苏教版必修4高中数学第1章《三角函数》任意角教学案

合集下载

高中数学 第1章 三角函数 1.1.1 任意角教案 苏教版必修4-苏教版高一必修4数学教案

高中数学 第1章 三角函数 1.1.1 任意角教案 苏教版必修4-苏教版高一必修4数学教案
(3)若 是第三象限角,判断 是第几象限角?
课外作业
教 学 小 结
,
即任一与角 终边相同的角,都可以表示成角 与整数个周角的和.
注意: (1) ;(2) 是任意角(正角、负角、零角);(3)终边相同的角不一定相等;但相等的角,终边一定相同;终边相同的角有无数多个,它们相差 的整数倍.
【数学运用】
例1、在00到3600范围内,找出与下列各角终边相同的角,并判定它是第几象限角.
3、象限角是如何定义的?
【建构数学】
1、角的定义
2、角的分类
3、象限角的定义
回忆:初中学过哪些角?
合作探究:
-3000,1500,-600,600,2100,3000,4200角分别是第几象限角?
其中哪些角的终边相同?
教学过程设计


二次备课
4、终边相同的角的表示:
所有与角 终边相同的角,连同角 在内,可构成一个集合
教材、教参
授课方法
自学、讨论、归纳、巩固训练
教学辅助手段
多 媒 体
专用教室
教学过程设计


二次备课
【创设情境】
通过创设情境:“转体 ,逆(顺)时针旋转”,角有大于 角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;
【自主学习】
阅读课本,回答下列问题:
1、角是如何定义的?
2、角是如何分类的,其标准是什么?
(1)6500(2)-1500(3)
例2、已知 与2400角的终边相同,判断 是第几象限角?
变式: 呢?
例3、讨论四个象限角的范围:
小结:
能否写出与600终边相同的角的集合?
练习.写出终边半轴上、负半轴上的角的集合. 写出终边在x轴上的角的集合.

高中数学必修4第一章三角函数完整教案

高中数学必修4第一章三角函数完整教案

高中数学必修4第一章三角函数完整教案4-1.1.1任意角(1)教学目标:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。

教学重点:理解“正角”“负角”“象限角”“终边相同的角”的含义教学难点:“旋转”定义角课标要求:了解任意角的概念教学过程:一、引入同学们在初中时,曾初步接触过三角函数,那时的运用仅限于计算一些特殊的三角函数值、研究一些三角形中简单的边角关系等。

三角函数也是高中数学的一个重要内容,在今后的学习中大家会发现三角学有着极其丰富的内容,它能够简单地解决许多数学问题,在中学数学中有着非常广泛的应用。

二、新课1.回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”师:初中时,我们已学习了0○~360○角的概念,它是如何定义的呢?生:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。

师:如图1,一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到终止位置OB,就形成角α。

旋转开始时的射线OA叫做角的始边,OB叫终边,射线的端点O叫做叫α的顶点。

o师:在体操比赛中我们经常听到这样的术语:“转体720” (即转体2周),“转体1080o”(即转体3周);再如时钟快了5分钟,现要校正,需将分针怎样旋转?如果慢了5分钟,又该如何校正?生:逆时针旋转300;顺时针旋转300. 师:(1)用扳手拧螺母;(2)跳水运动员身体旋转.说明旋转第二周、第三周,则形成了更大范围内的角,这些角显然超出了我们已有的认识范围。

本节课将在已掌握角的范围基础上,重新给出角的定义,并研究这些角的分类及记法.2.角的概念的推广:(1)定义:一条射线OA由原来的位置OA,绕着它的端点O按一定方向旋转到另一位置OB,就形成了角α。

必修4_ch1 三角函数教学案(16课时)

必修4_ch1   三角函数教学案(16课时)
●720°是怎样的一个角?
二、师生互动:
三、建构数学:
1、角的概念:
(1)0到360之间的角:
(2)0的角:
(3)90、180、360的角:
2、角的概念的推广:
定义:(1)正角:
(2)负角:
(3)零角:
3、象限角、轴线角、终边相同的角的概念:
(1)象限角的概念:
(2)轴线角的概念:
(3)终边相同的角的概念:
(3)终边落在阴影部分(不包含边界),且在0到360的角的集合
(4)终边落在阴影部分(不包含边界),且在-360到0的角的集合.
二、解答题:
9、在0°到360°范围内,找出与下列各角终边相同的角,并指出它们是第几象限角:
(1) (2) (3) (4)
10、写出与下列各角终边相同的角的集合,并把集合中适合不等式 的元素 写出来:
六、课堂小结:
七、教学反思:
江苏省泰兴中学高一数学同步课时训练2)
【弧度制(1)】
班级姓名
一、填空题:
1、若 rad,则 的终边所在的象限是.
2、若半径为1m的扇形面积为 m2,则词形的圆心角为.
3、将分钟拨慢10min,则分针转过的弧度数为.
4、设集合 , ,则 .
5、半径为 的圆中,弧长为 的弧所对的圆心角的弧度数是.
引申:已知 是第二象限角,问 是第几象限角?
五、课堂练习:
1、在 与 终边相同的角是.
2、已知 与240角终边相同,判断 是第几象限角.
六、课堂小结:
七、教学反思:
江苏省泰兴中学高一数学同步课时训练(1)
【任意角】
班级姓名
一、填空题:
1、下列命题中正确的是.
①第一象限角一定不是负角②小于90°的角一定是锐角

高中数学新苏教版精品学案《任意角的三角函数》

高中数学新苏教版精品学案《任意角的三角函数》

任意角的三角函数【学习目标】1.借助单位圆理解任意角的三角函数正弦、余弦、正切定义。

2.熟记正弦、余弦、正切函数值在各象限的符号。

【学习重难点】重点:任意角的正弦、余弦、正切函数的定义、定义域以及根据任意角三角函数的定义求相关角的三角函数值。

难点:把三角函数理解为以实数为自变量的函数。

【学习过程】【第一课时】知识梳理1.任意角三角函数的定义设角α终边上任意一点的坐标为,,它与原点的距离为r,则in α=________,co α=________,tan α=________。

2.正弦、余弦、正切函数值在各象限的符号【达标检测】一、填空题1.若角α的终边过点3a,n是α终边上一点,且O-n=________。

二、解答题11.确定下列各式的符号:(1)tan 12021in 273°;(2)错误!;(3)in 错误!·co 错误!·tan 错误!π。

12.已知角α终边上一点3a,n位于=3在第三象限的图象上,且m0,∴式子符号为正。

(2)∵108°是第二象限角,∴tan 108°0从而错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误! 15a8a17a17a”连接。

5.集合A=[0,2π],B={α|in α错误!,则角α的取值范围是________。

7.如果错误!错误!错误!0的解集是______________。

9.已知α,β均为第二象限角,若in αin 1.2>in 1解析∵1,1.2,1.5均在错误!内,正弦线在错误!内随α的增大而逐渐增大,∴in 1.5>in 1.2>in 1.5.错误!∪错误!6.错误!∪错误!7.co α<in α<tan α解析如图所示,在单位圆中分别作出α的正弦线M、正切线AT,很容易地观察出OM<MP=错误!in α,=错误!α,S△AOT=错误!OA·AT=错误!tan α,S扇形AOP=错误!αOA2又S△AOP<S扇形AOP<S△AOT,所以错误!in α<错误!α<错误!tan α,即in α<α<tan α。

苏教版高中数学必修4《任意角的三角函数(第1课时)》参考教案1

苏教版高中数学必修4《任意角的三角函数(第1课时)》参考教案1

1 / 3§1.2.1 任意角的三角函数(1)教学目标:理解并掌握任意角三角函数的定义; 理解三角函数是以实数为自变量的函数; 理解并掌握各种三角函数在各象限内的符号; 强化数形结合的数学思想.教学重点:任意角三角函数的定义; 各种三角函数在各象限内的符号.教学难点:任意角三角函数的定义及根据定义求任意角的三角函数值. 教学过程: 一、问题情境1.情境引入:作PMO Rt ∆,回顾初中三角函数的定义. 2.提出问题: POM ∠的三角函数有哪些?分别如何定义的? 二、学生活动问题1:将POM ∠放到直角坐标系中,点P 的坐标分别表示什么? 问题2:当点P 在终边OP 上移动时,POM ∠的三角函数值是否发生变化? 三、建构数学问题3:此时POM ∠的各三角函数值是否可以由点P 的坐标),(y x P 以及点P 到原点的距离r (022>+=y x r )来表示?正弦r y=αsin , 余弦r x=αcos ,正切x y=αtan .问题4:这样将锐角三角函数推广到任意角? 四、数学理论 1.任意角的三角函数:一般地,对任意角α,我们规定: (1)比值ry叫做α的正弦,记作αsin ,即 αMOP),(y x P αMOxyryx),(y x P αOryx。

2 / 3r y =αsin ; (2)比值r x叫做α的余弦,记作αcos ,即r x=αcos ,(3)比值)0(≠x x y叫做α的正切,记作αtan ,即x y=αtan .2.回顾反思:(1)以后我们在平面直角坐标系内研究角的问题,其顶点都在原点,始边都与x 轴的非负半轴重合.(2)书写及读法名称,α为自变量,αsin ,αcos ,αtan 分别叫做α的正弦函数,余弦函数,正切函数,以上三种都称为三角函数,三角函数是以“比值”为函数值的函数.(3)对αsin 的理解,符号是不可分的,不能认为是α⋅sin . (4)αtan 中规定0≠x 的理解,即Z k k ∈+≠,2ππα.(5)一些特殊角的三角函数值,P16练习3.α 0︒ 30︒ 45︒ 60︒ 90︒ 120︒ 135︒ 150︒ 180︒ 270︒ 360︒ 弧度αsinαcosαtan3.三角函数在各象限内的符号α 第一象限 第二象限 第三象限 第四象限 αsinαcosαtan+—+ + +++—————αsinαcosαtan3 / 3总结规律:一全正、二正弦、三正切、四余弦. 3.三角函数的定义域五、数学运用 1.例题例1.课本P15例1(变题:0),3,2(<-t t t P ) 例2.课本P15例2例3.确定下列条件的角α是第几象限角.(1)0cos ,0sin <>αα (2)0tan ,0sin <<αα (3)0tan ,0cos <>αα 2.练习:可以讨论课本P15练习1,2,4,5,6;P16链接. 六、总结反思任意角三角函数的定义及求任意角的三角函数值,各种三角函数在各象限内的符号.。

高中数学 第1章《三角函数》任意角的三角函数(1)教学案 苏教版必修4(1)

高中数学 第1章《三角函数》任意角的三角函数(1)教学案 苏教版必修4(1)

江苏省射阳县盘湾中学高中数学 第1章《三角函数》任意角的三角函
数(1)教学案 苏教版必修4 教学目标:掌握任意角的正弦、余弦、正切的定义。

掌握正弦、余弦、正切函数的定义域和这
三种函数的值在各象限的符号。

教学重点:正弦、余弦、正切的定义 教学难点:正弦、余弦、正切的定义
教学过程:
一、问题情境: 在Rt ABC 中sin α=__________
cos α=_________,tan α=_________. 二、学生活动:
1、在直角坐标系中,设α(锐角)终边上任意一点P (x,y )到原点距离为r (r=22a b +),则sin α=_______,cos α=________,tan α=_______.
你能将锐角三角函数推广到任意角吗?
三、知识建构:
1、正弦:
余弦:
正切:
思考:它们的值与终边上的点P 的选取有关吗?
2、三角函数:
3、三角函数定义域:
4、三角函数值在各象限符号:
四、知识运用:
例1、已知角α的终边经过点P(2,-3) ,求α的正弦、余弦、正切值。

A C
B x y
x y α α
变式训练:若角θ的终边过点P(4a,-3a)(a≠0),求sinθ和cosθ的值。

小结:
例2、确定下列三角函数值的符号。

(1)cos
7
12
π(2)sin(-465°)(3)tan
11
3
π。

高中数学(任意角的三角函数)教案1 苏教版必修4 教案

高中数学(任意角的三角函数)教案1 苏教版必修4 教案

第 3 课时:§1.2.1 任意角的三角函数(一)【三维目标】:一、知识与技能1.掌握任意角的正弦、余弦、正切的定义;2.掌握正弦、余弦、正切函数的定义域和这三种函数的值在各象限的符号。

3.树立映射观点,正确理解三角函数是以实数为自变量的函数;二、过程与方法1.通过网络载体,利用几何画板的直观演示,培养学生主动探索、善于发现的创新意识和创新精神;2.在学习过程中通过相互讨论培养学生的团结协作精神;3.通过学生积极参与知识的“发现”与“形成”的过程,培养合情猜测的能力,从中感悟数学概念的严谨性与科学性。

三、情感、态度与价值观1.使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式;2.学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;3.让学生在任意角三角函数概念的形成过程中,体会函数思想,体会数形结合思想。

【教学重点与难点】:重点:任意角三角函数的定义(包括这三种三角函数的定义域和函数值在各象限的符号)。

难点:任意角的三角函数概念的建构过程【学法与教学用具】:1. 学法:2. 教学用具:多媒体、实物投影仪.3. 教学模式:启发、诱导发现教学.【授课类型】:新授课【课时安排】:1课时【教学思路】:一、创设情景,揭示课题用),(αr与用坐标),(yx均可表示圆周上点P,那么,这两种表示有什么内在的联系?确切地说,●用怎样的数学模型刻画),(yx与),(αr之间的关系?二、研探新知1.三角函数的定义【提问】:初中锐角的三角函数是如何定义的?在平面直角坐标系中,设α的终边上任意一点P的坐标是),(yx,它与原点的距离是)0(22>+=yxrr。

当α为锐角时,过P作xPM⊥轴,垂足为M,在OPMRt∆中,sinyrα=,cosxrα=,tanyxα=●怎样将锐角的三角函数推广到任意角的三角函数?一般地,对任意角α,我们规定:(1)比值yr叫做α的正弦,记作sinα,即sinyrα=;(2)比值xr叫做α的余弦,记作cosα,即cosxrα=;(3)比值yx叫做α的正切,记作tanα,即tanyxα=;【说明】:①α的始边与x轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;②根据相似三角形的知识,对于确定的角α,三个比值不以点(,)P x y在α的终边上的位置的改变而改变大小;③当()2k k Zπαπ=+∈时,α的终边在y轴上,终边上任意一点的横坐标x都等于0,所以tanyxα=无意义;④除以上两种情况外,对于确定的值α,比值yr、xr、yx、分别是一个确定的实数,所以正弦、余弦、正切是以角为自变量,一比值为函数值的函数,以上三种函数统称为三角函数。

苏教版必修4高中数学第1章《三角函数》任意角的三角函数(2)教学案

苏教版必修4高中数学第1章《三角函数》任意角的三角函数(2)教学案

高中数学 第1章《三角函数》任意角的三角函数(2)教学案
苏教版必修4
教学目标:了解如何运用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来,并能作出三角函数线。

促进学生对数形结合
思想的理解与感悟。

教学重点:三角函数线的探究与作法 教学难点:三角函数线的探究与作法
教学过程:
一、问题情境:
设点P(x,y)是α终边上的任意一点(r=22x y +),
sin α=_____,cos α=_____,tan α=_____.
问题:三角函数的几何表示又如何呢?
二、学生活动:
探究:1、为简化上式可令r=____,则sin α=_____,cos α=_____,tan α=_____.此时,点P 的位置在哪?可如何取得?
2、在上述条件下,若α是锐角,sin α=____=_____,cos α=____=______,
tan α=____=_____.若α是任意角,结论还成立吗?
3、如何解决这个问题?
三、知识建构:
1、有向线段:
有向线段的数量:
2、正弦线:
3、余弦线:
4、正切线:
x y O M P
四、知识运用:
例1、比较大小:(1)sin1______sin60°(2)c os 4
7
π______cos
5
7
π
练习:书 P15 7、 8
五、回顾反思:
知识:思想方法:
六、作业布置:
书P22 习题1.2 2(2)(4)、 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学第1章《三角函数》任意角教学案
苏教版必修4
教学目标:理解任意角的概念,学会在平面内建立适当的坐标系来讨论任意角。

能写出与任一已知角终边相同的角的集合,并能判定其为第几象限角。

教学重点:任意角的概念
教学难点:终边相同的角的正确表示
教学过程:
一、问题情境:
体操中、跳水中有“转体720°”“翻腾两周半”的动作名称.你知道720°是怎样的一个角吗?
二、学生活动:
点P绕圆心旋转一周半,其位置如何用角来表示?
三、知识建构:
1、角的概念:
正角:
负角:
零角:
练习:时针在1小时内所转过的角为多少度?
2、象限角:
注意:
练习:-300°、-150°、-60°、60°、210°、300°、420°角分别是第几象限角?其中哪些角的终边相同?你能写出与60°角终边相同的角的集合吗?
3、与角 终边相同的角的集合:
四、知识运用:
例1、在0°到360°范围内,写出与下列各角终边相同的角,并分别判断它们是第几象限角。

(1)650° (2)-150° (3)-990°15′
例2、已知α与240°角的终边相同,判断2α
是第几象限角。

相关文档
最新文档