、一结构如题一图所示。
钢杆1、2、3的横截面面积为A=200mm 2,弹性模量E=200GPa,长度l =1m 。
制造时3杆短了△=0。
8mm.试求杆3和刚性梁AB 连接后各杆的内力。
(15分)aalABC123∆二、题二图所示手柄,已知键的长度30 mm l =,键许用切应力[]80 MPa τ=,许用挤压应力bs[]200 MPa σ=,试求许可载荷][F 。
(15分)三、题三图所示圆轴,受eM 作用。
已知轴的许用切应力[]τ、切变模量G ,试求轴直径d 。
(15分)四、作题四图所示梁的剪力图和弯矩图。
(15分)五、小锥度变截面悬臂梁如题五图所示,直径2bad d =,试求最大正应力的位置及大小。
(10分)六、如题六图所示,变截面悬臂梁受均布载荷q 作用,已知q 、梁长l 及弹性模量E .试用积分法求截面A 的得分评分人F键40633400Aal bM eBd a a aqqaqa 2dbBda AF挠度w A 和截面C 的转角θC .(15分)七、如图所示工字形截面梁AB ,截面的惯性矩672.5610zI -=⨯m 4,求固定端截面翼缘和腹板交界处点a 的主应力和主方向。
(15分)一、(15分)(1)静力分析(如图(a))1N F2N F3N F图(a)∑=+=231,0N N N yF F F F(a)∑==31,0N N CF F M(b)(2)几何分析(如图(b))1l∆2l∆3l∆∆图(b)wql /3x lhb 0b (x )b (x )BAC 50kN AB0.75m303030140150zya∆=∆+∆+∆3212l l l(3)物理条件EA l F l N 11=∆,EA l F l N 22=∆,EAl F l N 33=∆ (4)补充方程∆=++EAlF EA l F EA l F N N N 3212 (c) (5)联立(a)、(b)、(c)式解得:kN FkN FF N N N 67.10,33.5231===二、(15分)以手柄和半个键为隔离体,S0, 204000OM F F ∑=⨯-⨯=取半个键为隔离体,bsS20F F F ==由剪切:S []s FA ττ=≤,720 N F = 由挤压:bs bs bs bs[][], 900N FF Aσσ=≤≤取[]720N F =.三、(15分)eABM M M +=0ABϕ=, A B M a M b ⋅=⋅得 e B a M M a b =+, e A b MM a b=+当a b >时 e316π ()[]M ad a b τ≥+;当b a >时 e316π ()[]M bd a b τ≥+。
材料力学试题及答案

材料力学试题及答案一、选择题(每题2分,共20分)1. 材料力学中,下列哪一项不是基本力学性质?A. 弹性B. 塑性C. 硬度D. 韧性2. 材料在拉伸过程中,当应力达到屈服点后,材料将:A. 断裂B. 产生永久变形C. 恢复原状D. 保持不变3. 材料的弹性模量是指:A. 材料的密度B. 材料的硬度C. 材料的抗拉强度D. 材料在弹性范围内应力与应变的比值4. 根据材料力学的胡克定律,下列说法正确的是:A. 应力与应变成正比B. 应力与应变成反比C. 应力与应变无关D. 应力与应变成线性关系5. 材料的疲劳寿命是指:A. 材料的总寿命B. 材料在循环加载下达到破坏的周期数C. 材料的断裂寿命D. 材料的磨损寿命6. 材料的屈服强度是指:A. 材料在弹性范围内的最大应力B. 材料在塑性变形开始时的应力C. 材料的抗拉强度D. 材料的极限强度7. 材料的断裂韧性是指:A. 材料的硬度B. 材料的抗拉强度C. 材料抵抗裂纹扩展的能力D. 材料的屈服强度8. 材料力学中的泊松比是指:A. 材料的弹性模量B. 材料的屈服强度C. 材料在拉伸时横向应变与纵向应变的比值D. 材料的断裂韧性9. 在材料力学中,下列哪一项是衡量材料脆性程度的指标?A. 弹性模量B. 屈服强度C. 断裂韧性D. 泊松比10. 材料在受力过程中,当应力超过其极限强度时,将:A. 发生弹性变形B. 发生塑性变形C. 发生断裂D. 恢复原状答案1. C2. B3. D4. A5. B6. B7. C8. C9. C10. C试题二、简答题(每题10分,共30分)1. 简述材料力学中材料的三种基本力学性质。
2. 解释什么是材料的疲劳现象,并简述其对工程结构的影响。
3. 描述材料在拉伸过程中的四个主要阶段。
答案1. 材料的三种基本力学性质包括弹性、塑性和韧性。
弹性指的是材料在受到外力作用时发生变形,当外力移除后能够恢复原状的性质。
塑性是指材料在达到一定应力水平后,即使外力移除也无法完全恢复原状的性质。
材料力学考试题(卷)集(含答案解析)

《材料力学》考试题集一、单选题1.构件的强度、刚度和稳定性________。
(A)只与材料的力学性质有关(B)只与构件的形状尺寸有关(C)与二者都有关(D)与二者都无关2.一直拉杆如图所示,在P力作用下。
(A) 横截面a上的轴力最大(B) 横截面b上的轴力最大(C) 横截面c上的轴力最大(D) 三个截面上的轴力一样大3.在杆件的某一截面上,各点的剪应力。
(A)大小一定相等(B)方向一定平行(C)均作用在同一平面内(D)—定为零4.在下列杆件中,图所示杆是轴向拉伸杆。
(A) (B) P(C) (D)5.图示拉杆承受轴向拉力P的作用,斜截面m-m的面积为A,则σ=P/A 为。
(A)横截面上的正应力(B)斜截面上的剪应力(C)斜截面上的正应力(D)斜截面上的应力6.解除外力后,消失的变形和遗留的变形。
(A)分别称为弹性变形、塑性变形(B)通称为塑性变形(C)分别称为塑性变形、弹性变形(D)通称为弹性变形7.一圆截面轴向拉、压杆若其直径增加—倍,则抗拉。
(A)强度和刚度分别是原来的2倍、4倍(B)强度和刚度分别是原来的4倍、2倍(C)强度和刚度均是原来的2倍(D)强度和刚度均是原来的4倍8.图中接头处的挤压面积等于。
P(A)ab (B)cb (C)lb (D)lc9.微单元体的受力状态如下图所示,已知上下两面的剪应力为τ则左右侧面上的剪应力为。
(A)τ/2 (B)τ(C)2τ(D)010.下图是矩形截面,则m—m线以上部分和以下部分对形心轴的两个静矩的。
(A)绝对值相等,正负号相同(B)绝对值相等,正负号不同(C)绝对值不等,正负号相同(D)绝对值不等,正负号不同11.平面弯曲变形的特征是。
(A)弯曲时横截面仍保持为平面(B)弯曲载荷均作用在同—平面内;(C)弯曲变形后的轴线是一条平面曲线(D)弯曲变形后的轴线与载荷作用面同在—个平面内12.图示悬臂梁的AC段上,各个截面上的。
(A)剪力相同,弯矩不同(B)剪力不同,弯矩相同(C)剪力和弯矩均相同(D)剪力和弯矩均不同13.当横向力作用于杆件的纵向对称面内时,关于杆件横截面上的内力与应力有以下四个结论。
《材料力学》习题册附答案

F12312练习 1 绪论及基本概念1-1 是非题(1) 材料力学是研究构件承载能力的一门学科。
( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。
(是)(3) 构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。
( 是 ) (4) 应力是内力分布集度。
(是 )(5) 材料力学主要研究构件弹性范围内的小变形问题。
(是 ) (6) 若物体产生位移,则必定同时产生变形。
(非 ) (7) 各向同性假设认为,材料沿各个方向具有相同的变形。
(F ) (8) 均匀性假设认为,材料内部各点的力学性质是相同的。
(是)(9) 根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。
(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
(非 )1-2 填空题(1) 根据材料的主要性质对材料作如下三个基本假设:连续性假设、均匀性假设 、各向同性假设 。
(2) 工程中的强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。
(3) 保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性三个方面。
3(4) 图示构件中,杆 1 发生 拉伸 变形,杆 2 发生 压缩 变形,杆 3 发生 弯曲 变形。
(5) 认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设。
根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。
(6) 图示结构中,杆 1 发生 弯曲变形,构件 2发生 剪切 变形,杆件 3 发生 弯曲与轴向压缩组合。
变形。
(7) 解除外力后,能完全消失的变形称为 弹性变形,不能消失而残余的的那部分变形称为 塑性变形 。
(8) 根据 小变形 条件,可以认为构件的变形远 小于 其原始尺寸。
1-3选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。
材料力学试题及答案7套

材料力学试卷1一、结构构件应该具有足够的 、 和 。
(本题3分) 二、低碳钢拉伸破坏经历了四个典型阶段: 阶段、 阶段、 阶段和 阶段。
衡量材料强度的指标是 、 。
(本题6分) 三、在其他条件不变的前提下,压杆的柔度越大,则临界应力越 、临界力越 ;材料的临界柔度只与 有关。
(本题3分) 四、两圆截面杆直径关系为:123D D =,则12Z Z I I =;12Z Z W W =;12P P I I =;12P P W W =; (本题8分)五、已知构件上危险点的应力状态,计算第一强度理论相当应力;第二强度理论相当应力;第三强度理论相当应力;第四强度理论相当应力。
泊松比3.0=μ。
(本题15分)六、等截面直杆受力如图,已知杆的横截面积为A=400mm 2, P =20kN 。
试作直杆的轴力图;计算杆内的最大正应力;材料的弹性模量E =200Gpa ,计算杆的轴向总变形。
(本题15分)七、矩形截面梁,截面高宽比h=2b ,l =4米,均布载荷q =30kN /m 许用应力[]MPa 100=σ, 1、画梁的剪力图、弯矩图 2、设计梁的截面 (本题20分)。
八、一圆木柱高l=6米,直径D=200mm ,两端铰支,承受轴向载荷F=50kN,校核柱子的稳定性。
已知木材的许用应力[]MPa10=σ,折减系数与柔度的关系为:23000λϕ=。
(本题15分)九、用能量法计算结构B点的转角和竖向位移,EI已知。
(本题15分)材料力学试卷2一、(5分)图(a )与图(b )所示两个矩形微体,虚线表示其变形后的情况,确定该二微体在A 处切应变b aγγ的大小。
二、(10分)计算图形的惯性矩yz I I 。
图中尺寸单位:毫米。
三、(15分)已知构件上危险点的应力状态,计算第三强度理论相当应力;第四强度理论相当应力。
四、(10分)画图示杆的轴力图;计算横截面上最大正应力;计算杆最大轴向应变ε。
已知杆的横截面积A =400 mm 2,E =200GPa 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题1.标距为100mm的标准试件,直径为10mm,拉断后测得伸长后的标距为123mm,缩颈处的最小直径为6.4mm,则该材料的伸长率δ=23%,断面收缩率ψ=59.04%。
2、构件在工作时所允许产生的最大应力叫许用应力σ,极限应力与许用应力的比叫安全系数n。
3、一般来说,脆性材料通常情况下以断裂的形式破坏,宜采用第一二强度理论。
塑性材料在通常情况下以流动的形式破坏,宜采用第三四强度理论。
4、图示销钉的切应力τ=(Pπdh ),挤压应力σbs=(4Pπ(D2-d2))(4题图)(5题图)5、某点的应力状态如图,则主应力为σ1=30Mpa,σ2=0,σ3=-30Mpa。
6、杆件变形的基本形式有拉伸或压缩、剪切、扭转和弯曲四种。
7、低碳钢在拉伸过程中的变形可分为弹性阶段、屈服阶段、强化阶段和局部变形阶段四个阶段。
8、当切应力不超过材料的剪切比例极限时,切应变γ和切应力τ成正比。
9、工程实际中常见的交变应力的两种类型为对称循环,脉动循环。
10、变形固体的基本假设是:连续性假设;均匀性假设;各向同性假设。
11、低碳钢拉伸时大致分为以下几个阶段:弹性;屈服;强化;缩颈。
12、通常计算组合变形构件应力和变形的过程是:先分别计算每种基本变形各自引起的应力和变形,然后再叠加。
这样做的前提条件是构件必须为线弹性、小变形杆件。
13、剪切胡克定律的表达形式为τ=Gγ。
14、通常以伸长率 <5%作为定义脆性材料的界限。
15、提高梁弯曲刚度的措施主要有提高抗弯刚度EI、减少梁的跨度、改善梁的载荷作用方式。
16、材料的破坏按其物理本质可分为屈服和断裂两类。
二、选择题1、一水平折杆受力如图所示,则AB杆的变形为(D)。
(A)偏心拉伸;(B)纵横弯曲;(C)弯扭组合;(D)拉弯组合。
2、铸铁试件试件受外力矩Me作用,下图所示破坏情况有三种,正确的破坏形式是(A)3、任意图形的面积为A,Z0轴通过形心O,Z1轴与Z0轴平行,并相距a,已知图形对Z1轴的惯性矩I1,则对Z0轴的惯性矩I Z0为:(B)(A )00Z I =;(B )20Z Z I I Aa =-;(C )20Z Z I I Aa =+;(D )0Z Z I I Aa =+。
4、长方形截面细长压杆,b/h =1/2;如果将长方形截面改成边长为h 的正方形,后仍为细长杆,临界力Pcr 是原来的(C )倍。
(A )2倍;(B )4倍;(C )8倍;(D )16倍。
5、图示应力状态,用第三强度理论校核时,其相当应力为(D )。
(A )1/2τ;(B )τ;(C )1/23τ;(D )2τ。
6、已知材料的比例极限σp=200MPa ,弹性模量E =200GPa ,屈服极限σs=235MPa ,强度极限σb=376MPa 。
则下列结论中正确的是(C )。
(A )若安全系数n =2,则[σ]=188MPa ; (B )若ε=1x10-10,则σ=E ε=220MPa ; (C )若安全系数n =1.1,则[σ]=213.6MPa ;(D )若加载到使应力超过200MPa ,则若将荷载卸除后,试件的变形必不能完全消失。
7、不同材料的甲、乙两杆,几何尺寸相同,则在受到相同的轴向拉力时,两杆的应力和变形的关系为(C )。
(A )应力和变形都相同;(B )应力不同,变形相同; (C )应力相同,变形不同;(D )应力和变形都不同。
8、电梯由四根钢丝绳来吊起,每根钢丝绳的许用应力为100MPa ,横截面为240mm ,电梯自重为0.5吨,则能吊起的最大重量为 (B )(A )2吨;(B )1.1吨;(C )1吨;(D )11吨。
9、当梁发生平面弯曲时,其横截面绕(C )旋转。
(A )梁的轴线;(B )截面对称轴;(C )中性轴;(D )截面形心 10、直径为d 的实心圆截面,下面公式不正确的是(B) (A )0xy S S ==;(B )4/32x y I I d π==;(C )4/32p I d π=;(D )4/16p W d π=11、电机轴的直径为20mm ,电机功率为5KW ,转速为1000rpm 。
当电机满负荷工作时,轴上的扭矩是(C )。
(A )475.5 N.m ;(B )4.755 N.m ;(C )47.75 N.m ;(D )477 N.m 。
12、下列说法正确的是 (A )。
(A )在材料力学中我们把物体抽象化为变形体; (B )在材料力学中我们把物体抽象化为刚体; (C )稳定性是指结构或构件保持原有平衡状态;(D )材料力学是在塑性范围内,大变形情况下研究其承载能力。
13、剪切强度的强度条件为 (B )。
(A )/[]N A σσ=≤;(B )max /[]X P M W ττ=≤;(C )][/C C C A P σσ≤=;D.][/ττ≤=A Q 。
14、一钢质细长压杆,为提高其稳定性,可供选择的有效措施有 (D )。
(A )采用高强度的优质钢; (B )减小杆件的横截面面积; (C )使截面两主惯轴方向的柔度相同; (D )改善约束条件、减小长度系数。
15、用同一材料制成的实心圆轴和空心圆轴,若长度和横截面面积均相同,则抗扭刚度较大的是哪个?(B )。
(A )实心圆轴;(B )空心圆轴;(C )两者一样;(D )无法判断。
16、一水平折杆受力如图所示,则AB 杆的变形为(C )。
(A )偏心拉伸;(B )纵横弯曲;(C )弯扭组合;(D )拉弯组合。
ABCP17.图示扭转轴1-1截面上的扭矩T 1为(A )。
112kN.m 2kN.m6kN.m2kN.m(A )T 1=-2m kN ⋅(B )T 1=5m kN ⋅ (C )T 1=1m kN ⋅(D )T 1=-4m kN ⋅ 18、下面属于第三强度理论的强度条件是(C ) (A )][1σσ≤;(B )][)(321σσσμσ≤+-; (C )][31σσσ≤-;(D )()()()[][]σσσσσσσ≤-+-+-21323222121。
19、对图示梁,给有四个答案,正确答案是(C )。
(A )静定梁;(B )一次静不定梁; (C )二次静不定梁;(D )三次静不定梁。
20、在工程上,通常将延伸率大于(B )%的材料称为塑性材料。
(A )2;(B )5;(C )10;(D )15。
21、图中应力圆a 、b 、c 表示的应力状态分别为(C )A 二向应力状态、纯剪切应力状态、三向应力状态;B 单向拉应力状态、单向压应力状态、三向应力状态;C 单向压应力状态、纯剪切应力状态、单向拉应力状态;D 单向拉应力状态、单向压应力状态、纯剪切应力状态。
22、下面有关强度理论知识的几个论述,正确的是(D )。
A 需模拟实际应力状态逐一进行试验,确定极限应力;B 无需进行试验,只需关于材料破坏 原因的假说;C 需要进行某些简单试验,无需关于材料破坏原因的假说;D 假设材料破坏的共同原因。
同时,需要简单试验结果。
23、关于斜弯曲变形的下述说法,正确的是(C )。
A 是在两个相互垂直平面内平面弯曲的组合变形; B 中性轴过横截面的形心; C 挠曲线在载荷作用面内; D 挠曲线不在载荷作用面内。
24、对莫尔积分⎰=∆l dx EIx M x M )()(的下述讨论,正确的是(C )。
A 只适用于弯曲变形; B 等式两端具有不相同的量纲; C 对于基本变形、组合变形均适用; D 只适用于直杆。
25、要使试件在交变应力作用下经历无数次循环而不破坏,必须使试件最大工作应力小于(B )。
A 材料许用应力;B 材料屈服极限;C 材料持久极限;D 构件持久极限。
三、作图题1、一简支梁AB 在C 、D 处受到集中力P 的作用,试画出此梁的剪力图和弯矩图。
2、绘制该梁的剪力、弯矩图m8m2m2四、计算题托架AC 为圆钢杆,直径为d ,许用应力[σ]钢=160MPa ;BC 为方木,边长为b ,许用应力[σ]木=4MPa ,F =60kN ,试求d 和b 。
解:kN R BC 17.108133013260===kN R AC 90= MPa bA R BC 4][100017.1082=≤⨯=木木木=σσmm b 4.164≥取b=165mm MPa d A R A 160][41000902C =≤⨯=钢钢钢=σπσ mm d 8.26≥取d=27mm 五、计算题已知一点为平面应力状态如图所示:(1)求该平面内两个主应力的大小及作用方位,并画在单元体图上。
(2)按照第三强度理论,给出该单元体的当量应力。
解:按应力的正负号原则 MPa x80=σMPa y 30-=∆τMPa MPa 1090{)30()280(280}22max min -=-+±=σσ 4380)30(2tan 0=-⨯-=α,5.180=αMPa MPa 10,0,90321-===σσσ MPa aq 100213=-=σσσ六、计算题已知应力状态如图。
试求主应力及其方向角,并确定最大剪应力值。
解:Mpa Mpa xy y x20;50;100=-==τσσMpa Mpaxy y x y x 62.5262.102{)2(2}22min max 21-=+-±+==τσσσσσσσσMpa Mpa 62.52;0;62.102321-===σσσ 46.7;2667.05010020222tan 00-=-=+⨯-=--=σσσταyx xy1046.7σσσσ确定 -=∴>y x七、计算题图示为一铸铁梁,P 1=9kN ,P 2=4kN ,许用拉应力[t ]=30MPa ,许用压应力[c ]=60MPa ,I y =7.6310-6m 4,试校核此梁的强度。
1m 1m 1mP 1P 280201202052形心Cy (单位:mm)解:(1)由梁的静力学平衡方程可以解得B 、D 处的约束反力为:B F 10.5KN= ,A F 2.5KN=由此绘出梁的剪力图和弯矩图由图可见,B 、C 截面分别有绝对值最大的负、正弯矩。
(2)校核强度:校核B 截面的抗拉和抗压强度以及C 截面的抗拉强度。
B 截面:C 336B c Bcmax 6z M (14y )410(14052)1046.1310I 7.6310σ---⨯⨯-⨯==≈⨯⨯Pa 46.13=MPa c []60σ<=Mpa C 336B c Bt max6z M y 410521027.2610I 7.6310σ--⨯⨯⨯==≈⨯⨯Pa 27.26=MPa t []30σ<=Mpa C 截面:C 336C c Ct max6z M y 2.510(14052)1028.8310I 7.6310σ--⨯⨯-⨯==≈⨯⨯Pa 28.83=MPa t []30σ<=Mpa 所以该梁满足正应力强度条件。