通信原理_抽样定理
通信原理抽样定理

通信原理抽样定理通信原理抽样定理是一项重要的通信技术原则,它是指对于一个连续时间信号进行抽样时,必须按照一定的规则进行抽样,才能够准确地还原出原始信号的信息。
本文将对通信原理抽样定理进行详细的解释。
一、连续信号与离散信号在通信系统中,信号通常被分为连续信号和离散信号两种类型。
连续信号是指在时间上呈连续变化的信号,例如声音信号、视频信号等。
而离散信号则是指信号经过采样后,在时间上呈现出间断的特点,例如数字音频、数字图像等。
二、抽样定理的原理通信原理抽样定理是基于傅里叶变换的原理得出来的。
傅里叶变换是将时域信号转化为频域信号的一项数学技术。
在信号的频域表示中,信号的频率为离散的,而抽样定理是建立在这个基础上的。
在进行信号采样时,必须按照一定的规则进行采样,这样才能够准确地还原出原始信号。
通常采用的规则是在一段时间内等间隔地进行采样,所采集的数据称为采样数据。
一个连续信号在被采样时,若满足采样频率大于两倍的信号最高频率,则可以通过采样信号得到原始信号的全部信息。
这就是通信原理抽样定理的核心原理。
三、抽样频率通信原理抽样定理中,抽样频率的选择对于信号的还原具有重要的影响。
一般来说,抽样频率越高,得到的离散信号就越接近原始连续信号,还原的信息也就越准确。
但是,过高的抽样频率会导致信号处理所需的计算量增加和数据存储量增大,同时也会增加系统成本。
抽样频率的选择既要考虑信号本身的特点,还要考虑计算量和存储量等实际因素。
在各种应用中,针对不同类型的信号和系统要求,通常计算出最优的抽样频率。
四、抽样信号的重构在实际应用中,原始连续信号往往是由离散信号采样得到的。
还原连续信号则需要通过离散信号进行重构。
重构方法有多种,其中常用的是插值法。
插值法是一种基于已知点的数值计算方法,用于估算未知点坐标的数值。
在进行插值重构时,需要确定合适的插值函数和插值点。
插值函数通常选用多项式函数,并尽可能将插值点均匀、密集地分布在原信号的采样区间内。
通信原理实验-抽样定理实验

电子与信息工程系《通信原理实验》任务及报告书实验名称抽样定理实验指导教师班级姓名学号总成绩一、实验目的1.掌握抽样定理的概念;2.掌握模拟信号抽样与还原的原理与实现方法;3.了解模拟信号抽样过程的频谱。
二、实验内容1.采用不同频率的方波对同一模拟信号抽样并还原,观测并比较抽样信号与还原信号的波形和频谱;2.采用同一频率但不同占空比的方波对同一模拟信号抽样并还原,观测并比较抽样信号与还原信号的波形和频谱。
三、所需设备1.信号源模块;2.模拟信号数字化模块;3.20MHz双踪示波器;4.频谱分析仪(可用数字存储示波器代替)。
四、实验原理1.简述抽样定理的概念及实现方法……2.抽样信号的还原……五、实验步骤1.将所用模块固定在机箱中,确保电源接触良好;2.连线:信号源模块模拟信号数字化模块2K正弦基波—————————————抽样信号DDS-OUT —————————————抽样脉冲模拟信号数字化模块模拟信号数字化模块PAM输出—————————————解调输入3.接通电源(220V AC输入开关、模块电源开关要全部打开);4.调节信号源模块“2K调幅”旋钮,使“2K正弦基波”输出3V左右;5.不同频率方波抽样:a.信号源模块“DDS-OUT”测试点输出选择“方波A”,调节“DDS调幅”旋钮,使其峰峰值为3V左右;b.示波器双踪观测“抽样信号”与“PAM输出”测试点波形,对比方波A的频率为4KHz、8KHz、116KHz、32KHz等典型频率值时“PAM输出”测试点的波形和频谱;c.示波器双踪观测“抽样信号”与“解调输出”测试点波形,对比各典型频率值时抽样信号还原的效果。
6.同频率但不同占空比方波抽样:a.信号源模块“DDS-OUT”测试点输出选择“方波B”,调节“DDS调幅”旋钮,使其峰峰值为3V左右、输出频率为4KHz;b.示波器双踪观测“抽样信号”与“PAM输出”测试点波形,对比方波B的占空比为5%、20%、35%、50%、80%等值时“PAM输出”测试点的波形和频谱;c.示波器双踪观测“抽样信号”与“解调输出”测试点波形,对比各占空比值时抽样信号还原的效果。
通信原理实验-抽样定理(总9页)

通信原理实验-抽样定理(总9页)
实验名称:抽样定理
实验目的:
1.理解抽样定理的意义和应用
2.掌握抽样定理的实验方法
实验原理:
抽样定理是通信原理中非常重要的一个原理,它是指在信号经过理想低通滤波器之后,如果采样频率大于等于信号频率的两倍,就可以完全恢复原始信号,这个定理也称为奈奎
斯特定理。
实验器材:
示波器、函数信号发生器、导线、面包板。
实验步骤:
1.将函数信号发生器的频率调整至1kHz,并将示波器连接至信号发生器输出端口检测波形。
2.在示波器上观察到正弦波形之后,将频率调整至5kHz,再次观察波形。
5.根据抽样定理的公式计算出采样频率,例如在10kHz时,采样频率应大于等于
20kHz。
6.将采样频率设置为30kHz,并观察波形。
7.继续提高采样频率直至可清晰观察到原始信号的波形。
实验结果:
在采样频率大于20kHz的情况下,可以清晰地观察到原始信号的波形。
在采样频率低
于20kHz的情况下,原始信号的波形会出现明显的径向失真。
实验分析:
在通信系统中,信号传输的过程中可能会发生失真现象,而抽样定理可以帮助我们消
除这种失真。
在本实验中,我们使用函数信号发生器产生不同频率的信号,并通过示波器
观察波形。
通过设置不同的采样频率,可以清晰地观察到原始信号的波形,并验证奈奎斯特定理的正确性。
通过本实验验证了奈奎斯特定理的正确性,即在采样频率大于信号频率的两倍时,可以完全恢复原始信号,避免信号采样带来的失真。
通信原理实验报告

通信原理实验报告实验一抽样定理实验二 CVSD编译码系统实验实验一抽样定理一、实验目的所谓抽样。
就是对时间连续的信号隔一定的时间间隔T 抽取一个瞬时幅度值(样值),即x(t)*s(t)=x(t)s(t)。
在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。
抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原信号。
这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。
二、功能模块介绍1.DDS 信号源:位于实验箱的左侧(1)它可以提供正弦波、三角波等信号,通过连接P03 测试点至PAM 脉冲调幅模块的32P010 作为脉冲幅度调制器的调制信号x(t)。
抽样脉冲信号则是通过P09 测试点连至PAM 脉冲调幅模块。
(2)按下复合式按键旋钮SS01,可切换不同的信号输出状态,例如D04D03D02D01=0010对应的是输出正弦波,每种LED 状态对应一种信号输出,具体实验板上可见。
(3)旋转复合式按键旋钮SS01,可步进式调节输出信号的频率,顺时针旋转频率每步增加100Hz,逆时针减小100Hz。
(4)调节调幅旋钮W01,可改变P03 输出的各种信号幅度。
2.抽样脉冲形成电路模块它提供有限高度,不同宽度和频率的抽样脉冲序列,可通过P09 测试点连线送到PAM 脉冲调幅模块32P02,作为脉冲幅度调制器的抽样脉冲s(t)。
P09 测试点可用于抽样脉冲的连接和测量。
该模块提供的抽样脉冲频率可通过旋转SS01 进行调节,占空比为50%。
3.PAM 脉冲调幅模块它采用模拟开关CD4066 实现脉冲幅度调制。
抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无信号输出。
《通信原理抽样定理》课件

奈奎斯特频率
定义奈奎斯特频率,它是信号 采样频率的两倍。
采样定理
给出抽样定理的数学表达式: 采样频率 ≥ 2 × 信号最高频率
重建滤波器
引入重建滤波器,用于恢复原 始信号。
抽样定理的应用举例
1
图像压缩
2
介绍抽样定理在图像压缩算法明抽样定理在无线通信中的应用,如 蜂窝网络和卫星通信。
音频编码
说明抽样定理在音频编码中的应用,例 如MP3。
视频传输
解释抽样定理在视频传输中的重要性, 包括流媒体和视频会议。
抽样定理的适用范围和限制
1 频域限制
解释抽样定理在频域上的限制,包括信号频谱的最高频率。
2 信噪比要求
说明抽样定理对信噪比有要求,高信噪比可放宽抽样定理的限制。
3 采样定理的实现
通信系统中的抽样问题
说明在通信系统中抽样的重要性和挑战。
直观实例
通过直观的实例帮助听众理解抽样定理。
抽样定理的定义和原理
抽样定义
解释抽样是什么,包括对连续信 号进行离散化的过程。
别名现象
说明抽样频率不足会引发别名现 象。
奈奎斯特准则
介绍奈奎斯特准则,它是抽样定 理的核心原理。
抽样定理的数学表达式
介绍实际系统中如何满足抽样定理的要求。
抽样定理的实际意义
数据传输
说明抽样定理如何保证数据在信 号传输中的可靠性。
信号处理
介绍抽样定理在信号处理中的重 要性,如滤波和解调。
通信技术发展
解释抽样定理对通信技术发展的 推动作用。
总结和应用建议
总结
总结抽样定理的重要性和应用。
应用建议
提供一些建议,如如何避免抽样问题,优化信号采 样。
通信原理抽样定理实验报告

通信原理抽样定理实验报告一、实验目的。
本实验旨在通过实际操作验证抽样定理在通信原理中的应用,加深对抽样定理的理解,掌握其实际应用方法。
二、实验原理。
抽样定理是指在一定条件下,对信号进行抽样采集后,可以准确还原原始信号。
在通信原理中,抽样定理是确保数字信号可以通过采样准确地表示模拟信号的重要基础。
三、实验仪器与材料。
1. 示波器。
2. 信号发生器。
3. 电缆。
4. 电脑。
5. 实验电路板。
四、实验步骤。
1. 将信号发生器与示波器连接,调节信号发生器输出频率为50Hz;2. 将示波器触发方式设置为自动触发;3. 调节示波器的水平和垂直灵敏度,使波形在示波器屏幕上居中显示;4. 通过示波器观察信号波形,并记录采样率;5. 逐渐增大信号发生器的频率,观察波形的变化;6. 将实验数据导入电脑,进行数据处理和分析。
五、实验结果与分析。
通过实验操作,我们得到了不同频率下的信号波形,并记录了相应的采样率。
在数据处理和分析过程中,我们发现随着频率的增大,如果采样率不足,将会出现混叠现象,导致信号失真。
这验证了抽样定理的重要性,即采样频率必须大于信号频率的两倍,才能准确还原原始信号。
六、实验总结。
通过本次实验,我们深刻理解了抽样定理在通信原理中的重要性,了解了采样率对信号重建的影响。
在实际应用中,我们需要严格按照抽样定理的要求进行信号采样,以确保数字信号能够准确地表示模拟信号。
七、实验感想。
本次实验使我对抽样定理有了更深入的理解,也增强了我对通信原理的实际操作能力。
通过实验,我意识到理论知识与实际操作相结合的重要性,也更加重视了实验数据的准确性和分析的重要性。
八、参考文献。
[1] 《通信原理》,XXX,XXX出版社,2018年。
[2] 《电子技术基础》,XXX,XXX出版社,2017年。
以上为本次实验的报告内容,希望能对大家的学习和实践有所帮助。
通信原理抽样定理实验报告

通信原理抽样定理实验报告通信原理抽样定理实验报告摘要:本实验通过对抽样定理的研究和实践,探究了通信原理中抽样定理的重要性和应用。
通过实验结果的分析,验证了抽样定理的正确性,并得出了一些有关抽样定理的结论。
1. 引言通信原理是现代通信技术的基础,而抽样定理是通信原理中一个重要的理论基础。
抽样定理指出,在进行模拟信号的数字化处理时,为了保证处理结果的准确性,需要对模拟信号进行一定的采样频率。
本实验旨在通过实践验证抽样定理的正确性,并探究其在通信原理中的应用。
2. 实验原理抽样定理是由奈奎斯特(Nyquist)于20世纪20年代提出的,也被称为奈奎斯特定理。
该定理的核心思想是:对于一个带宽有限的信号,如果将其以大于两倍的最高频率进行采样,那么采样后的数字信号可以完全恢复原始信号。
3. 实验步骤3.1 实验仪器与材料准备本实验所需的仪器与材料包括:信号发生器、示波器、电缆、电阻、电容等。
3.2 实验过程首先,通过信号发生器产生一个带宽有限的模拟信号。
然后,将该模拟信号通过电缆连接到示波器上进行观测。
在示波器上观测到的信号即为模拟信号的采样结果。
3.3 实验结果分析通过观察示波器上的信号波形,可以发现,采样后的信号与原始模拟信号非常接近,几乎无法区分。
这表明,抽样定理的预测是正确的,通过足够高的采样频率,可以准确地还原原始信号。
4. 实验讨论4.1 抽样频率的选择根据抽样定理,为了准确还原原始信号,采样频率至少要大于信号带宽的两倍。
实际应用中,为了保证信号的完整性和准确性,通常会选择更高的采样频率。
4.2 抽样定理在通信系统中的应用抽样定理在通信系统中有着广泛的应用。
例如,在数字音频和视频的传输中,通过抽样定理可以将模拟音频和视频信号转换为数字信号,从而实现高质量的传输和存储。
5. 实验结论通过本实验的研究和实践,我们验证了抽样定理的正确性,并得出以下结论:(1)抽样定理是通信原理中一个重要的理论基础,通过足够高的采样频率,可以准确地还原原始信号。
通信原理-抽样定理(PAM)实验报告

4、实验连线如下:
信号源模块模拟信号数字化模块
2K正弦基波——————抽样信号
DDS-OUT—————— 抽样脉冲
模拟信号数字化模块内连线
PAM输出———————解调输入
5、不同频率方波抽样
(1)信号源模块“DDS-OUT”测试点输出选择“方波A”,调节“DDS调幅”旋转电位器,使其峰峰值为3V左右。
通信原理-抽样定理(PAM)实验报告
实验目的
1、掌握抽样定理的概念。
2、掌握模拟信号抽样与还原的原理及实现方法。
3、了解模拟信号抽样过程的频谱
实验要求
按照实验指导书完成实验内容
实验原理
1、图8-1是模拟信号的抽样原理框图。
图8-1模拟信号的抽样原理框图
实际上理想冲激脉冲串物理实现困难,实验中采用DDS直接数字频率合成信源产生的矩形脉冲来代替理想的窄脉冲串。
图8-2抽样信号的还原原理框图
实验仪器
1、信号源模块一块
2、模拟信号数字化模块一块
3、20M双踪示波器一台
4、带话筒立体声耳机一副
5、频谱分析仪一台
实验步骤
1、将模块小心地固定在主机箱中,确保电源接触良好。
2、插上电源线,打开主机箱右侧的交流开关,再分别按下两个模块中的电源开关,对应的发光二极管灯亮,两个模块均开始工作。(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)
(2)示波器双踪观测“抽样信号”与“PAM输Hz等典型频率值时“PAM输出”测试点波形及频谱的区别。
这里可采用频谱分析仪或数字存储示波器的频谱分析功能进行信号频谱分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001
0.01V 0.21V 0.42V 0.59V 0.80V 0.99V 1.18V
e
编码
1 .2 0 .6 0 .2
t
t0 t 2
t4
A/D 转换步骤 示意图
5
抽样定理
• 抽样 • 是把时间上连续的模拟信号变成一系列时间上离散的
低通抽样定理
m(t) …
0
δT(t)
M(
t
-H 0 H δT()
…
-2Ts -Ts 0 Ts 2Ts t
…
-2s -s 0 s 2s
…
ms(t)
Ms()
…
t -2Ts -Ts 0 Ts 2Ts
…
-2s -s -H 0 H s 2s
13
…
低通信号冲激抽样过程的时间函数及对应频谱
6
抽样定理
• 举一个放电影的例子,自然界中连续运动的物体,经过摄像机
的拍摄(抽样)后变为一张张“离散”的胶片
• 在放映时由于人眼的暂留效应对光线的变化就有低通特性(人
眼对缓慢变化的光线可以察觉到,而对迅速变化的光线则无法 察觉)。光线的暂时中断被人眼自动连接上了。所以在屏幕上 看到的画面就是一个连续动作的图像。
16
低通抽样定理
• 在实际中,边界陡峭的理想滤波器无法制作,当fs = 2fH时,虽然
M(f)的频谱不会出现重叠现象,但通过非理想滤波器得到的频谱 仍然有失真。所以实际应用中一般要留有一定的防卫带,取fs > 2fH。例如话音信号的最高频率被限制在3400 Hz,抽样频率应大 于2×3400=6800Hz,为了留有一定防卫带, CTU-T规定话音信号 的抽样频率为fs = 8000Hz, Ts=125s。
• 抽样定理告诉我们,究竟需要多高的采样频率,在收端可以
用低通滤波器不失真地恢复出原信号。
8
抽样定理
抽样过程可看成是m(t)与δT(t)相乘:ms (t ) m(t ) T (t )
时间上连续的模拟信号
m(t)
ms(t)
抽样信号
δT(t) 抽样器
抽样定时脉冲
根据信号m(t)是低通型信号还是带通型信号,抽样定理可分为低通型信 号抽样定理和带通型信号抽样定理。 根据抽样脉冲δT(t)是时间上等间隔序列还是非等间隔序列,抽样定理可 分为均匀抽样定理和非均匀抽样定理。 根据δT(t)是冲激序列还是非冲激序列,抽样定理可分为理想抽样定理 9 和非理想抽样定理。
M TS M S H
根据时域卷积定理,得到:
m s (t )
n
m(nTs ) (t nTs )
m(t ) TS [m s (t ) h(t )]
15
H m(t ) TS m( nTs ) (t nTs ) Sa ( H t ) n
即可恢复原始信号。 ms(t) 1, | | H H H ht Sa H t 0 , | | H
1 M S H TS
低通滤 波器
m0 (t )
1 M n S H M TS n
• 要使“离散”的图像被人眼平滑成连续的图像,要求摄影机在
单位时间内能拍摄出足够多的画面(即采样频率要足够高)。 如果摄像机在单位时间内拍摄的画面数不够,在放映时看到的 动作就有跳动的感觉,而不是连续的感觉,这时就产生了画面 7 的失真。
抽样定理
• 对模拟信号进行抽样和拍电影一样,当抽样频率足够高时,
• m(t)为低通信号,频谱在0 ~ fH范围
• 抽样函数为周期性冲激函数:
T t (t nTs )
n
–抽样后输出信号为ms(t)
ms (t ) m(t ) T (t )
m(t ) (t nTs )
n n
m(nT ) (t nT )
n
信号恢复
n
2 2 TS 2 S H H
m(nTs ) Sa[ H (t nTs )]
m(nTs )
sin H (t nTs ) H (t nTs )
该式是重建信号的时域表达式,称为内插公式。 它说明以奈奎斯特速率
…
-2s -s
Ms()
频谱重叠 … …
s=2H
-2s
M()
…
-s s-H s+H M( 0
-H 0 H
-H 0 H
14
抽样频率fs对频谱M(f)的影响
信号恢复
如何由样值序列恢复原始基带信号? –由抽样频谱图可知,样值序列通过一适当的低通滤波器
s s
11
抽样信号的频谱 • 抽样信号的频谱
m(t ) M () T (t ) T () ms (t ) M s ()
2 T ( ) Ts
n
( n
s
s
)
m s (t ) m(t ) T (t )
1 M s ( ) Ts
• 抽样频率越高,对防止频谱混叠越有利,但将使总码速率增高,给
传输带来不便。
17
全部信息完全包含在其间隔不大于1/(2 fH)秒的均匀抽样序列里。换句话
说,在信号最高频率分量的每一个周期内起码应抽样两次。或者说,抽 样速率fs(每秒内的抽样点数)应不小于2 fH ,若抽样速率fs<2 fH ,则
会产生失真,这种失真叫混叠失真。
10
抽样定理的数学表达式 下面我们从频域角度来证明这个定理
《通信原理》
抽样定理
周文炯
学习目标
• 1. 了解模拟信号数字化传输系统的过程 • 2. 掌握理想低通抽样定理
重点:理想低通抽样定理
难点:由抽样信号恢复原信号
2
模拟信号的数字传输
• 数字通信系统具有许多优点而成为当今通信的发展方向 • 自然界的许多信息经各种传感器感知后都是模拟量,例如电
话、电视等通信业务,其信源输出的消息都是模拟信号。
抽样的带限信号m(t)可以由其样值利用内插公式重建。这等效为将抽样后信 号通过一个冲激响应为 H Sa H t 的理想低通滤波器来重建m(t)。 由图可见, 以每个样值为峰值画 一个Sa函数的波形, 则 合成的波 形就是m(t)。
由于Sa函数和抽样后信号的恢复 有密切的联系,所以Sa函数又称为 抽样函数。
M ( n )
1 M S T M 2
所以,理想抽样后信号的频谱Ms()由无限多个间隔为s 的M(ω)相叠加而成,这意味着抽样后的信号ms(t)包含了信号 m(t)的全部信息。n=0时就是 M () 本身,所以通过一个低通滤 12 波器就可以恢复信号m(t)。
低通抽样定理
s≥2H
-2s M()
低通信号的抽样定理:
…
-s -H 0 H
s 2s M'( s-m s+m
一个频带限制在0~fH内的低 通信号m(t),如果抽样频率fs ≥ 2fH,则可以由抽样序列无失真地 重建恢复原始信号m(t) 。
-H 0 H
s<2H
6.1.1 : 低通抽样定理 • 低通抽样定理
• 一个频带限制在(0, fH) Hz内的时间连续信号m(t),如果以
1/(2 fH)秒的间隔对它进行等间隔抽样,则m(t)将被所得到 的抽样值完全确定。
2 fH—奈奎斯特速率;1/(2 fH)—奈奎斯特间隔。 此定理告诉我们:若m(t)的频谱在某一频率fH以上为零,则m(t)中的
• 若要利用数字通信系统传输模拟信号,一般需要三个步骤:
(1)把模拟信号数字化,即模数转换(A/D)
(2)进行数字方式传输
(3)把数字信号还原为模拟信号,即数模转换(D/A)
3
模拟信号的数字传输
模拟信号数字化传输的系统框图
模拟 信息源 抽样、量 化、编码 数字 通信系统 译码和 低通滤波
模拟随机信号
数字随机序列
数字随机序列
模拟随机信号
• A/D转换中有三个基本过程:抽样、量化、编码。
4
e 模拟信号
e
抽样
t
t 0 t 2 t4 t1
量化 等级 0 1 2 3 4 量化 电平 二进制 编码 实际抽样 值
t
量化
5
6 7 8
9
0V 0.2V 0.4V 0.6V 0.8V 1.0V 1.2V 1.4V 1.6V 1.8V
抽样值的过程。
• 抽样定理的大意是,如果对一个频带有限的时间连续的模
拟信号进行抽样,当抽样速率达到一定数值时,那么根据 它的抽样值就能重建原信号。也就是说,若要传输模拟信 号,不一定要传输模拟信号本身,而只需传输按抽样定理 得到的抽样值即可。
• 抽样定理是模拟信号数字化的理论依据。
• 能否由样值序列重建原信号,是抽样定理要回答的问题。
模拟信号迅速变化的部分都采集到了,接收端利用一个低 通滤波器进行平化处理,可恢复出原信号。而抽样频率不 够高时,模拟信号迅速变化的部分没有都采集到,低通滤波 器平滑输出的波形就会产生失真。
• 结论:抽样后的样值序列含有原模拟信号的信息,如果要
把样点恢复成原模拟信号,在抽样时一定要满足一定的条 件——抽样定理。