向量与矩阵的基本运算分解
向量与矩阵的基本运算与性质

向量与矩阵的基本运算与性质向量与矩阵是线性代数的基础概念,它们在数学和物理领域中扮演着重要的角色。
本文将介绍向量与矩阵的基本运算以及它们的性质。
一、向量向量是具有大小和方向的量,通常表示为一个有序的实数列表或箭头。
向量可以用于表示力、速度、加速度等概念。
在线性代数中,向量通常表示为一个列向量或行向量。
1. 向量的表示向量可以用单个变量加上一个箭头表示,例如a→。
在文本中,向量通常以粗体字母表示,例如a。
2. 向量的加法向量的加法是指对应位置上的元素相加得到新的向量。
设有两个n 维向量a=(a1,a2,...,aa)和a=(a1,a2,...,aa),则它们的和为:a+a=(a1+a1,a2+a2,...,aa+aa)3. 向量的数量乘法向量的数量乘法是指将向量的每个元素与一个实数相乘得到新的向量。
设有一个n维向量a=(a1,a2,...,aa)和实数a,则其数量乘积为:aa=(aa1,aa2,...,aaa)4. 向量的点积向量的点积,也称为内积或数量积,是两个向量对应位置上的元素相乘再相加的结果。
设有两个n维向量a=(a1,a2,...,aa)和a=(a1,a2,...,aa),则它们的点积为:a·a=a1a1+a2a2+...+aaaa二、矩阵矩阵是一个二维数组,通常用于表示一组数据或线性变换。
矩阵由行和列组成,行表示矩阵的水平方向,列表示矩阵的垂直方向。
1. 矩阵的表示矩阵通常以大写字母表示,例如a、a。
一个m行n列的矩阵可以表示为:a=⎡⎢⎢⎢⎢⎢⎣a11 a12 ⋯a1a a21 a22 ⋯a2a⋮⋮⋱⋮aa1 aa2 ⋯aaa⎤⎥⎥⎥⎥⎥⎦2. 矩阵的加法矩阵的加法是指对应位置上的元素相加得到新的矩阵。
设有两个m 行n列的矩阵a和a,则它们的和为:a+a=⎡⎢⎢⎢⎢⎢⎣a11+a11 a12+a12 ⋯a1a+a1a a21+a21a22+a22 ⋯a2a+a2a⋮⋮⋱⋮aa1+aa1 aa2+aa2 ⋯aaa+aaa⎤⎥⎥⎥⎥⎥⎦3. 矩阵的数量乘法矩阵的数量乘法是指将矩阵的每个元素与一个实数相乘得到新的矩阵。
线性代数中的矩阵与向量之运算技巧

线性代数中的矩阵与向量之运算技巧矩阵和向量是线性代数中最基础的概念之一。
了解它们的运算技巧是学好线性代数的前提。
本文将介绍一些常用的矩阵和向量运算技巧。
一、矩阵基本运算1. 加减法运算对于两个相同大小的矩阵A和B,它们的和(A+B)和差(A-B)分别对应位置上的元素相加减得到。
例如:A = [[1,2],[3,4]]B = [[-1,3],[4,-2]]则 A+B = [[0,5],[7,2]],A-B = [[2,-1],[-1,6]]2. 数乘运算对于数k和一个矩阵A,它们的积(kA)就是把A的每个元素都乘以k得到。
例如:A = [[1,2],[3,4]]k = 2则 kA = [[2,4],[6,8]]3. 矩阵乘法对于两个矩阵A和B,若A的列数等于B的行数,则它们可以相乘得到一个新的矩阵C。
C的每个元素都是A的一行与B的一列对应元素的乘积之和。
例如:A = [[1,2,3],[4,5,6]]B = [[-1,3],[2,-4],[5,1]]则 AB = [[18,-8],[39,9]]注意:矩阵乘法不满足交换律,即A×B ≠ B×A。
二、向量基本运算1. 加减法运算对于两个相同长度的向量v和w,它们的和(v+w)和差(v-w)分别对应位上的元素相加减得到。
例如:v = [1,2,3]w = [-1,4,2]则 v+w = [0,6,5],v-w = [2,-2,1]2. 数乘运算对于数k和一个向量v,它们的积(kv)就是把v的每个元素都乘以k得到。
例如:v = [1,2,3]k = 2则 kv = [2,4,6]3. 点积运算对于两个长度相同的向量v和w,它们的点积(v·w)是将两个向量对应位置元素的乘积相加得到的一个数。
例如:v = [1,2,3]w = [-1,4,2]则 v·w = 9本文介绍的是矩阵和向量的基本运算技巧,仅是线性代数的冰山一角,线性代数是一门内涵丰富的课程,需要大家认真研究,深入理解。
向量与矩阵的定义及运算学习资料

α 1 (2α) 2
(1 5,1 1,1 6,1 ( 1),1 4)
2 22 2
2
2.5, 0.5, 3, 0.5, 2 ,
β1(2 β ) ( 0 .5 ,0 .5 ,2 ,1 .5 , 2 ). 2
12
二 矩阵
定义3 设P是复数集C的一个子集合,其中包含 0与1。如果P中的任意两个数a,( b这两个数也可 以相同)的和、差、积、商(除数不为零)仍 在P中,则称P是一个数域(number field).
向量与矩阵的定义及运算
n维行向量和n维列向量都可称为n维向量
(vector), n维向量常用小写黑体希腊字母,, ,L 表示。
例: =(1,3,8);
(10, 23,45, 2);
x
= y
z
2
定 义 2 设 两 个 n维 向 量 =(a1, a2 ,L , an ), (b1 , b2 ,L , bn )
定义5 设A(aij)sn和B(bij)sn是(数域P上) 两个sn(同型)矩阵,则 (1)如果它们对应的元素分别相等,即aij bij, (i 1,2,L,s;j 1,2,L,n),则称A与B相等,记作 AB.
注意:和要简写成 必须满足:每项形式完全一样,不一样
的只是求和指标,而且求和指标连续从小到大增加一。 9
例 2 证 明 : 任 意 n维 向 量 (k1,k2,L,kn)是 向 量 组 1(1,0,L,0),2(0,1,L,0),L,n(0,L,0,1)的
一 个 线 性 组 合 。 证明:由向量的线性运算,得
(k1, k2 ,L , kn ) (k1, 0,L , 0) (0, k2, 0,L , 0) L (0,L , 0, kn )
向量与矩阵运算

向量与矩阵运算在高中数学学科中,向量与矩阵运算是一项重要的内容。
向量与矩阵的概念与运算规则不仅在数学中有广泛的应用,而且在物理、工程、计算机科学等领域也有着重要的地位。
本文将详细介绍向量与矩阵的定义、基本运算以及一些常见应用。
一、向量的定义与基本运算向量是有方向和大小的量,通常用箭头表示。
向量可表示为一个有序的数字组成的列,也可以视为从原点指向某一点的箭头。
例如,向量A可以表示为(A1, A2, ..., An)。
向量的基本运算包括加法和数乘。
向量的加法是对应元素相加,即A +B = (A1 + B1, A2 + B2, ..., An + Bn),其中A和B为同维数的向量。
数乘是将向量的每个元素都乘以一个实数,即kA = (kA1, kA2, ..., kAn),其中k为实数。
二、矩阵的定义与基本运算矩阵是一个按照矩形排列的数表,通常用大写字母表示。
矩阵有行与列组成,用m×n表示,其中m表示矩阵的行数,n表示矩阵的列数。
矩阵的基本运算包括矩阵加法、矩阵数乘和矩阵乘法。
矩阵的加法是对应元素相加,即A + B = [aij + bij],其中A和B为同维数的矩阵。
矩阵的数乘是将矩阵的每个元素都乘以一个实数,即kA = [kaij]。
矩阵的乘法是一种复合运算,需要满足乘法的规则。
若A为m×n 的矩阵,B为n×p的矩阵,则AB为m×p的矩阵。
矩阵AB的第i行第j列元素可以表示为:ABij = aij * bij,其中aij表示A矩阵的第i行第j 列元素,bij表示B矩阵的第i行第j列元素。
三、向量与矩阵的应用向量与矩阵运算在许多实际问题中有着广泛的应用。
以下是一些常见的应用领域:1. 物理学:在物理学中,向量和矩阵可以用来描述物体的运动和力的作用。
例如,位移向量可以用来描述物体的位置变化,力矩矩阵可以用来描述物体受到的力的作用。
2. 工程学:向量和矩阵可以用来描述工程中的各种变量和关系。
向量分解定理

向量分解定理向量分解定理是线性代数中的重要定理之一。
它指出,对于一个给定的向量空间V和其子空间U,任何向量v∈V都可以唯一地表示为U的一个向量u与U的补空间的一个向量w的和。
换句话说,任何一个向量都可以分解为与给定子空间无关的两个向量之和。
在进一步探讨向量分解定理之前,我们需要先了解一些基本概念。
向量空间是指具有加法和数乘两种运算的非空集合,它满足特定的运算规则。
子空间是在向量空间内构成的一个向量子集,它本身也是一个向量空间。
补空间是指与给定子空间正交的向量构成的向量子集。
在线性代数的研究中,向量分解定理发挥着重要作用。
它提供了一种方法来寻找向量空间中的最优解。
对于一个给定的向量v∈V,我们希望能够将其分解为U的一个向量u与U的补空间的一个向量w的和。
这样一来,我们就可以根据具体的问题要求去选择合适的子空间U,以及使得向量v达到最优的补空间向量w。
向量分解定理的证明过程可以通过构造线性方程组来实现。
我们可以选择一个合适的基,并找到V的基底B1和U的基底B2。
然后根据V和U的基底B1和B2构造出一个矩阵A,并将向量v写为矩阵A乘以一个向量x的形式。
通过求解线性方程组Ax= v,我们就可以得到x的解,从而得到向量v关于子空间U的向量分解。
向量分解定理的一个重要应用是在最小二乘法中的使用。
最小二乘法是一种常见的回归分析方法,它用于拟合线性方程模型时,寻找使得模型与实际观测值之间误差平方和最小的参数。
在最小二乘法中,我们希望将观测值向量y表示为模型矩阵X 与参数向量β的乘积,即y=Xβ。
然而,由于观测误差的存在,通常情况下方程组的解不存在。
这时,我们可以通过向量分解定理,将观测值向量y分解为模型矩阵X的列空间的向量与X的列空间的补空间的向量之和。
这样一来,我们可以通过最小化观测值向量y在X的列空间上的投影误差来近似求解参数向量β。
除了最小二乘法,向量分解定理还在其他领域有广泛的应用。
例如在图像处理中,将图像表示为其灰度基函数与系数的乘积形式,就是利用了向量分解定理的思想。
向量与矩阵的定义及运算

a11 a12
a
21
a22
a
s
1
as2
a1n
a
2
n
a
sn
称 为 数 域 P上 的 s n矩 阵 (m atrix ), 通 常 用 一 个 大 写
黑 体 字 母 如 A或 Asn表 示 , 有 时 也 记 作 A (aij )sn , 其
中 aij (i 1, 2, , s; j 1, 2, , n)称 为 矩 阵 A的 第 i行 第 j列
注意:和要简写成 必须满足:每项形式完全一样,不一样
的只是求和指标,而且求和指标连续从小到大增加一。 10
例 2证 明 : 任 意 n维 向 量 (k1,k2, ,kn)是 向 量 组 1(1,0, ,0),2(0,1, ,0), ,n(0, ,0,1)的
一 个 线 性 组 合 。 证明:由向量的线性运算,得
例 子 : 有 理 数 集 Q 、 实 数 集 R 、 复 数 集 C都 是 数 域 , 分 别 称 为 有 理 数 域 、 实 数 域 、 复 数 域 。 而 整 数 集 Z不 是 数 域 。 我 们 主 要 用 到 的 是 实 数 域 和 复 数 域 。
14
定 义 4 数 域 P中 s n个 数 排 成 的 s行 n列 的 长 方 表 ,
k与 的 数 乘 , 记 作 k (ka1, ka2 , , kan ).
注 意 : 同 型 向 量 才 能 进 行 加 法 以 及 比 较 是 否 相 等
4
(4)分 量 全 为 零 的 向 量 (0 ,0 , ,0)称 为 零 向 量 , 记 作 0 (应 注 意 区 别 数 零 和 零 向 量 );
元 素(entry )。
15
§1.1-向量与矩阵的定义及运算
(10)若kA 0,则k 0,或者A 0.
28
例 设矩阵A、B、C满足等式 3(A+C)=2(B-C),其中
A
2 1
3 3
6 5
,
B
3 1
2 3
4 5
,
求C.
解:由等式可得 5C 2B 3A
23 21
22 2 (3)
b1 j
(ai1
ai 2
L
ain
)
b2 M
j
= A的第i行乘 B的第j列
bnj
故可以把乘法规则总结为:左行乘右列.
36
注意:(1) 只有当第一个矩阵的列数等 于第二个矩阵的行数时,两个矩阵才 能相乘.
例如
1 3 5
2 2 8
3 1 9
1 6
6 0
8 1
不存在.
(2) 乘积矩阵C的行数=左矩阵的行数, 乘积矩阵C的列数=右矩阵的列数.
ka11
(kaij )sn
ka21
M
kas1
ka12 ka22
M
ka s 2
L ka1n
L
ka2n
M M
L
kasn
为数k与A的数乘,记作kA.
25
(4) 负矩阵:将矩阵A=(aij)s×n的各元 素取相反符号,得到的矩阵称为矩阵A
的负矩阵,记为-A. 即
a11 a12 L a1n
(aij )sn
a21 M
a22 M
L M
a2n
M
as1
as2
L
asn
26
矩阵的线性运算性质
(1) A B B A;
矩阵与向量的乘法运算
矩阵与向量的乘法运算1. 引言:矩阵与向量的相遇大家好,今天咱们要聊聊一个在数学中非常重要,但又经常让人摸不着头脑的概念——矩阵与向量的乘法运算。
别急,听我细细讲解,这其实没那么复杂,就像学会了骑自行车一样,一旦明白了,就觉得无比轻松。
2. 矩阵与向量基本概念2.1 矩阵是什么?矩阵其实就是一张数字的表格,里头的数字排成了行和列。
可以把它想象成一个由很多小格子组成的表格,每个小格子里都藏着一个数字。
举个例子,一个2x3的矩阵就有2行3列,像个小方阵子。
2.2 向量是什么?向量呢,简单来说就是一个单行或者单列的矩阵。
你可以把它看作是一个“数字串”,它要么是横着的(行向量),要么是竖着的(列向量)。
比如说一个3维的向量就是三个数字排成一行或者一列。
3. 矩阵与向量的乘法运算3.1 乘法运算的步骤矩阵与向量相乘,其实就像在玩拼图。
先看矩阵的每一行,然后用这行的数字分别乘上向量里对应的数字。
最后,把这些乘积加在一起,就得到结果了。
这里有个小窍门:矩阵的列数要跟向量的行数一致,才能进行乘法运算。
就像要拼对了才行,拼错了是没办法完成的。
3.2 举个例子比如说我们有一个2x3的矩阵A和一个3维的列向量B。
矩阵A的第一行是[1, 2, 3],第二行是[4, 5, 6],向量B是[7, 8, 9]。
那怎么乘呢?我们先用矩阵A的第一行[1, 2, 3]乘向量B的每一个元素,然后把结果加起来。
计算就是:1*7 + 2*8 + 3*9 = 7 + 16 + 27 = 50。
同样的方式,我们对第二行[4, 5, 6]做一次,得到:4*7 + 5*8 + 6*9 = 28 + 40 + 54 = 122。
所以最后的结果是一个2维的向量[50, 122]。
4. 实际应用中的矩阵与向量乘法4.1 在计算机图形中的应用你可能会问,这些运算和实际生活有什么关系?其实,矩阵与向量的乘法在计算机图形中非常重要。
比如说,你玩游戏时屏幕上的角色移动,就是通过矩阵变换来实现的。
第3章 实验二矩阵与向量运算
第3章 实验二矩阵与向量运算实验目的:在MATLAB 里,会对矩阵与向量进行加、减、数乘、求逆及矩阵的特征值运算,以及矩阵的LU 分解。
3.1 矩阵、逆矩阵运算 例3.1 设矩阵A 、B 如下:1221,3415A B -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,分别求出B A +、B A *、A 的逆矩阵,A 矩阵的行列式的值。
在matlab 软件中的命令窗口输入: A=[1 2;3 4]; B=[-2 1;1 5]; A+B 得到: ans =-1 3 4 9A 的逆矩阵由命令inv(A)计算,例如:令A=[1 2;3 4]; 则 C=inv(A) 得到: C =-2.0000 1.0000 1.5000 -0.5000对于任意非奇异的方阵,都可以用命令inv 计算其逆矩阵。
在matlab 里,矩阵乘法用乘法运算符表示,可以通过命令输入:A*B得到:ans =0 11 -2 23在matlab 里,可以通过命令输入:det(A)得到: -2在matlab 里,在矩阵的后面加一个撇号得到该矩阵的转置,例如: F=A ’ 使矩阵F 变为A 的转置。
下面的命令创建一个m ×m 的单位矩阵: s=eye(m)m ×n 的零矩阵用s=zeros(m*n)给出。
m ×n 的元素都是1的矩阵用写为: w=ones(m,n)如果A 是一个矩阵,则zeros(size(A))和ones(size(A))分别得到与A 大小相同的零矩阵和单位矩阵。
命令rand(m,n)创建一个m ×n 的随机矩阵。
命令hilb(m)创建一个Hilbert 矩阵的特殊矩阵。
3.2 矩阵的特征值设A 是一个n ×n 方阵,X 是一个n 维向量,乘积Y=AX 可以看作是n 维空间变换。
如果能够找到一个标量λ,使得存在一个非零向量X ,满足:AX=λX (3.1) 则可以认为线性变换T(X)=AX 将X 映射为λX,此时,称X 是对应于特征值λ的特征向量。
矩阵的基本运算与特征值特征向量
矩阵的基本运算与特征值特征向量矩阵是现代线性代数中的重要概念,广泛应用于各个领域。
本文将介绍矩阵的基本运算,包括加法、乘法和转置,并详细解释特征值与特征向量的概念及其在矩阵分析中的应用。
一、矩阵的基本运算矩阵加法是指将两个矩阵的相应元素进行相加,得到一个新的矩阵。
例如,对于两个m行n列的矩阵A和B,它们的和记作C=A+B,其中C的第i行第j列元素等于A的第i行第j列元素与B的第i行第j列元素之和。
矩阵乘法是指将两个矩阵相乘得到一个新的矩阵。
对于一个m行n列的矩阵A和一个n行p列的矩阵B,它们的乘积记作C=AB,其中C 的第i行第j列元素等于A的第i行元素与B的第j列元素依次相乘再求和。
矩阵的转置是指将矩阵的行和列进行互换得到的新矩阵。
例如,对于一个m行n列的矩阵A,它的转置记作AT,其中AT的第i行第j列元素等于A的第j行第i列元素。
二、特征值与特征向量在矩阵分析中,特征值与特征向量是矩阵的重要性质,能够揭示矩阵的结构和性质。
对于一个n阶方阵A,如果存在一个非零向量x使得Ax=kx,其中k为常数,那么k就是A的一个特征值,x就是对应于特征值k的特征向量。
特征值和特征向量的求解过程可以通过方程(A-kI)x=0来实现,其中I为单位矩阵。
通过求解这个齐次线性方程组,可以得到特征值k以及对应的特征向量x。
特征值和特征向量在矩阵的应用中有着广泛的应用,例如在图像处理、信号处理和机器学习等领域中,它们被用于降维、数据压缩、特征提取等任务上。
三、矩阵的应用举例1. 线性变换矩阵可以用于描述线性变换,例如平移、旋转和缩放等操作。
通过将变换矩阵作用于向量,可以实现对向量的变换。
2. 矩阵的逆对于一个可逆矩阵A,它存在一个逆矩阵A-1,满足A-1A=AA-1=I,其中I为单位矩阵。
逆矩阵的求解可以通过行列式和伴随矩阵的方法来实现。
3. 特征值分解对于一个对称矩阵A,可以进行特征值分解,即将A表示为特征值和特征向量的形式,A=PΛP-1,其中P为特征向量的矩阵,Λ为特征值的对角矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例:>> x=[1,2,3];y=[2,3,4];
>> A=[x,y], B=[x;y]
例:>> C=magic(3)
自动动手
1、使用函数生成8×10零矩阵、 5×5元素都 为1的矩阵、 5×5单位矩阵、 4×4魔术方阵。
常见矩阵生成函数
zeros(m,n) ones(m,n) eye(m,n) diag(X) tril(A) triu(A) rand(m,n) randn(m,n) 生成一个 m 行 n 列的零矩阵,m=n 时可简写为 zeros(n) 生成一个 m 行 n 列的元素全为 1 的矩阵, m=n 时可写为 ones(n) 生成一个主对角线全为 1 的 m 行 n 列矩阵, m=n 时可简写为 eye(n),即为 n 维单位矩阵 若 X 是矩阵,则 diag(X) 为 X 的主对角线向量 若 X 是向量,diag(X) 产生以 X 为主对角线的对角矩阵 提取一个矩阵的下三角部分 提取一个矩阵的上三角部分 产生 0~1 间均匀分布的随机矩阵 m=n 时简写为 rand(n) 产生均值为0,方差为1的标准正态分布随机矩阵 m=n 时简写为 randn(n)
数学实验
向量与矩阵运算
主要内容
Matlab能处理数、向量和矩阵.数实际上是 一个1×1维矩阵. 这节的主要内容:
矩阵的生成、操作; 矩阵的基本运算; 矩阵的函数.
一 向量与矩阵运算
向量与矩阵的生成
向量的生成 直接输入: a=[1,2,3,4] 冒号运算符 从矩阵中抽取行或列
返回向量 X 的长度 等价于 max(size(A))
自己动手
1、用rand函数生成8×10矩阵A; 2、用length、size函数求出矩阵A的行数和 列数;
矩阵基本运算
矩阵的加减:对应分量进行运算
要求参与加减运算的矩阵具有 相同的维数
例:>> A=[1 2 3; 4 5 6]; B=[3 2 1; 6 5 4]
A=[1 2 3;4 5 6;7 8 9]; [L,U]=lu(A)
运行结果:
2、特征值分解
如果A是n×n矩阵,若Ax =λx则称λ为A的特征 值,x为相应的特征向量。 函数eig()为特征值分解函数,其调用格式为: [x,D]=eig(A) %x、D为输出变量(返回值),A为输入变量.D的 对角元素是特征值,x列是相应的特征向量 例 >> A=[1 2 3;4 5 6;7 8 9]; >> [x,D]=eig(A) 运行结果为:
Matlab中常见数学函数
sin、cos、tan、cot、sec、csc、…
asin、acos、atan、acot、asec、acsc、… exp、log、log2、log10、sqrt
abs、conj、real、imag、sign fix、floor、ceil、round、mod、rem max、min、sum、mean、sort、fft norm、rank、det、inv、eig、lu、qr、svd …… ① log 是自然对数,即以 e 为底数 ② mod(x,y) 结果与 y 同号,rem(x,y) 则与 x 同号 ③ max 等函数的参数是矩阵时,是作用在矩阵各列上
矩阵的 Kronecker 乘积
矩阵 Kronecker 乘积的定义
设A是n×m矩阵,B是p×q矩阵,则A与B的kronecker乘积为: a11 B a12 B a1m B a B a B a B 22 2m C A B 21 a B a B a B n2 nm n1
Kronecker 乘积的性质
A B 是 np×mq 矩阵;通常 A B B A
任何两个矩阵都有 Kronecker 乘积 Matlab 中实现两个矩阵 Kronecker 相乘的函数为 kron(A,B) Kronecker乘积有时也称张量积
矩阵的数组运算
数组运算:对应元素进行运算
上机作业
1. 试分别生成 5 阶的单位阵、8 阶均匀分布的随机矩阵及其 下三角矩阵 2. 生产列向量 x=[1, 3, 5, 7, 9, … , 29] 3. 生成以 x 的元素为对角线的矩阵 A,并输出 A 的行数 4. 生成一个与 A 同阶的正态分布的随机矩阵 B 5. 输出 A 与 B 的 kronecker 乘积矩阵 C 6. 生成由 A 与 B 点乘得到的矩阵 D 7. 生成一个由 D 的第 8、4、10、13 行和第 7、1、6、9、2 列组成的子矩阵 E 8. 求出矩阵 E 的最大元素 9. 教材第 53 页,1(1),(3),(4)、2、3、4、5
矩阵操作
矩阵的转置与共轭转置
’ 共轭转置 .’ 转置,矩阵元素不取共轭 点与单引号之间不能有空格!
例:>> A=[1 2;2i 3i](动手验证)
>> B=A’ >> C=A.’
矩阵操作
改变矩阵的形状:reshape
reshape(A,m,n): 将矩阵元素按 列方向 进行重组 重组后得到的新矩阵的元素个数 必须与原矩阵元素个数相等!
函数取值
函数作用在矩阵上的取值
设 x 是变量, f 是一个函数
当 x = a 是标量时,f(x) = f(a)也是一个标量
当 x = [a, b, … , c] 是向量时,f(x)= [f(a), f(b), … , f(c)]
f 作用在 x 的每个分量上
若 A 是矩阵,则 f(A) 是一个与 A 同形状的矩阵
>> C=A+B; D=A-B;
矩阵的普通乘法
要求参与运算的矩阵满足线性代数中矩阵相乘的原则
例:>> A=[1 2 3; 4 5 6]; B=[2 1; 3 4];
>> C=A*B
二 矩阵基本运算
矩阵的除法:/、\ 右除和左除
若 A 可逆方阵,则 B/A <==> A 的逆右乘 B <==> B*inv(A) A\B <==> A 的逆左乘 B <==> inv(A)*B 通常,矩阵除法可以理解为 X=A\B <==> A*X=B X=B/A <==> X*A=B 当 A 和 B 行数相等时即可进行左除 当 A 和 B 列数相等时即可进行右除
矩阵操作
矩阵的旋转
fliplr(A) 左右旋转 flipud(A) 上下旋转
rot90(A) 逆时针旋转 90 度; rot90(A,k) 逆时针旋转 k×90 度 >> B=fliplr(A) >> C=flipud(A) >> D=rot90(A), E=rot90(A,-1)
例:>> A=[1 2 3;4 5 6]
(a12 ) exp(a21 ) exp(a22 ) exp(A) exp(a ) exp(a ) m1 m2 exp(a1n ) exp(a2 n ) exp(amn )
.^ 前面留个空格
Matlab中的所有 标点符号必须在 英文状态下输入
三 矩阵函数
以三角分解函数lu()和特征值分解函数eig() 讲述矩阵函数的使用。
1、三角分解
最基本的分解“LU”分解,矩阵分解为两个 基本三角矩阵形成的方阵,一个为上三角矩阵 一个为下三角矩阵。计算的方法用高斯消去法。 函数格式[L,U]=lu(X) %L,U为输出变量(返回值),A为输入变量, U为上三角阵,L为下三角阵或其变换形式, 满足LU=X 运行结果如下:
更一般的矩阵函数: funm
funm(A,@fun)
参数 fun 的可以是 exp,,log,cos,sin,cosh,sinh
数与数组的点幂
例:x=[1 2 3]; y=[4 5 6];
x.^y =[1^4,2^5,3^6]=[1,32,729]
x.^2 =[1^2,2^2,3^2]=[1,4,9] 2 .^x = ? 2 .^[x;y]= ?
矩阵操作
查看矩阵的大小:size
size(A) 列出矩阵 A 的行数和列数 size(A,1) 返回矩阵 A 的行数 size(A,2) 返回矩阵 A 的列数
例:>> A=[1 2 3; 4 5 6]
>> size(A) >> size(A,1) >> size(A,2) length(x) length(A)
矩阵操作
提取矩阵的部分元素: 冒号运算符
A(:) A的所有元素 A(:,:) 二维矩阵A的所有元素 A(:,k) A的第 k 列, A(k,:) A的第 k 行
A(k:m) A的第 k 到第 m 个元素 A(:,k:m) A的第 k 到第 m 列组成的子矩阵
自己动手
A(:) 与 A(:,:) 的区别 ? 如何获得由 A 的第一、三行和第一、二列组成的子矩阵?
数组运算包括:点乘、点除、点幂
相应的数组运算符为: “.* ” , “./ ” , “.\ ” 和 “ .^ ” 点与算术运算符之间不能有空格!
例:>> A=[1 2 3; 4 5 6]; B=[3 2 1; 6 5 4];
>> C=A.*B; D=A./B; E=A.\B; F=A.^B; 参与运算的对象必须具有相同的形状!
例:>> x=[0:pi/4:pi]; A=[1 2 3; 4 5 6];
>> y1=sin(x); y2=exp(A); y3=sqrt(A);