探索直线平行的条件)
北师大版数学七年级下册2.2《探索直线平行的条件》教案1

北师大版数学七年级下册2.2《探索直线平行的条件》教案1一. 教材分析《探索直线平行的条件》是北师大版数学七年级下册第2章第2节的内容。
本节课主要让学生通过探索活动,掌握直线平行的条件,理解平行线的性质,并能运用这些性质解决一些简单问题。
本节课的内容是学生进一步学习几何知识的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经学习了直线、射线、线段的基本概念,对图形的基本性质有所了解。
但是,对于直线平行的条件和平行线的性质,学生可能还比较陌生。
因此,在教学过程中,需要引导学生通过探索活动,自主发现和总结直线平行的条件和平行线的性质。
三. 教学目标1.理解直线平行的条件,掌握平行线的性质。
2.能够运用直线平行的条件和平行线的性质解决一些简单问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.教学重点:直线平行的条件,平行线的性质。
2.教学难点:直线平行的条件的推导,平行线的性质的理解和运用。
五. 教学方法采用问题驱动的教学方法,引导学生通过探索活动,自主发现和总结直线平行的条件和平行线的性质。
在教学过程中,注重学生的主体地位,鼓励学生积极参与,培养学生的动手能力和思维能力。
六. 教学准备1.准备一些直线和平行线的模型,用于直观展示直线平行的条件和平行线的性质。
2.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用直尺和三角板,展示一些直线和平行线,引导学生观察和思考:什么是直线?什么是平行线?直线和平行线有哪些性质?2.呈现(10分钟)呈现一些直线平行的例子,引导学生观察和思考:这些直线为什么是平行的?直线平行有哪些条件?3.操练(10分钟)让学生分组合作,利用直尺和三角板,尝试画出一些平行线,并总结直线平行的条件。
4.巩固(10分钟)让学生独立完成一些关于直线平行的练习题,巩固所学知识。
5.拓展(10分钟)引导学生思考:平行线除了具有直线平行的条件外,还有哪些性质?让学生通过探索活动,发现和总结平行线的性质。
探索直线平行的条件-说课稿

探索直线平行的条件-说课稿(总9页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第二章相交线与平行线第2节.《探索直线平行的条件》说课稿酒泉四中七年级田小平一、说教材《探索直线平行的条件》是北师大版《数学》七年级下册第二章第二节的内容,通过两直线被第三条直线所截形成的同位角的大小关系研究两直线平行的位置关系.平行和相交是同一平面内两条直线的基本位置关系,教材对这个问题的处理分三个阶段螺旋上升的呈现.第一阶段小学阶段,初步认识平行线;第二阶段七年级下学期,探索直线平行的条件和研究平行线的特征;第三阶段八年级下学期,研究平行线性质、判定的形式化表述.本节课是《探索直线平行的条件》的第一课时,是承接小学并为下一课乃至后继的三角形、四边形(特别是平行四边形)的相关学习打下了基础.从本节课起,在培养和发展学生合情推理能力的同时,开始从有条理的口头表述逐渐过渡到书写自己的理由.因此本节课的学习对发展学生的合情推理能力和逻辑推理能力是非常重要的.二、说学生:我们面对的对象是已具备一定知识储备和一定认知能力的个性鲜明的学生,而不是一张“白纸”,因此关注学生的情况是十分有必要的.通过以前(小学)的学习,学生对于两条直线的平行关系有了初步的认识.但是这个认识是很肤浅的,仅仅处于对生活中存在的平行线现象的感知层面,对于如何判断两条直线平行,缺乏相关的知识.另一方面该年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强.三、说教学目标(一)新课标对本节课的要求:探索并证明平行线的判定定理;掌握“过直线外一点有且只有一条直线与这条直线平行”;了解平行于同一条直线的两条直线平行。
(二)根据课程标准和教材的内容及其在教材体系中的作用和地位,确定本节课的教学目标如下:1、知识目标:2(1)、经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些简单的实际问题.(2)、会用三角尺过已知直线外一点画这条直线的平行线.2、能力目标:经历观察、操作、想象、推理、交流等活动,进一步发展空间观念、推理能力和有条理的表达的能力.3、情感目标:亲历观察、操作、想象、推理、交流等活动,并能积极、主动地进行自主探索或与同伴交流.四、教学重点和难点重点:为了实现以上教学目标,确定本节课的教学重点是:经历观察、操作、想象、推理、交流等活动,探索得到直线平行的条件.难点:在实现教学目标的过程中,利用“同位角相等,两直线平行”解决具体情境中的一些简单的问题.五、教法选择与学法指导《课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者.基于以上理念,结合本节课内容及学生情况,教学设计中采用“引导——发现法”组织教学.其基本程序设计为:课前预习——课内检测——合作探究——巩固练习——提优补标上述程序的实施很大程度上有赖于学生的学习,因此对学生学习方式的指导是十分重要的,本节课鼓励和引导学生采用动手实践、自主探索与合作交流相结合的方式进行学习,让学生亲历探索的全过程,体验知识产生和发展的全过程.(二) 课内检测多媒体出示教材P44的引例及引图装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?(三)合作探究探究一:(板书课题后)教师引导学生通过P44“做一做”的“转动木条”实验自主探索“同位角相等,两直线平行”这一结论.木条a与木条b的位置关系如图,三根木条相交成∠1,∠2,固定木条b,c,转动木条a.学生利用事先准备的学具动手实践,另外教师可以利用“z+z”软件制作多媒体动画课件演示木条a转动的过程中∠1和∠2的大小关系变化对木条a,b之间位置关系的影响,为学生提供观察的直观素材.设计“问题串”引导学生进行探索:1、在转动木条a的过程中,除了木条a的位置发生变化外,还有什么发生了变化?2、随着木条a的转动发生的这些变化是不是孤立的?3、在∠2逐渐变大的过程中,∠2和∠1的大小关系发生了什么变化必须给学生提供充分的时间和空间让其进行自主探索和与同伴交流,经历数学活动的过程.利用多媒体动态演示当变化的∠2的度数逐渐接近固定的∠1的度数(如:60°)时,木条a与木条b的交点位置的变化趋势,提供直观的素材帮助学生探索.学生的探索可能有较大的盲目性,精心设计的“问题串”可以给学生的探索提供适当的帮助,激发学生的求知欲.利用问题1培养学生全面细致的观察能力.利用问题2让学生思考这些变化之间的联系,为探索指明方向.利用问题3让学生发现∠2从小于到等于再到大于∠1的渐变过程.454、在 ∠2逐渐变大的过程中,木条a 与木条b 的位置关系发生了怎样的改变你是怎样发现的请和同伴交流.5、∠2和∠1的大小关系的变化与木条a 与木条b 的位置关系的变化之间有无联系?你有什么发现请和同伴交流.利用问题4让学生发现木条a 与木条b 从相交到平行再到相交的渐变过程.教师可引导学生观察木条a 与木条b 相交时的交点位置的变化趋势加深对木条a 与木条b 位置关系的理解.利用问题5让学生进一步将两者的变化联系在一起,将思维引向深入.结合以上讨论,自然引出同位角的描述性说明:如图(多媒体演示),具有∠1与∠2这样位置关系的角称为同位角. ∠3与∠4也是同位角.在上图中,有没有其他的同位角了?请同学们找出来.(请在课后想一想这些同位角在位置上有什么共同特征?并与同伴交流你的观点).探究二:结合学生的探索、讨论、交流的情况,请学生自主归纳出“同位角相等,两直线平行”这一结论.(板书这一结论)探究三:让学生动手完成课本P 45“做一做” 请学生自主归纳出“过直线外一点有且只有教材通过直线平行条件的探索自然引入“三线八角”,借助图形直观的介绍同位角的概念.关于同位角的识别,教材未作过高要求,教学中也相应的未安排过多的识别及变式训练.鉴于实际情境中同位角的识别对于能否灵活运用本课结论至关重要,故安排学生课后讨论同位角的特征(F 型结构),并通过与同伴的交流将合作学习延伸到课外.学生在归纳结论时表述的可能不太规范,教师要鼓励学生互相交流、补充,不要代替学生学习的过程.lDCBA1 2 3 7 64 8 5678。
《探索直线平行的条件》第2课时示范公开课教案【北师大数学七年级下册】

《探索直线平行的条件》教学设计第2课时一、教学目标1.了解内错角和同旁内角的意义,掌握“内错角相等,两直线平行”和“同旁内角互补,两直线平行”两种判定方法.2.灵活运用两种判定方法,证明两直线平行,解决角度的计算和转换问题.3.经历观察、操作、想象、推理、交流等活动,进一步发展空间想象、推理能力和有条理的表达能力.4.在积极参与探索、交流的数学活动中,体验数学与实际生活的密切联系,激发学生的求知欲,感受与他人合作的重要性.二、教学重难点重点:了解内错角和同旁内角的意义,掌握“内错角相等,两直线平行”和“同旁内角互补两直线平行”两种判定方法.难点:活运用两种判定方法,证明两直线平行,解决角度的计算和转换问题.三、教学用具电脑、多媒体、课件、教学用具等.四、教学过程设计2.平行于同一条直线的两条直线平行.教师活动:引导学生思考,不能用同位角的数量关系直接判断两直线是否平行时,我们该怎么办?【情境引入】小明有一块小画板,他想知道它的上、下边缘是否平行,于是他在两个边缘之间画了一条线段AB(如图所示)小明利用量角器,通过测量某些角的大小就能知道这个画板的上、下边缘是否平行,你知道他是怎么做的吗?预设:可以测量∠1与∠2,也可以测量∠1与∠3....教师活动:进一步提出思考,这样做的理由呢?【合作探究】如何利用量角器,通过测量某些角的大小就能知道这个画板的上、下边缘是否平行?教师活动:演示测量过程,说明∠1=∠3,由此小明判断上下两个边缘是平行的.∠1+∠2=180°,由此他也能判断上下两个边缘是平行的.提出思考问题:你知道小明的判断依据吗?【探究】内错角与同旁内角的定义如图,具有∠1与∠2这样的位置关系的角称为内错角.具有∠1与∠3这样的位置关系的角称为同旁内角.请找出图中其他的内错角与同旁内角.预设:∠3与∠4是内错角;∠2与∠4是同旁内角.问题:你能说出内错角与同旁内角的特征吗?教师活动:引导学生观察内错角的位置特征,思考并说出内错角的特征.预设:内错角指在两条被截直线的内部,在截线的两侧,位置是交错的两个角.内错角是Z形状教师活动:引导学生观察同旁内角的位置特征,思考并说出同旁内角的特征.预设:同旁内角指在两条被截直线的内部,在截线的同旁的两个角.同旁内角是U形状【归纳】“三线八角”小结①位于两条被截直线同一方、且在截线同一侧的两个角,叫做同位角;如∠1与∠2.同位角是 F 形状②位于两条被截直线的内部,且在截线的两侧的两个角,叫做内错角;如∠7与∠2.内错角是Z形状③位于两条被截直线内部,且在截线的同侧的两个角,叫做同旁内角.如∠5与∠2.同旁内角是U形状.【议一议】(1)内错角满足什么关系时,两直线平行?为什么?教师活动:引导学生梳理证明思路:书写证明过程:已知:∠1 = ∠2 . 求证:a∥b证明:∵∠1 = ∠2 (已知)∠1 = ∠3 (对顶角相等)∴∠3 = ∠2 (等量代换)∴直线a∥b (同位角相等,两直线平行) 得出结论:内错角相等,两直线平行(2)同旁内角满足什么关系时,两直线平行?为什么?教师活动:引导学生梳理证明思路:书写证明过程:已知:∠1+∠2=180°,求证:a∥b∠1,∠2互补(已知)∠1,∠3互补(邻补角定义)∴∠3 =∠2 (同角的补角相等)∴直线a∥b (内错角相等,两直线平行) 教师活动:提示证明方法不唯一,证明过程中的∠3换成∠4就可以利用同位角相等,两直线平行来证明.得出结论:同旁内角互补,两直线平行【归纳】平行线的判定方法:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称为:内错角相等,两直线平行.同旁内角互补,两直线平行.【做一做】如图,三个相同的三角尺拼接成一个图形,请找出图中的一组平行线,并说明你的理由.教师活动:以举例的方式提示学生如何寻找.一位同学说:BC与AE是平行的,因为∠BCA与∠EAC是内错角,而且又相等.提问你能看懂她的意思吗?再找到另一组平行线,说说你的理由.预设:BA与CE是平行的,因为∠ACE 与∠BAC是内错角,而且又相等.AC与ED是平行的,因为∠ACE与∠CED 是内错角,而且又相等.【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例已知:如图,∠1+∠2=180°,请用不同的方法说明:AB∥CD.分析:两条直线平行,可以利用同位角相等、内错角相等或同旁内角互补来证明.观察可知∠1的对顶角∠EHB与∠2是同旁内角,结合已知可证;∠2的补角∠CGH 与∠1是同位角,利用同角的补角相等可得同位角相等,从而证出两直线平行;同理可证∠1的补角∠AHG与∠2这对内错角相等,也可以证出结论.解题过程:2.下列条件能判断l1∥l2的是( )A. ∠2=∠3B. ∠1=∠3C. ∠4+∠5=180°D. ∠2=∠43.观察图中所标记的五个角,完成题目:(1)∠1 与是同位角;(2)∠5 与是同旁内角;(3)∠2 与是内错角.4.图中各角分别满足下列条件时,你能判断是哪两条直线平行吗?①∠1=∠4②∠2 =∠4③∠1+∠3 =180°答案:1.B ;2.B3.∠4;∠3;∠14.①a∥b;②l∥m;③l∥n.思维导图的形式呈现本节课的主要内容:。
《探索直线平行的条件》教案

《探索直线平行的条件》优秀教案一、教学目标1. 让学生理解直线平行的概念,掌握直线平行的条件。
2. 培养学生运用几何知识解决实际问题的能力。
3. 提高学生逻辑思维能力和团队协作能力。
二、教学内容1. 直线平行的定义2. 直线平行的条件3. 平行线的性质4. 平行线的判定5. 直线平行在实际问题中的应用三、教学重点与难点1. 教学重点:直线平行的概念、条件、性质和判定。
2. 教学难点:直线平行条件的推理和证明。
四、教学方法1. 采用问题驱动法,引导学生主动探索直线平行的条件。
2. 利用几何画板软件,直观展示直线平行的过程,增强学生直观感知。
3. 组织小组讨论,培养学生团队协作能力和口头表达能力。
4. 运用例题讲解,让学生在实践中掌握直线平行的应用。
五、教学准备1. 教学课件:包括直线平行的图片、动画、例题等。
2. 几何画板软件:展示直线平行的过程。
3. 练习题:巩固直线平行的知识和应用。
4. 小组讨论卡片:分配给各小组,用于记录讨论成果。
教案一、导入新课1. 展示生活中常见的平行现象,如的道路、书本排版等。
2. 引导学生思考:这些平行现象背后有什么共同的规律?3. 引入本节课的主题:《探索直线平行的条件》。
二、自主学习1. 让学生阅读教材,了解直线平行的定义。
三、课堂讲解1. 讲解直线平行的条件,引导学生通过几何画板软件直观展示。
2. 利用几何画板软件,展示直线平行的过程,引导学生观察、思考。
3. 讲解平行线的性质,如同位角相等、内错角相等等。
4. 讲解平行线的判定方法,如同位角相等、内错角相等等。
四、巩固练习1. 让学生运用几何画板软件,自主探究直线平行的条件。
2. 学生完成练习题,教师点评并讲解答案。
五、小组讨论1. 发放小组讨论卡片,让学生分组讨论直线平行的应用。
六、课堂小结2. 强调直线平行在实际问题中的应用。
七、作业布置1. 让学生完成课后练习题,巩固直线平行的知识。
2. 选择一道实际问题,运用直线平行的知识解决。
《探索直线平行的条件》教学反思(最新)

《探索直线平行的条件》教学反思人们在生活中存在着丰富的几何图形。
探索直线平行的条件就是在生动有趣的问题情境中,让学生经历探索直线平行的全过程。
通过观察、操作、推理、交流等数学活动中,得到同位角的概念和“同位角相等,两直线平行”。
同时此教材在探索直线平行的条件中自然引入了“三线八角”,而不是孤立地处理这些内容。
学生从口头表达理由到书写理由需要一定的过渡。
创设丰富的情境,体现数学与现实世界的联系。
注重学生探索和交流的活动,充分发挥教师的主导、学生的主体、课堂的示范作用。
在使用多媒体的教学活动中,精湛的板书对全课起着画龙点睛的作用。
由教学实际出发,将内容系列化,给学生清晰、明快的感受。
本节课通过学生自己动手制作实验、动手折、设计方案,让每个学生得到充分的发展。
以一些开放题激活学生的创造性,有意识的培养学生有条理的思考和语言表达。
教后记我承认呢开学的第一节课很重要,尽管这是下学期,学生对你已经很熟悉了,我还是好好的备了开学的第一节课,把书带回了家,细细研读一下,去年一直没有叫参书,很不方便,这次我老早就去把书借来,叫参数还是很有用处的,第一节课是承接上学期的几何的证明开始来的,上学期学生刚刚接触几何,特别对于证明的题目过程写的不理想,那么我看新的教材里面比老的教材里面多了对于证明过程的写法,也就是因果关系的阐述,我觉得尤为重要,我也在课堂上强调了证明的时候要注重因果关系,要有因有果,还举了实例给学生说:“因为今天是十六号,所以我们上学,原因是学校规定十六号上学。
”我觉得这里面的因果关系的讲解,就是三井活力课堂上面的精讲,对于学生来说这个东西他们是讲不出来的,而这又对他们很重要,所以要由老师来讲。
在情景的引入方面也还可以,就按照课本,从回忆平行线的画法,慢慢说明同位角,但是其中一定要强调同位角不一定是平行线,因为我在教学中发现很多学生都认为同位角是在两条直线平行的基础上的,在者在批改补充习题的时候我发现,学生对于这三条直线还是找的不熟练,就是哪两条直线被哪条直线所截的问题,这个我在讲课的时候没有细讲,觉得这个是失误之一。
《探索直线平行的条件》教案

《探索直线平行的条件》优秀教案第一章:引言1.1 课程背景本节课旨在引导学生探索直线平行的条件,通过观察、思考、交流等活动,让学生理解直线平行的概念,掌握判断直线平行的方法,为后续学习几何知识打下基础。
1.2 教学目标1. 了解直线平行的概念;2. 掌握判断直线平行的方法;3. 培养观察、思考、交流能力。
1.3 教学重难点1. 直线平行的概念;2. 判断直线平行的方法。
第二章:直线平行的概念2.1 教学内容通过观察生活中实例,引导学生认识直线平行的概念,理解直线平行的特点。
2.2 教学方法采用直观演示、小组讨论的教学方法,让学生在观察、思考中掌握直线平行的概念。
2.3 教学步骤1. 展示生活中的实例,引导学生观察直线平行的特点;2. 引导学生思考直线平行的定义;3. 组织小组讨论,让学生交流直线平行的理解;4. 总结直线平行的概念及特点。
第三章:判断直线平行的方法3.1 教学内容本节课引导学生学习判断直线平行的方法,包括平行公理、平行线的性质等。
3.2 教学方法采用讲解、示范、练习的教学方法,让学生在理解判断直线平行的方法的基础上,能够独立进行判断。
3.3 教学步骤1. 讲解平行公理及其实际意义;2. 示范判断直线平行的方法;3. 组织学生进行练习,巩固判断方法;4. 引导学生总结判断直线平行的关键点。
第四章:直线平行的应用4.1 教学内容本节课让学生学会运用直线平行的知识解决实际问题,提高学生的应用能力。
4.2 教学方法采用案例分析、小组合作的方法,让学生在解决实际问题中,巩固直线平行的知识。
4.3 教学步骤1. 展示实际问题,引导学生运用直线平行的知识进行分析;2. 组织小组合作,让学生共同探讨解决问题的方法;3. 分析、评价小组成果,总结直线平行在实际问题中的应用;4. 进行课堂练习,巩固所学知识。
第五章:总结与拓展5.1 教学内容本节课对本节课内容进行总结,引导学生思考直线平行在几何学中的重要性,并进行拓展学习。
初中数学《2.2 探索直线平行的条件》教案
后
记
教案专用纸
教案序号
总第18课时(一课一个教案)
教案书写人
教学课题
探索直线平行的条件(1)
三维目标
知识目标
1.会认由三线八角所成的同位角
2.经历探索直线平行的条件的过程,掌握直线平行的条件,
并能解决一些问题
能力目标
经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达的能力。
见过程
过
程
与
方
法
教学环节与步骤
课
堂
要
素
提
示
充分体现“自主、合作,分层评价”(渗透探究的内涵)的教学特色
(力求课堂活而不乱,实而不闷)
“知识是能力的基础,能力是知识的升华,情感是力量的源泉”
通过各种途径,培养学生的搜索力、发现力、概括力、想象力、记忆力
思维力、操作力、应变力、创造力和自我调控力
教师活动(恰到好处的主导作用)
学生活动(体现充分的主体作用)
知
识
与
技
能
情
感
态
度
与
价
值
观பைடு நூலகம்
(一)课前复习:
(1)在同一平面内,两条直线的位置关系是
(2)在同一平面内,两条直线的是平行线
(二)创设情景:
如书中彩图,装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹的角为多少度时才能使木条a与木条b平行?
(三)新课:
5.例:找出下图中互相平行的直线,并说明理由。
6.完成第55页随堂练习1、2题
(四)小结:本节课学习了两直线平行的条件是同位角相等。
要特别注意数形结合。
第8讲 探索直线平行的条件(解析版)
第8讲探索直线平行的条件【知识点拨】考点1:同位角、内错角、同旁内角的概念1. “三线八角”模型如图,直线AB、CD与直线EF相交(或者说两条直线AB、CD被第三条直线EF所截),构成八个角,简称为“三线八角”,如图1.图1细节剖析⑴两条直线AB,CD与同一条直线EF相交.⑵“三线八角”中的每个角是由截线与一条被截线相交而成.2. 同位角、内错角、同旁内角的定义在“三线八角”中,如上图1,(1)同位角:像∠1与∠5,这两个角分别在直线AB、CD的同一方,并且都在直线EF的同侧,具有这种位置关系的一对角叫做同位角.(2)内错角:像∠3与∠5,这两个角都在直线AB、CD之间,并且在直线EF的两侧,像这样的一对角叫做内错角.(3)同旁内角:像∠3和∠6都在直线AB、CD之间,并且在直线EF的同一旁,像这样的一对角叫做同旁内角.细节剖析(1)“三线八角”是指上面四个角中的一个角与下面四个角中的一个角之间的关系,显然是没有公共顶点的两个角.(2)“三线八角”中共有4对同位角,2对内错角,2对同旁内角.知识点2:同位角、内错角、同旁内角位置特征及形状特征细节剖析巧妙识别三线八角的两种方法:(1)巧记口诀来识别:一看三线,二找截线,三查位置来分辨.(2)借助方位来识别根据这三种角的位置关系,我们可以在图形中标出方位,判断时依方位来识别,如图2.平行线的判定知识点1:平行线的定义及画法1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b.细节剖析(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.2.平行线的画法:用直尺和三角板作平行线的步骤:①落:用三角板的一条直角边与已知直线重合.②靠:用直尺紧靠三角板另一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的直角边通过已知点.④画:沿着这条直角边画一条直线,所画直线与已知直线平行.考点2:平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.细节剖析(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.考点3:直线平行的判定判定方法1:两直线平行,同位角相等,.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)细节剖析平行线的判定是由角相等或互补,得出平行,即由数推形.【考点精讲】考点1:同位角、内错角、同旁内角【例1】(2021春•西湖区期末)如图,有下列3个结论:①能与∠DEF构成内错角的角的个数是2;②能与∠EFB构成同位角的角的个数是1;③能与∠C构成同旁内角的角的个数是4,以上结论正确的是.【解答】解:①能与∠DEF构成内错角的角的个数有2个,即∠EF A和∠EDC,故正确;②能与∠EFB构成同位角的角的个数只有1个:即∠F AE,故正确;③能与∠C构成同旁内角的角的个数有5个:即∠CDE,∠B,∠CED,∠CEF,∠A,故错误;所以结论正确的是①②.故答案为:①②.【例2】(2021秋•南沙区期中)下列图中,∠1与∠2是同位角的是()A.B.C.D.【解答】解:选项A中的两个角是同旁内角,因此不符合题意;选项C中的两个角既不是同位角、也不是内错角、同旁内角,因此不符合题意;选项D不是两条直线被一条直线所截出现的角,不符合题意;只有选项B中的两个角符合同位角的意义,符合题意;故选:B.【变式训练1】(2021春•高州市期中)如图,如果∠1=40°,∠2=100°,那么∠3的同位角等于,∠3的内错角等于,∠3的同旁内角等于.【解答】解:如图,如果∠1=40°,∠2=100°,那么∠3的同位角等于80°,∠3的内错角等于80°,∠3的同旁内角等于100°,故答案为:80°;80°;100°【变式训练2】(2021春•瑞安市期中)如图,∠1的同旁内角是()A.∠2 B.∠3 C.∠4 D.∠5【解答】解:A、∠1和∠2是对顶角,不是同旁内角,故本选项不符合题意;B、∠1和∠3是同位角,不是同旁内角,故本选项不符合题意;C、∠1和∠4是内错角,不是同旁内角,故本选项不符合题意;D、∠1和∠5是同旁内角,故本选项符合题意;故选:D.【变式训练3】(2021春•滦南县期末)下列说法正确的是()A.若两条直线被第三条直线所截,则同旁内角互补B.相等的角是对顶角C.有一条公共边并且和为180°的两个角互为邻补角D.若三条直线两两相交,则共有6对对顶角【解答】解:A、应该是“若两条平行直线被第三条直线所截,则同旁内角互补”,故错误;B、相等的角不一定都是对顶角,如两直线平行,其中的同位角相等但不是对顶角,故错误;C、如果这两个角在公共边的同侧,则不是邻补角,故错误;D、正确.故选:D.【变式训练4】(2021春•城关区校级月考)如图所示,同位角共有()A.6对B.8对C.10对D.12对【解答】解:如图,由AB、CD、EF组成的“三线八角”中同位角有四对,射线GM和直线CD被直线EF所截,形成2对同位角;射线GM和直线HN被直线EF所截,形成2对同位角;射线HN和直线AB被直线EF所截,形成2对同位角.则总共10对.故选:C.【变式训练5】(2021春•麻城市校级月考)如图,∠1和∠3是直线和被直线所截而成的角;图中与∠2是同旁内角的角有个.【解答】解:∠1和∠3是直线AB和AC被直线DE所截而成的内错角;图中与∠2 是同旁内角的角有∠6、∠5、∠7,共3个,故答案为:AB、AC、DE、内错,3.【变式训练6】(2021春•杭州期中)如图两条直线被第三条直线所截,∠2是∠3的同旁内角,∠1是∠3的内错角,若∠2=4∠3,∠3=2∠1,则∠1的度数是【解答】解:如图,设∠1=x°,则∠3=2x°,∠2=4∠3=8x°,∵∠1+∠2=180°,∴x°+8x°=180°,解得:x=20,∴∠1=20°.故答案为:20°.考点2:平行线的判定【例1】(2021秋•双阳区期末)如图,直线a、b都与直线c相交,有下列条件:①∠1=∠2;②∠4=∠5;③∠8=∠1;④∠6+∠7=180°.其中,能够判断a∥b的是()A.①②③④B.①③C.②③④D.①②【解答】解:①∵∠1=∠2,∴a∥b,故本小题正确;②∵4=∠5,∴a∥b,故本小题正确;③∵∠8=∠1,∠8=∠2,∴∠1=∠2,∴a∥b,故本小题正确;④∵∠6+∠7=180°,∠6+∠2=180°,∴∠7=∠2,∴a∥b,故本小题正确.故选:A.【例2】(2021春•江阴市期中)如图,在下列给出的条件中,不能判定AB∥DF的是()A.∠A=∠3 B.∠A+∠2=180°C.∠1=∠4 D.∠1=∠A【解答】解:A、因为∠A=∠3,所以AB∥DF(同位角相等,两直线平行),故本选项不符合题意.B、因为∠A+∠2=180,所以AB∥DF(同旁内角互补,两直线平行),故本选项不符合题意.C、因为∠1=∠4,所以AB∥DF(内错角相等,两直线平行),故本选项不符合题意.D、因为∠1=∠A,所以AC∥DE(同位角相等,两直线平行),不能证出AB∥DF,故本选项符合题意.故选:D.【变式训练1】(2021春•越秀区校级期中)如图,要得到AB∥CD的结论,则需要角相等的条件是(写出一个即可).【解答】解:要得到AB∥CD的结论,则需要角相等的条件是∠EDC=∠BCD(答案不唯一).故答案为:∠EDC=∠BCD(答案不唯一).【变式训练2】(2021秋•南关区期末)如图,能判定AB∥EF的条件是()A.∠ABD=∠FEC B.∠ABC=∠FEC C.∠DBC=∠FEB D.∠DBC=∠FEC【解答】解:A、当∠ABD=∠FEC,无法判定AB∥EF,故选项错误;B、当∠ABC=∠FEC时,AB∥EF,故选项正确;C、当∠DBC=∠FEB时,无法判定AB∥EF,故选项错误;D、当∠DBC=∠FEC时,BD∥EF,故选项错误.故选:B.【变式训练3】(2021秋•郫都区期末)光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中是平行的光线,在空气中也是平行的,如图,∠1+∠2=103°,则∠3﹣∠4的度数为.【解答】解:如图,∵AB∥CD,∴∠5=180°﹣∠2,∵AC∥BD,∴∠3=∠5,∵AE∥BF,∴∠1=∠6,∵EF∥AB,∴∠4=∠6,∴∠3﹣∠4=180°﹣∠2﹣∠1=180°﹣(∠1+∠2)=77°.故答案为:77°.【变式训练4】(2021秋•建平县期末)如图,△ABC中,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,BD,CE交于点O,F,G分别是AC,BC延长线上一点,且∠EOD+∠OBF=180°,∠DBC=∠G,指出图中所有平行线,并说明理由.【解答】解:EC∥BF,DG∥BF,DG∥EC.理由:∵∠EOD+∠OBF=180°,又∠EOD+∠BOE=180°,∴∠BOE=∠OBF,∴EC∥BF;∵∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∴∠DBC=∠ECB,又∵EC∥BF,∴∠ECB=∠CBF,∴∠DBC=∠CBF,又∵∠DBC=∠G,∴∠CBF=∠G,∴DG∥BF;∵EC∥BF,DG∥BF,∴DG∥EC.【变式训练5】(2021春•江都区期中)一副三角板按如图所示叠放在一起,其中点B、D重合,若固定三角形AOB,改变三角板ACD的位置(其中A点位置始终不变),当∠BAD=时,CD∥AB.【解答】解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;故答案为:150°或30°.【变式训练6】(2021春•夏邑县期末)将一块三角板ABC(∠BAC=90°,∠ABC=30°)按如图方式放置,使A,B两点分别落在直线m,n上.对于给出的四个条件:①∠1=25.5°,∠2=55°30';②∠2=2∠1;③∠1+∠2=90°;④∠ACB=∠1+∠2;⑤∠ABC=∠2﹣∠1.能判断直线m∥n的有.(填序号)【解答】解:①∵∠1=25.5°+∠ABC=55.5°=∠2=55°30',所以,m∥n;②没有指明∠1的度数,当∠1≠30°,∠2≠∠1+30°,不能判断直线m∥n,故∠2=2∠1,不能判断直线m∥n;③∠1+∠2=90°,不能判断直线m∥n;④∠ACB=∠1+∠2,不能判断直线m∥n;⑤∠ABC=∠2﹣∠1,判断直线m∥n;故答案为:①⑤【课后巩固】一.选择题1.(2021秋•双阳区期末)如图,直线a、b都与直线c相交,有下列条件:①∠1=∠2;②∠4=∠5;③∠8=∠1;④∠6+∠7=180°.其中,能够判断a∥b的是()A.①②③④B.①③C.②③④D.①②【解答】解:①∵∠1=∠2,∴a∥b,故本小题正确;②∵4=∠5,∴a∥b,故本小题正确;③∵∠8=∠1,∠8=∠2,∴∠1=∠2,∴a∥b,故本小题正确;④∵∠6+∠7=180°,∠6+∠2=180°,∴∠7=∠2,∴a∥b,故本小题正确.故选:A.2.(2021秋•南关区期末)如图,能判定AB∥EF的条件是()A.∠ABD=∠FEC B.∠ABC=∠FEC C.∠DBC=∠FEB D.∠DBC=∠FEC【解答】解:A、当∠ABD=∠FEC,无法判定AB∥EF,故选项错误;B、当∠ABC=∠FEC时,AB∥EF,故选项正确;C、当∠DBC=∠FEB时,无法判定AB∥EF,故选项错误;D、当∠DBC=∠FEC时,BD∥EF,故选项错误.故选:B.3.(2021秋•雨花区期末)如图,点E在CB的延长线上,下列条件中,能判定AB∥CD的是()A.∠1=∠4 B.∠2=∠3C.∠A=∠ABE D.∠A+∠ABC=180°【解答】解:A.由∠1=∠4,不能判定AB∥CD,故本选项错误;B.由∠2=∠3,能判定AB∥CD,故本选项正确;C.由∠A=∠ABE,不能判定AB∥CD,故本选项错误;D.由∠A+∠ABC=180°,不能判定AB∥CD,故本选项错误.故选:B.4.(2021春•老城区校级月考)如图,点E在AC的延长线上,对于给出的四个条件:(1)∠3=∠4;(2)∠1=∠2;(3)∠A=∠DCE;(4)∠D+∠ABD=180°.能判断AB∥CD的有()个.A.1个B.2个C.3个D.4个【解答】解:(1)∵∠3=∠4,∴BD∥AC;(2)∵∠1=∠2,∴AB∥CD;(3)∵∠A=∠DCE,∴AB∥CD;(4)∵∠D+∠ABD=180°,∴AB∥CD,故选:C.5.(2021秋•昌平区校级期末)一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当∠BAD=15°时,BC∥DE,则∠BAD(0°<∠BAD<180°)其它所有可能符合条件的度数为()A.60°和135°B.45°、60°、105°和135°C.30°和45°D.以上都有可能【解答】解:如图,当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAB=∠B=60°;当BC∥AE时,∵∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当AB∥DE时,∵∠E=∠EAB=90°,∴∠BAD=∠DAE+∠EAB=45°+90°=135°.故选:B.6.(2021春•兴国县期末)如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6=∠1+∠2;其中能判断直线l1∥l2的有()A.5个B.4个C.3个D.2个【解答】解:①∵∠1=∠2不能得到l1∥l2,故本条件不合题意;②∵∠4=∠5,∴l1∥l2,故本条件符合题意;③∵∠2+∠5=180°不能得到l1∥l2,故本条件不合题意;④∵∠1=∠3,∴l1∥l2,故本条件符合题意;⑤∵∠6=∠2+∠3=∠1+∠2,∴∠1=∠3,∴l1∥l2,故本条件符合题意.故选:C.7.(2021春•织金县期末)如图,能够证明a∥b的是()A.∠1=∠2 B.∠4=∠5 C.∠4=∠3 D.∠1=∠5 【解答】解:∵∠4=∠5,∴a∥b(内错角相等两直线平行).故选:B.8.(2021春•新泰市期末)如图,下列四组条件中,能判断AB∥CD的是()A.∠1=∠2 B.∠3=∠4C.∠ABC+∠BCD=180°D.∠BAD+∠ABC=180°【解答】解:∵∠ABC+∠BCD=180°,∴AB∥CD.故选:C.9.(2021春•娄星区期末)如图,下列各选项不能得出AB∥CD的是()A.∠2=∠A B.∠3=∠BC.∠BCD+∠B=180°D.∠2=∠B【解答】解:∵∠2=∠A,∴AB∥CD,∵∠3=∠B,∴AB∥CD,∵∠BCD+∠B=180°,∴AB∥CD,故选:D.二.填空题10.(2021春•官渡区期末)如图,下列条件:①∠1=∠2;②∠BAD+∠ADC=180°;③∠ABC=∠ADC;④∠3=∠4;其中能判定AB∥CD的是①②(填序号).【解答】解:①∵∠1=∠2,∴AB∥CD;②∵∠BAD+∠ADC=180°,∴AB∥CD;③∵∠ABC=∠ADC,不能判定AB∥CD;④∵∠3=∠4,∴AD∥BC;故答案为:①②.11.(2021春•黄陵县期末)如图,将两个含30°角的直角三角板的最长边靠在一起滑动,可知直角边AB ∥CD,依据是内错角相等,两直线平行.【解答】解:如图所示:∵∠1=∠2=30°,∴AB∥CD(内错角相等,两直线平行),故答案为:内错角相等,两直线平行.12.(2021•咸宁)如图,请填写一个条件,使结论成立:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b.【解答】解:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b.故答案为:∠1=∠4或∠2=∠4或∠3+∠4=180°.13.(2021春•常德期末)如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE;④∠ABC+∠C=180°.其中,能推出AB∥CD的条件是①③④(填序号).【解答】解:①∵∠1=∠2,∴AB∥CD;②∵∠3=∠4,∴AD∥BC;③∵∠A=∠CDE,∴AB∥CD;④∵∠ABC+∠C=180°,∴AB∥CD.故答案为:①③④.14.(2021春•江都区期中)一副三角板按如图所示叠放在一起,其中点B、D重合,若固定三角形AOB,改变三角板ACD的位置(其中A点位置始终不变),当∠BAD=30°或150°时,CD∥AB.【解答】解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;故答案为:150°或30°.15.(2021春•凌海市期末)如图,点E在AC的延长线上,给出四个条件:①∠1=∠2;②∠3=∠4:③∠A=∠DCE;④∠D+∠ABD=180°.其中能判断AB∥CD的有①③④.(填写所有满足条件的序号)【解答】解:①∵∠1=∠2,∴AB∥BC,根据内错角相等,两直线平行即可证得AB∥BC;②∠3=∠4,根据内错角相等,两直线平行即可证得BD∥AC,不能证AB∥CD;③∠A=∠DCE,根据同位角相等,两直线平行即可证得AB∥CD;④∠D+∠ABD=180°,根据同旁内角互补,两直线平行,即可证得AB∥CD.故答案为:①③④.16.(2021秋•胶州市期末)如图,∠C=120°,请添加一个条件,使得AB∥CD,则符合要求的其中一个条件可以是∠BEC=60°(答案不唯一).【解答】解:因为∠C=120°,要使AB∥CD,则要∠BEC=180°﹣120°=60°(同旁内角互补两直线平行).故答案为:∠BEC=60°(答案不唯一).17.(2021秋•卧龙区期末)如图,下列结论:①∠2与∠3是内错角;②∠2与∠B是同位角;③∠A与∠B 是同旁内角;④∠A与∠ACB不是同旁内角,其中正确的是①②③(只填序号).【解答】解:∠2与∠3是直线AB、直线BC,被直线CD所截的一对内错角,因此①符合题意;∠2与∠B是直线CD、直线BC,被直线AB所截的一对同位角,因此②符合题意;∠A与∠B是直线AC、直线BC,被直线AB所截的一对同旁内角,因此③符合题意,∠A与∠ACB是直线AB、直线BC,被直线AC所截的一对同旁内角,因此④不符合题意,故答案为:①②③.三.解答题18.(2021春•雨花区校级月考)如图,已知∠1=∠3,∠2+∠3=180°,请说明AB与DE平行的理由.解:将∠2的邻补角记作∠4,则∠2+∠4=180°(邻补角的意义)因为∠2+∠3=180°(已知)所以∠3=∠4(同角的补角相等)因为∠1=∠3(已知)所以∠1=∠4(等量代换)所以AB∥DE(同位角相等,两直线平行)【解答】解:将∠2的邻补角记作∠4,则∠2+∠4=180°(邻补角的意义)因为∠2+∠3=180°(已知)所以∠3=∠4 (同角的补角相等)因为∠1=∠3(已知)所以∠1=∠4 (等量代换)所以AB∥DE(同位角相等,两直线平行)故答案为:180,邻补角的意义;已知;同角的补角相等;∠1=∠3;等量代换;同位角相等,两直线平行.19.(2021春•防城港期末)光线在不同介质的传播速度是不同的,因此当光线从水中射向空气时,要发生折射.由于折射率相同,所以在水中平行的光线,在空气中也平行.如图标注有∠1~∠8共8个角,其中已知∠1=64°,∠7=42°.(1)分别指出图中的两对同位角,一对内错角,一对同旁内角;(2)直接写出∠2,∠3,∠6,∠8的度数.【解答】解:(1)同位角:∠1与∠2,∠3与∠4,∠5与∠6(写两对即可);内错角:∠5与∠7;同旁内角:∠6与∠8;∠1与∠3;∠2与∠4(写一对即可);(2)∠2=∠1=64°,∠3=180°﹣∠1=116°,∠6=∠5=∠7=42°,∠8=180°﹣∠6=138°.20.(2021秋•官渡区校级月考)如图,点E在直线BH、DC之间,点A为BH上一点,且AE⊥CE,∠ECG =90°﹣∠HAE.求证:BH∥CD.【解答】证明:过点E作EF∥BH,∴∠HAE=∠AEF,∵AE⊥CE,∴∠AEC=90°即∠AEF+∠CEF=90°,∴∠HAE+∠CEF=90°,∴∠CEF=90°﹣∠HAE,∵∠ECG=90°﹣∠HAE,∴∠CEF=∠ECG,∴EF∥CD,∵EF∥BH,∴BH∥CD.21.(2021春•三门峡期末)如图,CE⊥DG,垂足为C,∠BAF=50°,∠ACE=140°.试判断CD和AB 的位置关系,并说明理由.【解答】解:CD∥AB.理由:∵CE⊥DG,∴∠ECG=90°,∵∠ACE=140°,∴∠ACG=∠ACE﹣∠ECG=50°,∵∠BAF=50°,∴∠BAF=∠ACG,∴AB∥DG,即CD∥AB.22.(2021秋•达川区期末)小明在学习三角形知识时,发现如下三个有趣的结论:在Rt△ABC中,∠A=90°,BD平分∠ABC,M为直线AC上一点,ME⊥BC,垂足为E,∠AME的平分线交直线AB于点F.(1)如图①,M为边AC上一点,则BD、MF的位置关系是平行;如图②,M为边AC反向延长线上一点,则BD、MF的位置关系是垂直;如图③,M为边AC延长线上一点,则BD、MF的位置关系是垂直;(2)请就图①、图②、或图③中的一种情况,给出证明.我选图①来证明.【解答】解:(1)①BD∥FM;②BD⊥FM;③BD⊥FM;(2)选择①证明:∵∠A=90°,ME⊥BC,∴∠A=∠CEM,∴∠CME=∠ABC,∴∠ABC+∠AME=180°(三角形的内角和等于180°),∵BD平分∠ABC,MF平分∠AME,∴∠AMF+∠ABD=90°,∴∠AFM=∠ABD,∴BD∥FM(同位角相等,两直线平行).23.(2021春•岱岳区期末)如图,已知B、C、D三点在同一条直线上,∠B=∠1,∠2=∠E,试说明AD ∥CE.【解答】证明:∵∠B=∠1,∴AB∥DE(同位角相等,两直线平行),∴∠2=∠ADE(两直线平行,内错角相等)∵∠2=∠E,∴∠E=∠ADE,∴AD∥CE(内错角相等,两直线平行).24.(2021春•西湖区校级月考)如图,已知∠C=60°,∠ADE=65°,∠CED比∠A的2倍大10°,请判断DE与BC的位置关系,并说明理由.【解答】解:DE∥BC,理由如下:设∠A为x°,所以∠CED为2x°+10°,∵∠CED=∠A+∠ADE,可得:2x°+10°=x°+65°,解得:x=55,∴∠DEC=2×55°+10°=120°,∵∠C=60°,∴∠C+∠CED=180°,∴DE∥BC25.(2021春•姜堰区期中)如图,已知FG⊥AB,CD⊥AB,垂足分别为G、D,∠1=∠2.求证:DE∥BC.【解答】证明:∵CD⊥AB,FG⊥AB,∴CD∥FG,∴∠2=∠BCD,又∠1=∠2,∴∠1=∠BCD,∴DE∥BC.26.(2021春•鄄城县期末)如图,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.试说明CD∥AB.【解答】证明:∵AE平分∠BAC,CE平分∠ACD,∴∠2=∠BAC,∠1=∠ACD.∵∠1+∠2=90°,∴∠BAC+∠ACD=180°,∴CD∥AB.27.(2021春•泰安期中)如图,直线a⊥b,垂足为O,△ABC与直线a、b分别交于点E、F,且∠C=90°,EG、FH分别平分∠MEC和∠NFC.(1)填空:∠OEC+∠OFC=180°;(2)求证:EG∥FH.【解答】解:(1)在四边形OECF中由∠C=90°,a⊥b,得∠OEC+∠OFC=180°,故答案为:180°;(2)证明:在四边形OECF中由∠C=90°,a⊥b,得∠OEC+∠OFC=180°,因为∠MEC=180°﹣∠OEC,∠NFC=180°﹣∠OFC,所以∠MEC+∠NFC=(180°﹣∠OEC)+(180°﹣∠OFC)=360°﹣(∠OEC+∠OFC)=360°﹣180°=180°,因EG,FH分别平分∠MEC和∠NFC,所以∠CEG=∠MEC,∠CFH=∠NFC,所以∠CEG+∠CFH=(∠MEC+∠NFC)=×180°=90°,过C点作CD∥EG,所以∠CEG=∠DCE,因为∠DCE+∠DCF=90°,∠CEG+∠CFH=90°,所以∠DCF=∠CFH,所以CD∥FH,又因为CD∥EG,所EG∥FH.。
探索直线平行的条件(二)初备
G
D 5 B
1 E 2 3 4 F C
教后随笔
3
练习 2:如图,直线 AB,CD 被 EF 所截,构成了八个角, 你能找出哪些角是同位角、内错角、同旁内角吗? 8 5
C
7 6
4
B D
F
二、 探索练习: 1、观察课件中的三线八角,内错角的变化和同旁内角的变化, 讨论: (1)内错角满足什么关系时,两直线平行?为什么? (2)同旁内角满足什么关系时,两直线平行?为什么?
课题
探索直线平行的条件(一)
课型
新授
课标与教材
平行线与相交线构成了同一平面内两条直线的基本位置关系。 在七年级上册学生已经直观认识了角、平行与垂直,积累了初步的 数学活动经验的基础上,本章将进一步探索平行线、相交线的有关 事实。教材通过设置观察、操作等探索活动,按照“先探索直线平 行的条件、再探索平行线的特征”的顺序呈现有关内容,在带领学 生探索性质和解决问题的过程中,以直观认识为基础训练学生进行 简单的说理,以加深对平行的理解,并学会借助平行解决一些简单 的实际问题,进一步发展学生的空间观念。所以,本章及本节内容 无论是在知识、数学思想方法还是对学生能力的培养方面都是非常 重要的。 本节“探索直线平行的条件”共分两课时完成,第一课时探索 得出判别直线平行的条件一,并初步认识“三线八角”中的同位角, 第二课时在进一步认识 “三线八角” 中的内错角和同旁内角的同时, 探索得出判别直线平行的条件二、三。本单元教学设计时将遵循教 科书编写思路, 在探索直线平行条件的过程中自然引入 “三线八角” , 使该知识的学习成为解决问题的需要, 而不是孤立地处理这些内容。 学生在七年级上册《平面图形及其位置关系》一章中,已经结 合丰富的现实情景,直观认识了两条直线的平行关系,了解了平行 线的定义,会借助方格纸、利用直尺、三角板用多种方法画平行线, 经历了在操作活动中探索图形性质的过程,初步掌握了平行线的有 关性质,并用自己的语言加以描述,初步具有了有条理地思考与表 达的能力,为本章的深入学习奠定了基础。 在七年级上册《平面图形及其位置关系》一章中,教材为学生 提供了大量生动有趣的现实情境,通过观察、测量、画图、模型操 作、拼摆、图案设计等活动,使学生在活动中自觉体会平面图形的 性质及位置关系,获得了初步的数学活动经验和体验。同时在活动 中也培养了学生良好的情感态度,顺利实现中学、小学过渡,以积 极的态度投入初中数学的学习,具备了一定的主动参与、合作意识 和初步的观察、分析、抽象概括的能力。 1、在学生知道同位角相等,两直线平行的基础上,再探索两直线平 行的其他条件。 2、知道内错角相等,两直线平行和同旁内角互补,两直线平行这两 条直线平行的条件并能应用进行简单的推理判别两直线 是否平行。 3、掌握直线平行的条件并能解决一些问题。 教学重点:弄清内错角和同旁内角的意义,会用“内错角相等,两 直线平行”和“同旁内角互补,两直线平行” 。 教学难点:会用“内错角相等,两直线平行”和“同旁内角互补, 两直线平行” 。
七年级数学下册《探索直线平行的条件》优秀教学案例
在讲授新知环节,我会按照以下步骤进行:
1. 回顾平行线的定义,让学生明确平行线的性质。
2. 介绍平行线的判定方法,如同位角相等、内错角相等、同旁内角互补等。
3. 结合实例,讲解如何运用这些判定方法判断两条直线是三角板等工具准确画出平行线的方法。
四、教学内容与过程
(一)导入新课
在导入新课环节,我会从学生的生活经验出发,提出以下问题:“同学们,你们在日常生活中见过哪些直线平行的例子?这些平行线有什么特点?”通过这个问题,让学生回顾已知的平行线概念,为新课的学习做好铺垫。接着,我会展示一些图片,如铁路轨道、楼梯扶手等,引导学生观察这些图片中的平行线,从而引出本节课的主题——《探索直线平行的条件》。
五、案例亮点
1. 生活化情境导入,激发学生学习兴趣
本案例从学生的生活经验出发,创设生活化的教学情境,让学生在观察和思考中自然地进入新课的学习。通过这种方式,激发了学生的学习兴趣,使他们更加主动地参与到课堂学习中,增强了学习动机。
2. 问题导向,培养学生的思维能力和探究精神
本案例以问题为导向,设计了一系列具有启发性和挑战性的问题。这些问题引导学生进行深入思考,培养他们的逻辑思维能力和探究精神。学生在解决问题的过程中,不仅掌握了知识,还提高了分析问题和解决问题的能力。
七年级数学下册《探索直线平行的条件》优秀教学案例
一、案例背景
《探索直线平行的条件》是七年级数学下册的教学内容,该章节旨在帮助学生理解平行线的概念,掌握判定直线平行的条件,并运用这些条件解决实际问题。在教学过程中,我以培养学生的空间想象能力和逻辑推理能力为目标,设计了一系列富有启发性和探究性的教学活动。通过小组合作、动手实践、问题驱动等方式,让学生在轻松愉快的氛围中探索直线平行的奥秘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.完成《补充习题》P6第6、7题
1 3
a1
2
4 a2
a
1
b
2
c
归纳质疑 我学到了:…………… 我还有疑问是:…………
a
同位角:
如图:两条直线a、b被第
三条直线c所截而成的8个角
c
2
中,在两条被截线的同侧,
3 4 1 b 在截线的同旁,这样的一对
65 78
a 角称为同位角.
想一想,图中还有没有其他的同位角?若有,
请你把它找出来! 同位角一定相等吗?
同位角不一定相等!
1.指出下图中用数字标出的角,哪些是同 位角?
讨论:若上一组图形中,∠1与∠2 不相等, 直线a、b平行吗?如图:
2
c
1
b
画图时,∠1与∠2 不相等 所画直线a、b就 不平行
a
∠1与∠2是否相等, 决定了直线a、b是否平行!
1.如图,∠1=∠C,∠2 =∠C.请找出图 中互相平行的直线,并说明理由.
解:(1) AB∥CD.
A 1 B ∵ ∠1=∠C (已知)
2
CD
∴AB∥CD(同位角相等, 两直线平行)
请按照上述说法说出另一组平行线
2.如右图,直线a、b被直线c所截, ∠ 1 =∠3,直线a与直线b平行吗?为什么?
c
1
b
2 3
a
1 c
2
ab
3.如图,直线c与直线a、b相交,∠1=38.5° 问:当∠2为多少度时,a∥b?
巩固拓展
1.结合图,当_____或_____ 时, 有a1∥a2.
14 3
2
2
1
34
2.(1)左图中的∠1与∠C、 ∠2与∠B ,∠ 3与∠ C,各 是哪两条直线被哪一条直线 截成的同位角?
A
D 2 1E
3
B
FC
同位角?平行?
已知直线a,画与a平行的直线b.
c
c
c
1b
1b
1b
∟
a
画图时,∠1与∠2 相直等线a、b 平行
注意: 同位角相等,两直线平行.
7.1 探索直线平行的条件
自主学习: 1.复习两直线平行的表示法和作图 2.看课本P6-7思考以下问题 (1)什么叫同位角?同位角都相等吗?
(2)同位角____,两直线_____.
知识再现
我们通常用“//”表示平
· 行. C
D·
AB//CD
· · 读作:AB平行于CD
A
B
b a //b
读作:a平行于b