2.2 探索直线平行的条件 教案
《探索直线平行的条件》教案

《探索直线平行的条件》优秀教案一、教学目标:1. 知识与技能:(1)理解直线平行的定义及性质;(2)掌握直线平行的判定方法;(3)能够运用直线平行的知识解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳直线平行的条件;(2)培养学生的逻辑思维能力和空间想象力;(3)学会运用几何画板等工具辅助探究直线平行问题。
3. 情感态度与价值观:(1)培养学生对数学学科的兴趣;(2)培养学生勇于探究、合作交流的良好学习习惯;(3)培养学生运用数学知识解决实际问题的能力。
二、教学重点与难点:1. 教学重点:(1)直线平行的定义及性质;(2)直线平行的判定方法。
2. 教学难点:(1)直线平行条件的推理与证明;(2)运用直线平行知识解决实际问题。
三、教学准备:1. 教学工具:黑板、粉笔、几何画板等;2. 教学素材:直线平行的图片、实例等;3. 学生活动:预习相关知识,准备进行探究。
四、教学过程:1. 导入新课:(1)利用图片、实例引导学生初步了解直线平行的概念;(2)提问:什么是直线平行?它们有什么特点?2. 自主探究:(1)让学生利用几何画板工具,尝试画出两条平行直线;(2)引导学生观察、分析、归纳直线平行的条件。
3. 合作交流:(1)分组讨论,让学生分享自己的探究成果;(2)总结直线平行的判定方法。
4. 讲解与演示:(1)教师对直线平行的判定方法进行讲解;(2)利用几何画板进行演示,加深学生对直线平行条件的理解。
5. 练习与拓展:(1)布置课堂练习题,巩固所学知识;(2)提供实际问题,引导学生运用直线平行知识解决。
五、课后反思:1. 教师对本节课的教学效果进行自我评价;2. 学生对学习收获进行总结,提出疑问;3. 针对教学过程中的不足,提出改进措施。
六、教学评价:1. 知识与技能:学生能准确表述直线平行的定义和性质,掌握直线平行的判定方法,并能运用这些知识解决具体问题。
2. 过程与方法:学生在探究过程中能运用观察、分析、归纳等方法,培养逻辑思维能力和空间想象力,并能使用几何画板等工具辅助探究。
北师大版数学七年级下册2.2《探索直线平行的条件》教案1

北师大版数学七年级下册2.2《探索直线平行的条件》教案1一. 教材分析《探索直线平行的条件》是北师大版数学七年级下册第2章第2节的内容。
本节课主要让学生通过探索活动,掌握直线平行的条件,理解平行线的性质,并能运用这些性质解决一些简单问题。
本节课的内容是学生进一步学习几何知识的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经学习了直线、射线、线段的基本概念,对图形的基本性质有所了解。
但是,对于直线平行的条件和平行线的性质,学生可能还比较陌生。
因此,在教学过程中,需要引导学生通过探索活动,自主发现和总结直线平行的条件和平行线的性质。
三. 教学目标1.理解直线平行的条件,掌握平行线的性质。
2.能够运用直线平行的条件和平行线的性质解决一些简单问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.教学重点:直线平行的条件,平行线的性质。
2.教学难点:直线平行的条件的推导,平行线的性质的理解和运用。
五. 教学方法采用问题驱动的教学方法,引导学生通过探索活动,自主发现和总结直线平行的条件和平行线的性质。
在教学过程中,注重学生的主体地位,鼓励学生积极参与,培养学生的动手能力和思维能力。
六. 教学准备1.准备一些直线和平行线的模型,用于直观展示直线平行的条件和平行线的性质。
2.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用直尺和三角板,展示一些直线和平行线,引导学生观察和思考:什么是直线?什么是平行线?直线和平行线有哪些性质?2.呈现(10分钟)呈现一些直线平行的例子,引导学生观察和思考:这些直线为什么是平行的?直线平行有哪些条件?3.操练(10分钟)让学生分组合作,利用直尺和三角板,尝试画出一些平行线,并总结直线平行的条件。
4.巩固(10分钟)让学生独立完成一些关于直线平行的练习题,巩固所学知识。
5.拓展(10分钟)引导学生思考:平行线除了具有直线平行的条件外,还有哪些性质?让学生通过探索活动,发现和总结平行线的性质。
2.2探究直线平行的条件(教案)

举例:在讲解平行线定义时,可以通过生活中的实例(如铁轨、黑板的上下边缘等)来帮助学生形象地理解;在讲解判定方法时,结合具体图形,让学生观察、分析并总结出平行线的判定条件。
1.教学难点
a.几何语言的精确表达:学生需要学会准确地使用几何术语描述直线、角等几何元素之间的关系;
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“直线平行在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解直线平行的基本概念。直线平行是指在同一平面内,两条直线永不相交的性质。它是几何学中非常重要的一个概念,广泛应用于建筑、设计等领域。
2.案例分析:接下来,我们来看一个具体的案例。通过观察教室墙壁的边缘,我们可以发现直线平行的特点,并学会如何判断两条直线是否平行。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《2.2探究直线平行的条件》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线永远不会相交的情况?”(如教室墙壁的边缘、书本的边界等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索直线平行的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调同位角相等、内错角相等、同旁内角互补这三个判定直线平行的重点。对于难点部分,我会通过举例和比较来帮助大家理解。
2.2.2探索直线平行的条件(教案)

四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“探索直线平行的条件”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线看起来永远不会相交的情况?”比如,铁轨或者操场的跑道。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索直线平行的奥秘。
c.逻辑推理能力的培养:在探索直线平行条件的过程中,学生需要运用逻辑推理来理解为何这些条件能证明直线平行。
突破方法:通过小组讨论、问题驱动的教学方法,鼓励学生提出假设、进行验证、总结规律,从而培养他们的逻辑推理能力。
d.数学语言的准确表达:学生需要学会使用准确的数学语言描述直线平行的条件,这对于他们的数学表达和交流能力是一个挑战。
在总结回顾环节,大多数学生能较好地掌握直线平行的判定条件,但也有少数学生表示还存在疑问。为了确保每个学生都能跟上教学进度,我计划在课后对这部分学生进行个别辅导,解答他们的疑问,巩固所学知识。
二、核心素养目标
本节课的核心素养目标致力于培养学生的几何直观、逻辑推理和数学建模能力:
1.通过观察和操作几何图形,培养学生识别同位角、内错角、同旁内角的能力,增强几何直观。
2.引导学生运用逻辑推理,探究直线平行的条件,理解同位角相等、内错角相等、同旁内角互补与直线平行之间的关系。
3.培养学生运用数学语言表达几何图形关系,建立数学模型,解决实际问题,提升数学建模能力。
重点难点解析:在讲授过程中,我会特别强调同位角相等、内错角相等、同旁内角互补这三个重点。对于难点部分,我会通过图形示例和逐步引导来帮助大家理解。
北师大版数学七年级下册2.2《探索直线平行的条件》教学设计2

北师大版数学七年级下册2.2《探索直线平行的条件》教学设计2一. 教材分析《探索直线平行的条件》是人教版初中数学七年级下册第2.2节的内容。
本节课的主要目的是让学生通过探究、合作、交流,掌握直线平行的条件,并能够运用这些条件解决实际问题。
教材通过引入“探索直线平行的条件”的活动,引导学生从实际问题中抽象出数学模型,进一步理解直线平行的本质特征。
二. 学情分析学生在七年级上学期已经学习了直线、射线、线段的基本概念,对图形的直观感受和空间想象力有一定的基础。
但学生的数学基础和学习习惯参差不齐,因此在教学过程中需要关注学生的个体差异,引导他们积极参与课堂活动。
三. 教学目标1.理解直线平行的概念,掌握直线平行的条件。
2.能够运用直线平行的条件解决实际问题。
3.培养学生的空间想象力,提高学生的数学思维能力。
4.培养学生的合作交流能力,提高学生的数学素养。
四. 教学重难点1.重点:直线平行的条件。
2.难点:如何运用直线平行的条件解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出数学模型。
2.运用小组合作、交流探讨的方式,培养学生的合作意识和团队精神。
3.利用多媒体辅助教学,直观展示直线平行的现象,帮助学生理解直线平行的本质。
4.采用归纳总结的教学策略,引导学生自主总结直线平行的条件。
六. 教学准备1.准备相关的多媒体教学课件和教学素材。
2.准备直线平行的实例,用于引导学生从实际问题中抽象出数学模型。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际的直线平行现象,如铁路、公路等,引导学生关注直线平行的特点。
提问:你们能发现这些直线平行的共同点吗?2.呈现(10分钟)呈现直线平行的实例,引导学生从实际问题中抽象出数学模型。
展示直线平行的条件,让学生初步感知直线平行的规律。
3.操练(15分钟)学生分组讨论,每组尝试找出直线平行的条件。
教师巡回指导,引导学生正确理解直线平行的本质。
北师大版七下数学《2.2探索直线平行的条件(2)》教案

北师大版七下数学《2.2探索直线平行的条件(2)》教案一. 教材分析本节课是北师大版七下数学《2.2探索直线平行的条件(2)》的内容。
在前一节课中,学生已经学习了探索直线平行的条件,了解到两条直线平行需要满足的条件。
本节课将进一步引导学生探究直线平行的性质,并通过实例来加深学生对直线平行性质的理解和应用。
二. 学情分析学生在六年级时已经学习了直线、射线、线段等基本概念,对直线有一定的认识。
但在实际操作中,部分学生可能对直线的性质和判定 still有些混淆。
此外,学生在之前的学习中已经接触过一些几何图形的性质和判定,因此具备一定的几何思维能力。
三. 教学目标1.让学生理解直线平行的性质,并能运用性质判断两条直线是否平行。
2.培养学生运用几何语言描述直线平行的性质,提高学生的几何思维能力。
3.通过实例分析,让学生学会将直线平行的性质应用于实际问题,提高学生的解决问题的能力。
四. 教学重难点1.教学重点:直线平行的性质及其应用。
2.教学难点:如何引导学生理解并证明直线平行的性质。
五. 教学方法1.采用问题驱动法,引导学生主动探究直线平行的性质。
2.利用几何画板软件,动态展示直线平行的性质,帮助学生直观理解。
3.通过实例分析,让学生将理论知识应用于实际问题,提高解决问题的能力。
4.采用小组合作学习,培养学生的团队合作精神。
六. 教学准备1.准备几何画板软件,用于动态展示直线平行的性质。
2.准备相关实例,用于引导学生将理论知识应用于实际问题。
3.准备小组合作学习任务单,指导学生进行合作学习。
七. 教学过程1.导入(5分钟)利用几何画板软件,动态展示两条直线平行的条件,引导学生回顾所学知识。
然后提出本节课的问题:直线平行还有哪些性质?2.呈现(10分钟)呈现直线平行的性质,引导学生用几何语言描述。
例如,如果两条直线都垂直于同一条直线,那么这两条直线互相平行。
同时,解释性质的含义和应用。
3.操练(10分钟)学生分组讨论,利用几何画板软件,尝试证明直线平行的性质。
探索直线平行条件教案

2.2探索直线平行的条件(一)教学目标(一)知识与技能1、经历探索直线平行条件的过程,掌握利用同位角相等判别直线平行的结论,并能解决一些问题。
2.会识别同位角,能明白利用移动三角板过已知直线外一点画这条直线的平行线的这种方法的理由。
经历观察、操作、想象、推理、交流等活动,体会利用操作、归纳获得数学结论的过程,进一步发展学生的空间想象、推理能力和有条理表达的能力。
(三)情感、态度与价值观使学生在积极参与探索、交流的数学活动中,体验数学与实际生活的密切联系,激发学生的求知欲,感受与他人合作的重要性。
教学重点掌握利用同位角相等判别直线平行的结论以及会识别同位角。
教学难点经历探索直线平行的条件以及同位角特征的过程。
教具准备三角板、多媒体课件、旋转木条架若干个教学方法引导、观察、探究、合作教学安排:2课时.教学过程一、巧妙设疑,复习引入问题1:在同一平面内两条直线的位置关系有几种?分别是什么?问题2:什么叫两条直线平行?问题3:利用投影出示有关平行线的图片,问:你认为图中的两条直线是否平行?由学生产生的质疑引出本节课内容。
二、自主研学,探究新知(一)探究实验一:学习同位角利用多媒体出示:如图,三根木条相交成∠1,∠2,固定木条b、c,转动木条a , 观察∠1,∠2大小关系以及直线a与b的位置关系.提问:1、观察∠1, ∠2大小关系有几种?2、根据∠1与 ∠2的大小关系,观察直线a 与b 的位置是否平行?(1)学生先观察图片,然后小组讨论交流,得出有三种关系:∠1>∠2、 ∠1=∠2 ∠1<∠2。
(2)当∠1=∠2时,直线a ∥b ,由此教师提问:通过同学们的观察讨论可以知道,∠1与∠2的大小关系与直线a 、b 是否平行有联系,那么像∠1与∠2这样位置的角是什么角呢?从而引出同位角定义。
由实验一引出同位角定义:像∠1与∠2这样位置关系的角称为同位角。
(如下图)提问:1、你能说一说同位角有怎样的特征吗?2、观察图中还有哪些这样的同位角?开心练一练:1、如图中∠1与∠2是同位角吗?为什么?2、如图7所示,能与∠1构成同位角的角有_____个.(二)探究实验二:同位角相等,两直线平行4ab c de123 A CBD l 1 2 3 4 6 7 5 8改变∠1的大小,固定木条b 、c ,转动木条a 。
《探索直线平行的条件》教案

《探索直线平行的条件》优秀教案第一章:引言1.1 教学目标:让学生了解直线平行的概念及实际应用。
激发学生对探索直线平行条件的兴趣。
1.2 教学内容:直线平行的定义及实例。
直线平行的实际应用场景。
1.3 教学方法:通过图片、实例等方式引入直线平行的概念。
引导学生思考直线平行的实际应用场景。
1.4 教学步骤:1. 引入直线平行的概念,引导学生理解直线平行的定义。
2. 展示直线平行的实例,让学生通过观察和分析来理解和记忆直线平行的特征。
3. 引导学生思考直线平行的实际应用场景,如交通运输、建筑设计等,激发学生对直线平行的兴趣。
第二章:直线平行的判定2.1 教学目标:让学生掌握直线平行的判定方法。
培养学生运用判定方法解决实际问题的能力。
2.2 教学内容:直线平行的判定方法。
判定方法的证明和解释。
2.3 教学方法:通过几何图形和实例来引导学生理解和记忆直线平行的判定方法。
通过证明和解释来说明判定方法的合理性。
2.4 教学步骤:1. 引导学生回顾直线平行的定义,复习相关知识。
2. 引入直线平行的判定方法,让学生通过观察和分析几何图形来理解和记忆判定方法。
3. 通过证明和解释来说明判定方法的合理性,帮助学生深入理解判定方法。
第三章:直线平行的性质3.1 教学目标:让学生掌握直线平行的性质。
培养学生运用性质解决实际问题的能力。
3.2 教学内容:直线平行的性质。
性质的证明和解释。
3.3 教学方法:通过几何图形和实例来引导学生理解和记忆直线平行的性质。
通过证明和解释来说明性质的合理性。
3.4 教学步骤:1. 引导学生回顾直线平行的判定方法,复习相关知识。
2. 引入直线平行的性质,让学生通过观察和分析几何图形来理解和记忆性质。
3. 通过证明和解释来说明性质的合理性,帮助学生深入理解性质。
第四章:直线平行的应用4.1 教学目标:让学生学会运用直线平行的条件解决实际问题。
培养学生的实际问题解决能力。
4.2 教学内容:直线平行的条件在实际问题中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、情境导入
数学来源于生活,生活中处处有数学,观察下面的图片,你发现了什么?
以上的图片中都有直线平行,这将是我们这节课学习的内容.
二、合作探究
探究点一:同位角
【类型一】判断同位角
下列图形中,∠1和∠2不是同位角的是()
解析:选项A、B、D中,∠1与∠2在截线的同侧,并且在被截线的同一方向,是同位角,即在图中可找到形如“F”的模型;选项C中,∠1与∠2没有公共直线,不是同位角.故选C.
方法总结:判断两个角是否是同位角的有效方法——描图法:①把两个角在图中“描画”出来;②找到两个角的公共直线;③观察所描的角,判断所属“字母”类型是否为“F”型.【类型二】数同位角的个数
如图,直线l1,l2被l3所截,则同位角共有()
A.1对B.2对
C.3对D.4对
解析:图中同位角有:∠1和∠5,∠2和∠6,∠3和∠7,∠4和∠8共4对.故选D.
方法总结:数同位角的个数时,应从各个方向逐一观察,避免重复或漏数.
探究点二:利用同位角判定两直线平行
如图,直线AB、CD分别与EF相交于点G、H,已知∠1=70°,∠2=70°,试说明:AB∥CD.
解析:要说明AB∥CD,可转化为说明∠1与其同位角相等,这由∠2的对顶角容易证出.
解:因为∠2=∠EHD(对顶角相等),又因为∠2=70°,所以∠EHD=70°.因为∠1=70°,所以∠EHD=∠1,所以AB∥CD(同位角相等,两直线平行).
方法总结:本题考查的是平行线的判定,熟知“同位角相等,两直线平行”是解答此题的关键.探究点三:平行公理及其推论
【类型一】应用平行公理及其推论进行判断
有下列四种说法:
(1)过直线外一点有且只有一条直线与这条直线平行;(2)同一平面内,过一点能且只能作一条直线与已知直线垂直;(3)直线外一点与直线上各点连接的所有线段中,垂线段最短;(4)平行于同一条直线的两条直线平行.其中正确的个数是()
A.1个B.2个
C.3个D.4个
解析:根据平行公理、垂线的性质进行判断.(1)过直线外一点有且只有一条直线与这条直线平行,正确;(2)同一平面内,过一点能且只能作一条直线与已知直线垂直,正确;(3)直线外一点与直线上各点连接的所有线段中,垂线段最短,正确;(4)平行于同一条直线的两条直线平行,正确.正确的有4个.故答案为D.
方法总结:平行线公理和垂线的性质两者比较相近,特别注意,对于平行公理中,必须是过直线外一点可以作已知直线的平行线,过直线上一点不能做已知直线的平行线.但垂线的性质中,无论点在平面内何处都能作出已知直线的唯一垂线.
【类型二】应用平行公理进行推论论证
四条直线a,b,c,d互不重合,如果a∥b,b∥c,c∥d,那么直线a,d的位置关系为________.解析:由于a∥b,b∥c,根据平行公理的推论得到a∥c,而c∥d,所以a∥d.故答案为a∥d.
方法总结:平行公理的推论是证明两条直线相互平行的理论依据.
【类型三】平行公理推论的实际应用
将一张长方形的硬纸片ABCD对折后打开,折痕为EF,把长方形ABEF平摊在桌面上,另一面CDFE无论怎样改变位置,总有CD∥AB存在,为什么?
解析:根据平行公理的推论得出答案即可.
解:∵CD∥EF,EF∥AB,∴CD∥AB.
方法总结:利用平行公理的推论进行证明时,关键是找到与要证两条直线都平行的第三条直线进行说明.
三、板书设计
1.同位角的概念
2.运用同位角判定两条直线平行:
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
3.平行公理及其推论:
过直线外一点有且只有一条直线与这条直线平行;平行于同一条直线的两条直线平行.
1. 下列图形中,∠1和∠2不是同位角的是()
2. 如图,直线l1,l2被l3所截,则同位角共有()
A.1对B.2对C.3对D.4对
3、同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为
()
A.互相垂直 B.互相平行 C.相交 D.无法确定
4、下列哪些条件可以使AB∥CD()
A.∠1=∠4 B.∠1=∠3
C.∠2=∠3 D.∠1=∠5
5. 有下列四种说法:
(1)过直线外一点有且只有一条直线与这条直线平行;
(2)同一平面内,过一点能且只能作一条直线与已知直线垂直;
(3)直线外一点与直线上各点连接的所有线段中,垂线段最短;
(4)平行于同一条直线的两条直线平行.
其中正确的个数是()
A.1个B.2个C.3个D.4个
6. 一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上行驶,那么两次拐弯的角度可能为()
A.第一次右拐60°,第二次右拐120°
B.第一次右拐60°,第二次右拐60°
C.第一次右拐60°,第二次左拐120°
D.第一次右拐60°,第二次左拐60°
7.如下图,∠1=30°,当∠2=________时,m∥n.
8.如上右图所示,FE⊥CD,∠2=26°,当∠1=________时,AB∥CD.
9. 四条直线a,b,c,d互不重合,如果a∥b,b∥c,c∥d,那么直线a,d 的位置关系为________.
10. 如图,直线AB、CD分别与EF相交于点G、H,已知∠1=70°,∠2=
70°,试说明:AB∥CD.
11. 将一张长方形的硬纸片ABCD对折后打开,折痕为EF,把长方形ABEF 平摊在桌面上,另一面CDFE无论怎样改变位置,总有CD∥AB存在,为什么?
12. 如图,已知点E在AB上,且CE平分∠BCD,DE平分∠ADC,且∠DEC =90°,试判断AD与BC的位置关系,并说明理由.
解决几何题时,重在分析,应结合图形熟识题目给出的已知条件.本节课的易错点是学生对同位角的。