化工原理第九章第二节讲稿.ppt
化工原理第9章

反应速率的影响愈大;反应转化率愈高,反应混
合物中残余反应物浓度愈小,返混对反应速率的
影响也愈大。
5-2 以产率和选择性为优化目标
对于复杂反应以产率和选择性为优化目标, 应考虑物料返混对于反应产物分布的影响。 • 平行反应过程优化
• 串连反应过程优化
A R S
k1 k2
反应器选型
i 1
VR ,t VR ,t qV , 0 c A, 0
i 1 i 1
n
• 多釜串联反应器的总有效容积VR,t的逐级解析计算
过程也可以在坐标图上进行 。
§5 均相反应过程优化与反应器选择
5-1 以生产强度为优化目标
生产强度是指单位容积反应器的生产能力。 当处理物料量和要求达到的最终转化率一定时, 对于不同型式的反应器,所需容积的大小,也表 明了该反应器生产强度的大小。
• 活化能较大、反应温度较高的化学反应,对温度十分敏感, 为了强化传热,减少温差,宜采用全混流反应器。 • 当反应物浓度较高易发生剧烈反应时,宜采用全混流反应 器。 • 反应速率较慢、反应时间较长的化学反应,宜选用间歇操 作搅拌釜或连续操作搅拌釜反应器。 • 气相反应多采用管式反应器。 • 高压反应宜采用管式反应器(细长设备耐压高)。 • 在高温条件下进行的强吸热反应(如裂解),通常采用管 式反应器。
• 反应器有效容积VR:
日处理量 VR (t t ') 24
V VR
• 实际所需反应器体积
易起泡和在沸腾下操作的液体: =0.40.6; 不易起泡和不在沸腾条件下操作的液体: =0.70.85
§2 连续操作管式反应器
• 物料中的所有流体微元在反应器内以相同的速度、
化工原理第九章

cH=cg+cwH
(9-7
式中cH——湿空气的比热容,kJ/(kg绝干空气·℃
cg——绝干空气的比热容,kJ/(kg绝干空气·℃
cw——水汽的比热容,kJ/(kg水汽·℃)。
第二节 湿空气的性质及湿度图
在常用的温度范围内,cg、cw可按常数处理,cg=1.01kJ/(kg绝 干空气·℃),cw=1.88kJ/(kg水汽·℃)。将其代入式(9-7),得
化工原理
第九章 干 燥
概述 湿空气的性质及湿度图 干燥过程中的物料衡算和热量衡算 干燥过程中的平衡关系与速率关系 干燥设备
第九章 干 燥
知识目标
掌握湿空气各性质参数的定义及其计算,H-I图的结构 及应用;干燥系统水分蒸发量、空气消耗量、蒸气消耗量、 干燥产量以及干燥时间等的计算。理解湿物料中水分的性质; 干燥过程的机理及速率特征。了解各种干燥器的结构特点及 应用场合及干燥器的选型。
(3)按照传热的方式分类,干燥可分为传导干燥、对流干燥、辐射 干燥、介电加热干燥以及上述两种或两种以上方式组合而成的联合干燥。
第一节 概 述
工业上应用最多的是连续操作的对流干燥过程,即 加热后的干燥介质在流动的情况下以对流传热的方式将 热量传给湿物料,湿物料中的湿分汽化被干燥介质带走。 干燥介质可以是不饱和的热空气、惰性气体及烟道气, 其除去的湿分大都是水分。所以本章主要讨论以不饱和 热空气为干燥介质,湿分为水的干燥过程。
cH=1.01+1.88H
(9-7a)
பைடு நூலகம்
显然,比热容仅是湿度的函数。
第二节 湿空气的性质及湿度图
(五)离心泵的工作原理
当湿空气的温度为t,湿度为H时,1kg绝干空气和Hkg水汽的焓 之和为湿空气的焓值,以IH表示,即
化工原理第九章液体精馏

FiF Li V I Li VI
由恒摩尔假定,不同温度和组成的饱和液体焓i和汽 化潜热均相等。
20
联立上二式,得 定义:
L L I iF F I i
q
I iF分子:1kmol原料变成饱和蒸气所需的热 I i 分母:原料的摩尔汽化热
可得
L L qF
V V (1 q)F
q为加料热状态参数 q=0,饱和气体(露点);q=0,饱和液体(泡点) q<0,过热蒸气;0<q<1,气液两相,q>1,冷液
不管加料板上状态如何,离开加料板的两相温度相
等,组成互为平衡。
V,I,ym
L,i,xm-1
物料衡算式
F,iF,xF
FxF V ym1 Lxm1 Vym Lxm 相平衡方程
ym f (xm )
3)精馏段和提馏段流量的关系
V’,I,ym+1
L’,i,xm
列加料板物料和热量衡算式
F LV LV
临界压强时,气液共存区 缩小,分离只能在一定范 围内进行,不能得到轻组 分的高纯度产品。
8
9.3 平衡蒸馏和简单蒸馏
D
9.3.1 平衡蒸馏
令W q, F
则D 1q F
物料衡算:F xF D y W x
F
F DW
xF
联立得:y q x xF q 1 q 1
热量衡算:忽略组成对比热影响,
2)对理想物系
A / B
pA / xA pB / xB
p
0 A
xA
/
xA
pB0 xB / xB
pA0
pB0
3)对物系相对挥发度 1和相差2 不大
m
1 2
(1
化工原理 第九章 气体吸收

第一节概述一、什么是吸收?吸收是利用气体混合物中各组分在某种溶剂中溶解度的差异,而将气体混合物中组分加以分离的单元操作。
溶质: 气体混合物中能溶解的组分称为溶质,以A表示;惰性组分: 不溶或微溶组分称为惰性组分或载体,以B表示;溶剂: 吸收过程所用的溶剂称为吸收剂,以S表示;吸收液: 所得的溶液称为吸收液。
二、吸收在石油化工中的应用(1)回收有用组分(2)制取液态产品(3)净化气体(废气治理)三、吸收的工艺流程四、吸收分类按溶质和溶剂之间是否发生明显的化学反应吸收按溶于溶剂的组分数吸收按吸收过程是否发生明显的温度变化吸收五、吸收剂的选择1.溶解度大;2.选择性好;3.挥发度低;4.粘度低;5.无毒、无腐蚀;6.吸收剂应尽可能不易燃、不易发泡、价廉易得、稳定。
第二节吸收过程的相平衡关系一、气体在液体中的溶解度在一定的温度与压力下、使气体混合物与一定量的溶剂接触,气相中的溶质便向液相中的溶质转移,直至液相中溶质达到饱和为止,这时,我们称之为达到了相平衡状态。
达到了相平衡状态时气相中溶质的分压,成平衡分压;液相中溶质的浓度称为平衡浓度(或溶解度)。
大量实验表明,溶解度和气相中溶质的分压有关。
从图上可以看出:分压高,溶解度大温度高,溶解度小吸收操作应在低温高压下进行,脱吸应在高温、低压下进行二、亨利定律1.亨利定律在一定的温度下,当总压不很高(<500kpa)时,稀溶液上方溶质的平衡分压与该溶质在液相中的摩尔分率成正比,其表达式如下式中------溶质在气相中的平衡分压,KN/m2;------溶质在液相中的摩尔分率;E------亨利系数,。
式(9-1)称为亨利(Henry)定律。
亨利系数E值由实验测定,常见物系的E值可由有关手册查出。
当物系一定时,亨利系数随温度而变化。
一般说来,值随温度升高而增大,这说明气体的溶解度随温度升高而减小,易溶气体值小,难溶气体的值大。
2.用溶解度系数表示的亨利定律若将亨利定律表示成溶质在液相中的摩尔浓度与其在气相中的平衡分压之间的关系,则可写成如下形式(9-2)式中C──液相中溶质的摩尔浓度,kmol/m3H──溶解度系数,溶液中溶质的摩尔浓度和摩尔分率及溶液的总摩尔浓度之间的关系为(9-3)把上式代入式(9-2)可得将上式与式(9-1)比较,可得(9-4)溶液的总摩尔浓度可用1m3溶液为基准来计算,即(9-5)式中──溶液的密度(kg/m3)──溶液的摩尔质量。
化工原理第九章.

I2 I0 cg t2 t0 IV 2 H2 H0
2019/7/17
I2 I0 cg t2 t0 r0 c02t2 H2 H0
1.01t2 t0 2490 1.88t2 H2 H0
3、介电加热干燥
将需干燥的物料置于交频电场内,利用高频电场的交变作 用将湿物料加热,水分汽化,物料被干燥。 优点:干燥时间短,干燥产品均匀而洁净。 缺点:费用大。
2019/7/17
4、对流干燥
热能以对流给热的方式由热干燥介质(通常热空气)传给湿 物料,使物料中的水分汽化。物料内部的水分以气态或液态 形式扩散至物料表面,然后汽化的蒸汽从表面扩散至干燥介 质主体,再由介质带走的干燥过程称为对流干燥。 优点:受热均匀,所得产品的含水量均匀。
热能通过传热壁面以传导的方式传给湿物料 被干燥的物料与加热介质不直接接触,属间接干燥 优点:热能利用较多 缺点:与传热壁面接触的物料易局部过热而变质,受热不 均匀。
2、辐射干燥
热能以电磁波的形式由辐射器发射到湿物料表面,被物
2019/7/17
料吸收转化为热能,而将水分加热汽化。 优点:生产能力强,干燥产物均匀 缺点:能耗大
可见:向干燥系统输入的热量用于:加热空气;加热物料;
蒸发水分;热损失
cm cs Xc
2019/7/17
2、干燥系统的热效率
蒸发水分所需的热量
向干燥系统输入的总热量 100%
蒸发水分所需的热量为
QV W 2490 1.88t2 4.1871W
忽略物料中水分带入的焓
每蒸发1kg水分时,消耗的绝干空气数量l
2019/7/17
化工原理第九章第二节讲.ppt

变
焓 不
t as
2019/4/18
饱和
对绝热饱和器作焓衡算,即可求出绝热饱和温度
I1 (cg Hcv )t Hr0
I 2 (cg H ascv )tas H asr0
I1 I 2
(cg Hcv )t Hr0 (cg H ascv )tas H asr0
8、露点 t
d
将不饱和空气等湿冷却到饱和状态时的温度
相应的湿度称为饱和湿度
H s ,td
H s ,t d 0.622
ps , t d P ps , t d
ps , t d
H s,t d P 0.622 H s,t d
HP 0.622 H
2019/4/18
对于水蒸汽~空气系统,干球温度、绝热饱和
pw pw 100% 代入 H 0.622 将 P pw ps
p s H 0.622 P p s
在总压一定时
f T , H
可见,对水蒸汽分压相同,而温度不同的湿 空气,若温度愈高,则ps值愈大,φ值愈小, 干燥能力愈大。
2019/4/18
3、比容
vH
2、相对湿度百分数φ( relative humidity)
在总压P一定的条件下,湿空气中水蒸气分压pw
与同温度下的饱和蒸汽压ps之比。
pw 100% ps
相对湿度代表湿空气的不饱和程度, Ф愈低,表 明该空气偏离饱和程度越远,干燥能力越大。 φ=1,湿空气达到饱和,不能作为干燥介质。
2019/4/18
2019/4/18
4、比热
cH
常压下,将湿空气1Kg绝干空气及相应水汽的温 度升高(或降低)1℃所需要(或放出)的热量,称 为湿比热。
化工原理第九章吸附分离

化工原理第九章吸附分离
吸附分离,也称为吸收或吸收分离,是指利用一定的相互作用“粘合剂”或“吸附剂”使混合物中一些组成部分粘合或吸附到该粘合剂或吸附剂上,从而使混合物中一些组分有机地被分离出来的过程。
它是一种新型的分离方法,有可能替代传统的分离工艺,是现代化工的一项重要技术。
吸附分离的原理:吸附分离可以分为物理吸附和化学吸附两种形式。
物理吸附是指物质相互作用的结果,包括空气、气体、液体、溶剂等。
物理吸附是指在一些固体表面上建立的物理性相互作用,其实质是由于表面粗糙形成的能量障碍,而在能量障碍的阻碍下,物质相互作用,物质就被吸附在这种固体表面上。
如果这种固体表面在特定的温度和压力条件下,具有良好的表面化学稳定性,即可建立有效的物理吸附。
化学吸附又叫做专配吸附,是指物质间由于共价作用形成的固体表面和溶剂之间的作用过程。
它是一种特殊的吸附作用,是由于固体表面上化学基团构成的膜层,以及溶剂中的其中一种物质,在化学反应中形成化学键而发生的吸附作用。
吸附分离的应用:吸附分离已被广泛应用于催化剂分离、石油的湿气处理、空气净化、废气处理、提纯溶剂等行业。
化工原理CH9 吸收

气体 液体
气膜 液膜
气体侧的对流传质
pG
组成
界面溶解 液体侧的对流传质
NAG
气相主体
pi NAL
Ci
传质方向 液相主体
《化工原理》电子教案/第五章
CL
G
L
z
距离
双膜模型 17/97
二、吸收速率方程
N AG kG
pG pi
pG pi 1
一、物料衡算和操作线方程 二、吸收剂用量的确定 三、塔径的计算 四、填料层高度的计算
2
《化工原理》电子教案/目录
目录
第九章 吸收
习题课 第四节 二元低浓气体吸收(或脱吸)的计算
五、高浓气体吸收 六、解吸
第五节 其他类型的吸收简介 第九章小结
第三版第18次印刷的教材更正
3
《化工原理》电子教案/目录
第九章 吸收
1.0
O2
0.9 pA=723cA
0.8
0.7
0.6 难溶体系
0.5
0.4
0.3
0.2
0.1
CO2
pA=25.5cA
说明:
(1)不同气体的溶解 度差异很大
SO 2
溶解度适中体系
(2)对于稀溶液或极 稀溶液,溶解度曲线近 似为直线,即
pA=0.36cA pA=0.0136cA
易溶NH体3 系
c
A
H
pA
获取方法: 通常由实验测定。可从有关手册中查得。
影响因素: T,H
P在几个大气压范围内 对H影响可忽略。其他 情况下,一般P ,H 思考:H越大,表明越易溶还是越难溶? 如 图 , H 越 大 , 表 明 在 相 同 的 pA 下 cA*越大,故越易溶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H s,td
0.622 ps,td P ps,td
ps,td
Hs,td P
0.622 Hs,td
HP 0.622 H
2020/12/9
对于水蒸汽~空气系统,干球温度、绝热饱和温度和 露点间的关系为:
不饱和空气:t tas(t ) td
饱和空气: t tas (t ) td
2020/12/9
需要吸热
Q S(t t ) Q Nrt
t
t
k H rt
(H s,t
H)
对于空气~水蒸气系统而言 1.09
kH
t f t, H
当 t t 时,H H s,t
在一定的总压下,已知t、tw能否确定H?
2020/12/9
7、绝热饱和冷却温空 绝热 空气降
2020/12/9
tas
t
r0 cH
(Has
H)
tas f t, H 是湿空气在绝热、冷却、增湿过程中达到
的极限冷却温度。
对于空气~水系统,cH
kH
tas t
注意:绝热饱和温度于湿球温度的区别和联系!
2020/12/9
8、露点 td
将不饱和空气等湿冷却到饱和状态时的温度
相应的湿度称为饱和湿度 H s,td
5、湿空气的焓 I H
湿空气中1 kg绝干空气的焓与相应水汽的焓之和。
2020/12/9
IH I g HIV
I H Cgt HCvt Hr0
Cg HCv t Hr0
(1.011.88H )t 2490H
6、干球温度t和湿球温度 t
1)干球温度 用普通温度计测得的湿空气的真实温度
2、相对湿度百分数φ( relative humidity)
在总压P一定的条件下,湿空气中水蒸气分压pv与同温度 下的饱和蒸汽压ps之比。
pv 100%
ps
相对湿度代表湿空气的不饱和程度,Ф愈低,表明该空气 偏离饱和程度越远,干燥能力越大。φ=1,湿空气达到饱 和,不能作为干燥介质。
2020/12/9
2020/12/9
A
2020/12/9
A td
A %
2020/12/9
例:已知湿空气的干球温度t=30℃,相对湿度φ=0.6,求
湿空气的湿度H,露点td、tas。
A 0.6
t=30
C D
100%
等焓线
2020/12/9
H=0.016kg/kg干气
气中汽化
温增湿
变焓 不
tas
饱和
对绝热饱和器作焓衡算,即可求出绝热饱和温度
I1 (cg Hcv )t Hr0 I2 (cg Hascv )tas Hasr0
I1 I2 (cg Hcv )t Hr0 (cg Hascv )tas Hasr0
一般H及Has值均很小
cg Hcv cg Hascv cH
H 18 nv 0.622nv
29 ng
ng
nv pv ng P pv
2020/12/9
H 0.622 pv P pv
H f P, pw
当湿空气中水汽分压pw等于该空气温度下的饱和蒸汽压ps时 ,其湿度称为饱和湿度,用Hs表示。
HS
0.622 ps P ps
HS f (P,t)
2020/12/9
2)湿球温度 湿球温度计在温度为t,湿度为H的不饱和空气流中,达
到平衡或稳定时所显示的温度。
2020/12/9
大量的 湿空气
t, H
t
tw
水
2020/12/9
大量的 湿空气
t, H
Q,
t
tw
水
N,kH
表面水的 分压高
水向空气 主体传递
N kH (Hs,t H )S
2020/12/9
蒸发时
自身降温
将 pv 100% 代入 H 0.622 pv
ps
P pv
H 0.622 ps P ps
在总压一定时 f T, H
3、比容 vH
在湿空气中,1kg绝干空气体积和相应水汽体积之和, 又称湿容积。
2020/12/9
vH
m3绝干空气 m3水汽 kg绝干气
vH
1 29
H 22.4 18
二、湿度图及其应用
1、H-I图
•P
•坐标轴
•五条线
-等湿线 –等焓线 –等干球温度线 –等相对湿度线 –水蒸汽分压线
2020/12/9
2、湿度图的应用
1)由测出的参数确定湿空气的状态 a)水与空气系统,已知空气的干球温度t和湿球温度tw,确 定该空气的状态点A(t,H)。 b)水与空气系统中,已知t和td,求原始状态点A(t,H)。 c)水与空气系统中,已知t和φ,求原始状态点A的位置 2)已知湿空气某两个可确定状态的独立变量,求该湿空气 的其他参数和性质
273 t 273
1.013105 P
0.772 1.244H 273 t 1.013105
273
P
4、比热 cH
常压下,将湿空气1Kg绝干空气及相应水汽的温度升高
(或降低)1℃所需要(或放出)的热量,称为湿比热。
2020/12/9
cH cg Hcv
cH 1.011.88H
cH f H
第九章 干燥 Drying
第二节 湿空气的性质和湿度
图
一、湿空气的性质 二、湿度图及其应用
2020/12/9
一、湿空气的性质
1、湿度H( humidity)
湿空气中水汽的质量与绝干空气的质量之比 ,又称湿含量。
湿空气中水汽的质量 H 湿空气中绝干空气的质量
nvMv ng M g
对于水蒸气~空气系统: