(二次根式)
二次根式几年级知识点

二次根式几年级知识点
二次根式是七年级下册数学的知识。
一般地,形如√a的代数式叫做二次根式,其中,a叫做被开方数。
当a≥0时,√a表示a的算术平方根;当a小于0时,√a的值为纯虚数(在一元二次方程求根公式中,若根号下为负数,则方程有两个共轭虚根)。
根号是一个数学符号。
根号是用来表示对一个数或一个代数式进行开方运算的符号。
若aⁿ=b,那么a是b开n次方的n次方根或a是b的1/n次方。
开n次方手写体和印刷体用表示,被开方的数或代数式写在符号左方√ ̄的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。
二次根式的混合运算法则

二次根式的混合运算法则二次根式是数学中的一个重要概念,也是数学中常见的运算形式。
在二次根式的混合运算中,我们需要遵循一定的法则和步骤,以确保运算结果的准确性。
本文将介绍二次根式的混合运算法则,并通过实例进行说明。
一、二次根式的定义二次根式是指形如√a的数,其中a为非负实数。
在二次根式中,根号内的数称为被开方数,根号外的数称为系数。
二次根式可以进行加、减、乘、除等运算,但需要遵循一定的法则和步骤。
二、二次根式的混合运算法则1. 加法运算当二次根式相加时,要求被开方数相同,系数相加即可。
例如,√2 + √2 = 2√2。
2. 减法运算当二次根式相减时,同样要求被开方数相同,系数相减即可。
例如,√3 - √2 = √3 - √2。
3. 乘法运算当二次根式相乘时,可以将系数相乘,被开方数相乘并合并为一个二次根式。
例如,2√3 * 3√2 = 6√6。
4. 除法运算当二次根式相除时,可以将系数相除,被开方数相除并合并为一个二次根式。
例如,6√6 / 3√2 = 2√3。
5. 混合运算在二次根式的混合运算中,可以按照运算法则依次进行加、减、乘、除等运算。
需要注意的是,乘法和除法运算的优先级高于加法和减法运算。
三、实例分析为了更好地理解二次根式的混合运算法则,我们来看几个实例。
1. 实例一:计算√5 + √3 - √2的值。
根据加法运算法则,√5 + √3 = √5 + √3,再根据减法运算法则,√5 + √3 - √2 = √5 + √3 - √2。
2. 实例二:计算(2√6 - √2) * √3的值。
根据减法运算法则,2√6 - √2 = 2√6 - √2,再根据乘法运算法则,(2√6 - √2) * √3 = 2√18 - √6。
3. 实例三:计算(3√10 + 2√5) / √2的值。
根据加法运算法则,3√10 + 2√5 = 3√10 + 2√5,再根据除法运算法则,(3√10 + 2√5) / √2 = (3√10 + 2√5) / √2。
二次根式的运算知识点总结

二次根式的运算知识点总结二次根式是指具有形如√a的表达式,其中a是非负实数。
在数学中,二次根式的运算是一个重要的知识点,掌握了这个知识点,我们可以更好地理解和利用二次根式。
下面将总结二次根式运算的基本规则和常见的运算方法。
一、二次根式的基本规则1. 二次根式的化简:当被开方数存在平方因子时,可以进行化简。
例如√4×3 = √(4×3) = 2√3。
2. 二次根式的乘法运算:对于两个二次根式的乘法运算,可以将两个二次根式的根号内的数相乘,根号外的数相乘,并进行化简。
例如:√2 × √3 = √(2 × 3) = √6。
3. 二次根式的除法运算:对于两个二次根式的除法运算,可以将两个二次根式的根号内的数相除,根号外的数相除,并进行化简。
例如:√6 ÷ √2 = √(6 ÷ 2) = √3。
4. 二次根式的加减运算:对于两个二次根式的加减运算,只能进行同类项相加减,并进行化简。
例如:√2 + √3 无法进行化简,可以写成2√2 + 3√5。
二、二次根式的运算方法1. 二次根式与整数的运算:当二次根式与整数进行运算时,可以将整数视为二次根式的特殊形式。
例如:√2 + 4 = √2 + √(4×4) = √2 + 2√2 = 3√2。
2. 二次根式的有理化:有时候需要将二次根式的分母变为有理数,这个过程称为有理化。
有理化的方法有两种:(1) 乘以共轭根式:对于分母中含有二次根式的情况,可以通过乘以分母的共轭根式来进行有理化。
例如:(3 + √2)/(1 + √2) = [(3 + √2)/(1 + √2)] * [(1 - √2)/(1 - √2)] = (3 - 3√2 + √2 - 2)/(1 - 2)= (1 - 2√2)/(-1)= 2√2 - 1(2) 分离根号:对于分母中含有二次根式的情况,可以通过将二次根式的根号部分与非根号部分分离,并进行化简,从而实现有理化。
二次根式教案

练习1 完成教科书第3页的练习.
练习2 当x 是什么实数时,下列各式有意义.
(1) ;(2) ;(3) ;(4) .
辨析二次根式的概念,确定二次根式有意义的条件.
设计有一定综合性的题目,考查学生的敏捷运用的实力,开阔学生的视野,训练学生的思维.
5.总结反思
老师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.
二次根式的概念.
2.内容解析
本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念. 它不仅是对前面所学学问的综合应用,也为后面学习二次根式的性质和四则运算打基础.
教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义. 再通过例1探讨了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解.
二次根式教案 篇3
一、复习引入
学生活动:请同学们完成下列各题:
1.计算
(1)(2x+y)·zx(2)(2x2y+3xy2)÷xy
二、探究新知
假如把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢? 仍成立.
整式运算中的x、y、z是一种字母,它的意义非常广泛,可以代表全部一切, 当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.
本节课的教学难点为:理解二次根式的双重非负性.
四、教学过程设计
1.创设情境,提出问题
问题1你能用带有根号的的式子填空吗?
(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.
二次根式知识点总结

二次根式知识点总结王亚平1. 二次根式的概念二次根式的定义: 形如)0(≥a a 的式子叫二次根式,其中a 叫被开方数,只有当a 是一个非负数时,a 才有意义.2. 二次根式的性质1. 非负性:)0(≥a a 是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到. 2.)0()(2≥=a a a注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:)0()(2≥=a a a 3. ⎩⎨⎧<-≥==)0()0(2a a a a a a 注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.3. 最简二次根式和同类二次根式1、最简二次根式:(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或2、同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式4. 二次根式计算——分母有理化1.分母有理化定义:把分母中的根号化去,叫做分母有理化。
2.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
有理化因式确定方法如下:①单项二次根式:利用a a a =⋅来确定,如:a 与a ,b a +与b a +,b a -与b a -等分别互为有理化因式。
②两项二次根式:利用平方差公式来确定。
如b a +与b a -,b a +与b a -,y b x a +与y b x a -分别互为有理化因式。
3.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;5. 二次根式计算——二次根式的乘除1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
)0,0(≥≥⋅=b a b a ab2.二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根。
二次根式的概念

二次根式的概念二次根式是数学中重要的概念之一,它涉及到平方根的运算和性质。
在本文中,我们将详细介绍二次根式的定义、性质以及在实际问题中的应用。
1. 定义二次根式是指形如√a的数,其中a为非负实数。
√a表示a的平方根,即一个数的平方等于a。
例如,√9等于3,因为3的平方等于9。
2. 性质(1)对于任意非负实数a和b,有以下性质:a) √a * √b = √(a * b)b) √(a / b) = √a / √bc) (√a)^2 = a(2)二次根式与有理数的关系:a) 如果a是一个完全平方数,即a = b^2,其中b为有理数,则√a是一个有理数。
b) 如果a不是一个完全平方数,则√a是一个无理数。
(3)二次根式的化简:a) 如果a可以因式分解为完全平方数的乘积,则可以将二次根式化简为一个有理数。
b) 如果a不可因式分解为完全平方数的乘积,则二次根式无法化简。
3. 应用二次根式在实际问题中具有广泛的应用。
以下是一些常见的应用示例:(1)几何问题:二次根式可以用于计算直角三角形的斜边长度。
例如,在一个边长为a的正方形中,对角线的长度可以表示为√(2a^2)。
(2)物理问题:二次根式可以用于计算物体的速度、加速度等。
例如,在自由落体运动中,物体下落的距离可以表示为h = 1/2 * g * t^2,其中h为下落距离,g为重力加速度,t为时间。
(3)金融问题:二次根式可以用于计算利息、久期等金融指标。
例如,复利计算公式中涉及到年利率的开平方运算。
总结:二次根式作为数学的一个重要概念,涉及到平方根的运算和性质。
通过了解二次根式的定义和性质,我们可以更好地理解和应用它们。
在几何、物理、金融等实际问题中,二次根式都有广泛的应用,帮助我们解决复杂的计算和分析。
因此,对于二次根式的学习和掌握是数学学习的关键之一。
以上是对二次根式概念的详细介绍,希望对您有所帮助。
通过深入学习和练习,相信您会更加熟练地运用二次根式,并在解决实际问题中发挥其重要作用。
二次根式 公式

二次根式是数学中的一个重要概念,它涉及到平方根和根式的运算。
二次根式的一般形式为:
ax2+bx+c其中a,b,c是常数,且a=0。
为了简化二次根式,我们通常会尝试将其转化为最简形式。
这通常涉及到完成平方或使用公式来化简。
1. 完成平方
如果二次根式可以写成完全平方的形式,那么我们可以直接开方。
例如:
x2=∣x∣
2. 使用公式
对于一般的二次根式,我们可以使用公式来化简。
例如,对于形如ax2+bx+c的二次根式,如果b2−4ac≥0,则可以使用求根公式来化简。
求根公式为:
x=2a−b±b2−4ac
3. 二次根式的乘法
当需要计算两个二次根式的乘积时,可以使用以下公式:
a×b=ab
4. 二次根式的除法
当需要计算两个二次根式的商时,可以使用以下公式:
ba=ba
5. 二次根式的加减
对于二次根式的加减,首先需要判断它们是否可以合并。
如果根号下的表达式相同,那么可以进行合并。
例如:
2+2=22
6. 二次根式的有理化
有时,为了简化二次根式,我们可能需要将其有理化。
这通常涉及到乘以共轭式。
例如:21=21×22=22
以上是关于二次根式的一些基本公式和化简方法。
在实际应用中,需要根据具体的问题选择合适的公式和方法进行化简和计算。
二次根式的定义

二次根式的定义
一般地,形如a的代数式叫做二次根式,其中,a 叫做被开方数。
当a≥0时,a表示a的算术平方根;当a小于0时,a的值为纯虚数(在一元二次方程求根公式中,若根号下为负数,则方程有两个共轭虚根)。
扩展资料
运算如下:
加减法
1.同类二次根式
一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。
化简:12等于4的3
2.合并同类二次根式
把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。
3.二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年中考数学复习教材回归知识讲解+例题解析+强化训练
二次根式
◆知识讲解
1.二次根式
a≥0)叫做二次根式.
2.最简二次根式
同时满足:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中含能开得尽方的因数或因式.这样的二次根式叫做最简二次根式.
3.同类二次根式
几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫同类二次根式.
4.二次根式的性质
2=a(a≥0);
│a│=
(0)
0(0)
(0)
a a
a
a a
>
⎧
⎪
=
⎨
⎪-<
⎩
;
(a≥0,b≥0);
=b≥0,a>0).
5.分母有理化及有理化因式
把分母中的根号化去,叫做分母有理化;两个含有二次根式的代数式相乘,•若它们的积不含二次根式,则称这两个代数式互为有理化因式.
6.二次根式的运算
(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.
(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.
(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.
◆例题解析 例1 填空题:
(1-, 其中是二次根式的是_________(填序号).
(2
x 的取值范围是_______.
(3)实数a ,b ,c a -b │.
o
【解答】(1)1) 3) 4) 5) 7).
(2)由x -3≥0-2≠0,得x ≥3且x ≠7. (3)由图可知,a<0,b>0,c<0,且│b │>│c │
-a ,-│a -b │=a -b
a -
b │. 例2 选择题:
(1)在下列各组根式中,是同类二次根式的是( )
A B
C
(2)在根式1)
,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4)
(3)已知a>b>0,的值为( )
A .
2 B .2 C D .12
【解答】(1A 错.
3
,
B 正确.
|b =│a , ∴C 错,而显然,D 错,∴选B . (2)选C .
(3)∵a>b>0)2)2
=a+b -
2
1,22===,故选A . 例3(2006,辽宁十一市)先化简,再求值:
11()
b
a b b a a b ++++,其中,.
【解答】原式=22()()()()ab a a b b a b a b ab a b ab a b ab
+++++==++
当,
◆强化训练 一、填空题
1.(2007,福州)当x______在实数范围内有意义.
2.已知0<x<1.
3.已知最简二次根式b a=______,b=_______.
4.(2008,长沙)已知a ,b 为两个连续整数,且,则a+b=______.
o
b a 5.已知实数x ,y 满足x 2+y 2-4x -2y+5=0
________.
6.(2006
,内蒙古)已知a -
1,a+1)(b -1)=_______. 7
.观察下列分母有理化的计算:
===,从计算结果中找出规
律,并利用这一规律计算:
(200620062005
++
+1)=________.
二、选择题
8.(2006,四川南充)已知a<02a │可化简为( ) A .-a B .a C .-3a
D .3a 9.已知xy>0,化简二次根式
的正确结果为(
)
A
..C D
10
,甲,乙两位同学的解法如下
=====甲乙
对于甲,乙两位同学的解法,正确的判断( ) A .甲,乙的解法都正确 B .甲正确,乙不正确 C .甲,乙都不正确
D .甲不正确,乙正确 11.若
a ,3-
b ,则a+b 等于( )
A .0
B .1
C .-1 D
.±1
12.如果表示a ,b 两个实数的点在数轴上的位置如图所示,那么化简│a -b │ 的结果等于( )
A .-2b
B .2b
C .-2a
D .2a
13.若a=3a 2-6a -2的值为( ) A .0 B .-1 C .1 D .3
14.若ab ≠0=成立的条件是( ) A .a>0,b>0 B .a>0,b<0 C .a<0,b>0 D .a<0,b<0
15.(2007,连云港)已知m ,n 是两个连续自然数(m<n ),且q=mn ,设则p ( )
A .总是奇数
B .总是偶数
C .有时是奇数,有时是偶数
D .有时是有理数,有时是无理数 三、解答题
16.计算:(1)(2008
)
(2)(2008,南通)计算:(15
17.(2008,广州)如图所示,实数a ,b
b a
18.(2006,江苏淮安)已知+1,求(22121x x x x x x +-
--+)÷1
x
的值.
19.对于题目“化简求值:
1a ,其中a=15
”,甲、乙两个学生的解答不同.
甲的解答是:
1a =1a 1a +1a -a=2495a a -=
乙的解答是:
1a =1a 1a +a -1a =a=15
谁的解答是错误的?为什么?
答案:
1.x ≥3 2.2x 3.0 2
4.5 5. 6 7.2005
8.C 9.D 10.A 11.B 12.A 13.B 14.B 15.A 16.(1)4 (2)2 17.-2b 18.原式=
2
1(1)x -=-1
2
19.对于甲的解答,当a=
15时,1a -a=5-15=445
>01a -a 正确;
而乙的解答,当a=
15时,a -1a =15-5=-44
5
<0a -1a ,
因此乙的解答是错误的.。