夫兰克赫兹实验
弗兰克赫兹实验

弗兰克-赫兹实验1.实验目的(1)用实验的方法测定汞或氩原子的第一激发电位,从而证明原子分立态的存在; (2)练习使用微机控制的实验数据采集系统。
2.实验原理根据玻尔的原子模型理论,原子是由原子核和以核为中心沿各种不同轨道运动的一些电子构成的。
对于不同的原子,这些轨道上的电子束分布各不相同。
一定轨道上的电子具有一定的能量。
当同一原子的电子从低能量的轨道跃迁到较高能量的轨道时,原子就处于受激状态。
若轨道1为正常态,则较高能量的2和3依次称为第一受激态和第二受激态,等等。
但是原子所处能量状态并不是任意的,而是受到玻尔理论的两个基本假设的制约:(1)定态假设。
原子只能处在稳定状态中,其中每一状态相应于一定的能量值Ei (i =1,2,3,…),这些能量值是彼此分立的,不连续的。
(2)频率定则。
当原子从一个稳定状态过渡到另一个稳定状态时,就吸收或放出一定频率的电磁辐射。
频率的大小取决于原子所处两定态之间的能量差,并满足如下关系:n m h E E ν=-其中346.6310h J s -=⨯⋅称作普朗克常数。
原子状态的改变通常在两种情况下发生,一是当原子本身吸收或放出电磁辐射时,二是当原子与其他粒子发生碰撞而交换能量时。
本实验就是利用具有一定能量的电子与汞原子相碰撞而发生能量交换来实现汞原子状态的改变。
由玻尔理论可知,处于基态的原子发生状态改变时,其所需能量不能小于该原子从基态跃迁到第一受激态时所需的能量,这个能量称作临界能量。
当电子与原子碰撞时,如果电子能量小于临界能量,则发生弹性碰撞;若电子能量大于临界能量,则发生非弹性碰撞。
这时,电子给予原子以跃迁到第一受激态时所需要的能量,其余能量仍由电子保留。
一般情况下,原子在受激态所处的时间不会太长,短时间后会回到基态,并以电磁辐射的形式释放出所获得的能量。
其频率υ满足下式g h eU ν=式中g U 为汞原子的第一激发电位。
所以当电子的能量等于或大于第一激发能时,原子就开始发光。
物理实验之弗兰克-赫兹实验

物理实验之弗兰克-赫兹实验弗兰克-赫兹实验是物理学中的经典实验之一。
它的目的是研究原子的结构。
据研究,原子是由电子,质子和中子组成的。
迄今为止,人们已经知道了原子的结构和组成;然而,在20世纪初,这个问题仍然是未解决的。
弗兰克-赫兹实验为研究原子组成和结构的理论提供了重要的实验证据,并为导致量子力学的发展做出了巨大的贡献。
弗兰克-赫兹实验是由德国物理学家弗兰克和赫兹于1914年在法兰克福大学进行的。
该实验的设备是一个长长的玻璃管,该管内部有空气和水银蒸气。
两个电极置于管的两端,并且通过这些电极施加电压。
电压的值非常小,只有几伏特,这足以使大约1cm的空气分子缩短350倍的距离,从而使它们成为离子。
离子化后的分子可以很容易地被带电的电子撞击,从而被激发和解离。
当电流流经玻璃管时,可以看到荧光在管内产生。
这些荧光在玻璃管的长度方向上呈现出明显的不均匀性,因此称其为荧光不稳定的阶梯状。
最初,弗兰克和赫兹发现,当电压过低时,无论电压增加了多少,都看不到荧光的变化;而当电压增加到一定程度时,荧光的形式突然发生了变化。
随着电压的增加,荧光不再呈现出阶梯状,而是变成了均匀的条纹。
这种现象表明,在一定范围内,电压对原子的结构产生了明显的影响。
进一步的研究表明,当电压增加到一定水平时,玻璃管里的荧光又重新呈现出了阶梯形状。
这是因为这时电子的能量已经足够大,能够克服空气分子中的电子吸收势垒,从而到达下一个空能态。
电流在这种情况下变成了一个突发的脉冲,因为所有的电子都同时跳到了相同的能量级。
弗兰克-赫兹实验揭示了原子结构的本质,并为发展量子力学及以后的能量及频率论发展奠定了基础。
该实验对现代物理学的发展产生了深远的影响。
今天,该实验被广泛用于研究原子结构、半导体和太阳能电池等领域,为人们理解自然界和改进技术带来极大的帮助。
实验 弗兰克—赫兹实验

99实验 弗兰克—赫兹实验1914年弗兰克(F .Franck )和赫兹(G .Hertz )在研究气体放电现象中低能电子与原子间相互作用时,在充汞的放电管中发现:透过汞蒸气的电子流随电子的能量呈现有规律的周期性变化,间隔为4.9eV 并拍摄到与能量4.9eV 相对应的光谱线2537Å。
对此,他们提出了原子中存在的“临界电势”的概念:当电子能量低于与临界电势相应的临界能量时,电子与原子碰撞是弹性的,而当能量达到这一临界能量时,碰撞过程由弹性变为非弹性,电子把这份特定的能量转移给原子使之受激,原子退激时再以特定的频率为光量子形式辐射出来,电子损失的能量ΔE 与光量子能量及光子频率的关系为 ΔE = eV = h νF-H 实验证实了原子内部能量是量子化的,为玻尔于1913年发表的原子理论提供了坚实的实验基础。
1920年弗兰克及其合作者对原先实验装置作了改进提高了分辨率测得了汞的除4.9eV 以外的较高激发能级和电离能级,进一步证实了原子内部能量是量子化的。
1925年弗兰克和赫兹共同获得诺贝尔物理学奖。
通过这一实验可以了解原子内部能量量子化的情况,扩大弹性碰撞和非弹性碰撞的知识,学习和体验弗兰克和赫兹研究气体放电现象中低能电子和原子间相互作用的试验思想和实验方法。
实验原理根据玻尔理论原子只能处在某一些状态,每一状态对应一定的能量,其数值彼此是分立的,原子在能级间进行跃迁时吸收或发射确定频率的光子,当原子与一定能量的电子发生碰撞可以使原子从低能跃迁到高能级(激发)如果是基态和第一激发态之间的跃迁则有: eV 1=21m e v 2 = E 1 - E 0 电子在电场中获得的动能和原子碰撞时交给原子,原子从基态跃迁到第一激发态V 1称为原子第一激发电势(位)。
进行F-H 实验通常使用的碰撞管是充汞的。
这是因为汞是原子分子,能级较为简单,汞是一种易于操纵的物质,常温下是液体,饱和蒸气压很低,加热就可改变它的饱和蒸气压,汞的原子量较大和电子作弹性碰撞时图1 F-H 实验线路连接图几乎不损失动能,汞的第一激发能级较低— 4.9eV,因此只需几十伏电压就能观察到多个峰值,当然除充汞蒸气以外,还常用充惰性气体如氖、氩等的,这些碰撞管温度对气压影响不大,在常温下就可以进行实验。
物理实验之弗兰克-赫兹实验

物理实验之弗兰克-赫兹实验弗兰克-赫兹实验是一项具有重要意义的物理实验,它为我们理解原子结构和电子能级的研究提供了重要的证据。
在这篇3000字的文章中,我将为你详细介绍弗兰克-赫兹实验的原理、过程和实验结果,希望能帮助你更好地理解这一实验。
弗兰克-赫兹实验于1914年由德国物理学家詹金斯·弗兰克和恩斯特·赫兹完成。
他们使用的实验装置主要包括一个玻璃管和一个甘汞蒸气灯。
在这个实验中,他们使用了高压电源将电流通过一个附带气体的玻璃管中,通过测量电流和电压的变化来观察气体原子中电子的行为。
实验的过程如下:首先,弗兰克-赫兹实验首先需要将气体灌入玻璃管中,并确保玻璃管处于真空状态。
然后,一个电压源与玻璃管相连接,通过调节电压源上的电压,使电流通过玻璃管中的气体。
这样,气体原子中的电子就会接收到能量,并跃迁到较高的能级。
当电子跃迁到较高的能级时,通过电流变化观察到的现象就是电压-电流图像中出现的突变。
这是因为跃迁能级需要一定的能量,只有当电压达到一定值时,电子才能够跃迁到更高的能级。
而当电压低于这个临界值时,电子无法跃迁,导致电流没有明显变化。
通过不断地改变电压值,并相应地测量电流的变化,我们可以得到一系列的跃迁能级。
这些跃迁能级的数值与原子的能级结构有关。
通过分析这些数据,我们可以了解到电子在原子中的排布情况以及原子的能级结构。
弗兰克-赫兹实验的实验结果为后来的量子力学理论的发展奠定了基石。
这个实验证实了电子只能在特定的能级之间跃迁,而不能在连续的能级之间跃迁。
这与经典物理学中电子在连续能级上运动的观点不同,它表明了原子的能级结构具有离散的性质。
这个观点后来成为了量子力学的基础。
通过弗兰克-赫兹实验,我们还可以了解到不同种类的气体可见的跃迁能级是不同的。
这为我们进一步研究气体的组成和性质提供了重要的线索。
实际上,弗兰克-赫兹实验的成功也鼓励了其他科学家进行类似的研究,从而推动了原子物理学的发展。
实验 弗兰克—赫兹实验

99实验 弗兰克—赫兹实验1914年弗兰克(F .Franck )和赫兹(G .Hertz )在研究气体放电现象中低能电子与原子间相互作用时,在充汞的放电管中发现:透过汞蒸气的电子流随电子的能量呈现有规律的周期性变化,间隔为4.9eV 并拍摄到与能量4.9eV 相对应的光谱线2537Å。
对此,他们提出了原子中存在的“临界电势”的概念:当电子能量低于与临界电势相应的临界能量时,电子与原子碰撞是弹性的,而当能量达到这一临界能量时,碰撞过程由弹性变为非弹性,电子把这份特定的能量转移给原子使之受激,原子退激时再以特定的频率为光量子形式辐射出来,电子损失的能量ΔE 与光量子能量及光子频率的关系为 ΔE = eV = h νF-H 实验证实了原子内部能量是量子化的,为玻尔于1913年发表的原子理论提供了坚实的实验基础。
1920年弗兰克及其合作者对原先实验装置作了改进提高了分辨率测得了汞的除4.9eV 以外的较高激发能级和电离能级,进一步证实了原子内部能量是量子化的。
1925年弗兰克和赫兹共同获得诺贝尔物理学奖。
通过这一实验可以了解原子内部能量量子化的情况,扩大弹性碰撞和非弹性碰撞的知识,学习和体验弗兰克和赫兹研究气体放电现象中低能电子和原子间相互作用的试验思想和实验方法。
实验原理根据玻尔理论原子只能处在某一些状态,每一状态对应一定的能量,其数值彼此是分立的,原子在能级间进行跃迁时吸收或发射确定频率的光子,当原子与一定能量的电子发生碰撞可以使原子从低能跃迁到高能级(激发)如果是基态和第一激发态之间的跃迁则有: eV 1=21m e v 2 = E 1 - E 0 电子在电场中获得的动能和原子碰撞时交给原子,原子从基态跃迁到第一激发态V 1称为原子第一激发电势(位)。
进行F-H 实验通常使用的碰撞管是充汞的。
这是因为汞是原子分子,能级较为简单,汞是一种易于操纵的物质,常温下是液体,饱和蒸气压很低,加热就可改变它的饱和蒸气压,汞的原子量较大和电子作弹性碰撞时图1 F-H 实验线路连接图几乎不损失动能,汞的第一激发能级较低— 4.9eV,因此只需几十伏电压就能观察到多个峰值,当然除充汞蒸气以外,还常用充惰性气体如氖、氩等的,这些碰撞管温度对气压影响不大,在常温下就可以进行实验。
弗兰克-赫兹(Franck-Hertz)实验

一、弗兰克-赫兹实验的实验方法
2010/5/1 Dr. Prof. W.N.Pang
3
2010/5/1
1925
Dr. Prof. W.N.Pang
4
玻尔理论基于的三个物理学基础
二、实验中的重点概念及物理图像
2010/5/1 Dr. Prof. W.N.Pang 31
上课时间:下午1:30--4:50
晚上6:30--9:50
切勿产生浮躁情绪
谢 谢
五、实验报告及数据处理要求
2010/5/1 Dr. Prof. W.N.Pang 32
五、实验报告及数据处理要求
实验报告要求
1)拒收电子版; 2)数据处理过程严谨。
2010/5/1 Dr. Prof. W.N.Pang 15 2010/5/1
物 理 图 像
电子碰撞后速度变慢;原子退激发辐射光子 Dr. Prof. W.N.Pang 16 表现为:“非弹性碰撞”
实验中采用一定入射能量的电子与Ar原子碰撞
电子由阴极K发 出,阴极K和控 制栅极G1之间的 加速电压UG
1s22s22p63s23p6 1S0
Dr. Prof. W.N.Pang
简单叠加
14 这里的简单叠加 仅为示意,不严谨!
当电子的加速电压UA<原子第一激发电势Ug 电子与原子碰撞过程中无能量的交换。
当电子的加速电压UA ≥原子第一激发电势Ug 电子与原子碰撞发生能量交换。
物 理 图 像
碰撞前后速度不变,表现为“弹性碰撞”
R
出入射电子在非弹性碰撞过程中能量损 失的情况。
弗兰克赫兹实验

1925年,由于他二人的卓越贡献,他们获得了当 年的诺贝尔物理学奖(1926年于德国洛丁根补发)。 夫兰克-赫兹实验至今仍是探索原子内部结构的主要 手段之一。所以,在近代物理实验中,仍把它作为传 统的经典实验。
(JAMES FRANCK)
(GUSTAV HERTZ)
原子内部能量量子化证据: (1) 原子光谱分立性 ; (2) 夫兰克-赫兹实验
IA
(nA)
e c a b o o V1 d V2 V3
V4
V5
V6
VG2K
图2-2-4 夫兰克—赫兹管的IA~VG2K曲线
实验内容及操作步骤
实验内容
用手动方式、计算机联机测试方式测量氩原子的第一 激发电位,并做比较。 分析灯丝电压、拒斥电压的改变对F—H实验曲线的影 响。 了解计算机数据采集、数据处理的方法。
E2
h
h
hc
E1
hc 1.24 AKeV 2530 A E 4.9eV
E
实验=2537A
实验与理论符合非常好
二. 较高激发电势的测定
1. 实验装置及实验原理
1920年, Franck改进实验装置
K G1
Hg
K
Hg
GA
V
0.5 V
A
G2 A
K:旁热式热阴极,均匀发 射电子,提高能量测量精度
一. 第一激发电势的测定
1.实验目的:验证原子能量的量子化。 2.实验原理(结合装置介绍):
GA
Hg
K
K:热阴极,发射电子
KG区:电子加速,与Hg原 子碰撞
A
0.5 V
V
夫兰克-赫兹实验装置
GA区:电子减速,能量大 于0.5 eV的电子可克服反向 偏压,产生电流
弗兰克赫兹实验报告

一、实验名称:弗兰克-赫兹实验二、实验目的:(1) 用实验的方法测定汞或者氩原子的第一激发电位,从而证明原子分立态的存在; (2) 练习使用微机控制的实验数据采集系统。
三、实验原理:根据波尔的原子模型理论, 原子中一定轨道上的电子具有一定的能量。
当原子吸收或者放出电 磁辐射时或者当原子与其他粒子发生碰撞时, 原子状态会发生改变。
改变过程中原子的能量变 化不是任意的,而是受到波尔理论的两个基本假设的制约,即定态假设和频率定则。
由波尔理论可知, 处于基态的原子发生状态改变时, 其所需能量不能小于该原子从基态跃迁 到第一受激态时所需的能量, 这个能量称作临界能量。
当电子与原子碰撞时, 如果电子能量 小于临界能量,则发生弹性碰撞;若电子能量大于临界能量,则发生非弹性碰撞。
这时,电 子赋予原子以临界能量,剩余能量仍由电子保留。
本仪器采用 1 只充氩气的四极管,其工作原理图如下:当灯丝(H)点燃后,阴极(K)被加热,阴极上的氧化层即有电子逾出(发射电子),为消 除空间电荷对阴极散射电子的影响, 要在第一栅极 (G ) 、阴极之间加之一电压 U (一栅、 阴电压) 。
如果此时在第二栅极 (G 2 ) 、阴极间也加之一电压 U G2K (二栅、 阴电压), 发射的电子在电场的作用下将被加速而取得越来越大的能量。
起始阶段,由于较低,电子的能量较小,即使在运动过程中与电子相碰撞(为弹性碰撞)只 有弱小的能量交换。
这样,穿过 2 栅的电子到达阳极(A) [也惯称板极]所形成的电流(I ) 板流(习惯叫法,即阳极电流)将随2 栅的电压 U 的增加而增大,当 U 达到氩原子的第 一激发电位(11.8V)时,电子在2 栅附近与氩原子相碰撞(此时产生非弹性碰撞)。
电子把 加速电场获得的全部能量传递给了氩原子, 使氩原子从基态激发到第一激发态, 而电子本身 由于把全部能量传递给了氩原子, 它即使穿过 2 栅极, 也不能克服反向拒斥电场而被折回 2 栅极。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
夫兰克-赫兹实验20世纪初,在原子光谱的研究中确定了原子能级的存在。
原子光谱中的每根谱线就是原子从某个较高能级向较低能级跃迁时的辐射形成的。
原子能极的存在,除了可由光谱研究证实外,还可利用慢电子轰击稀薄气体原子的方法来证明。
1914年夫兰克-赫兹采用这种方法研究了电子与原子碰撞前后电子能量改变的情况,测定了汞原子的第一激发电位,从而证明了原子分立态的存在。
后来他们又观测了实验中被激发的原子回到正常态时所辐射的光,测出的辐射光的频率很好地满足了玻尔假设中的频率定则。
夫兰克-赫兹实验的结果为玻尔的原子模型理论提供了直接证据,他们获得了1925年度的诺贝尔物理奖。
[实验目的](1)用实验的方法测定汞或氩原子的第一激发电位,从而证明原子分立态的存在;(2)练习使用微机控制的实验数据采集系统。
[实验原理]根据玻尔的原子模型理论,原子是由原子核和以核为中心沿各种不同轨道运动的一些电子构成的(图1)。
对于不同的原子,这些轨道上的电子数分布各不相同。
一定轨道上的电子具有一定的能量。
当同一原子的电子从低能量的轨道跃迁到较高能量的轨道时(如图1中从Ⅰ到Ⅱ),原子就处于受激状态。
若轨道Ⅰ为正常状态,则较高能量的Ⅱ和Ⅲ依次称为第一受激态和第二受激态,等等。
但是原子所处的能量状态并不是任意的,而是受到玻尔理论的两个基本假设的制约: (1)定态假设。
原子只能处在稳定状态中,其中每一状态相应于一定的能量值i E (i =1,2,3…),这些能量值是彼此分立的,不连续的。
(2)频率定则。
当原子从一个稳定状态过渡到另一个稳定状态时,就吸收或放出一定频率的电磁辐射。
频率的大小取决于原子所处两定态之间的能量差,并满足如下关系: m n E E hv -= (1)其中346.6310h J s -=⨯⋅,称作普朗克常数。
原子状态的改变通常在两种情况下发生,一是当原子本身吸收或放出电磁辐射时,二是当原子与其他图1 原子结构示意图(玻尔模型)粒子发生碰撞而交换能量时。
本实验就是利用具有一定能量的电子与汞原子相碰撞而发生能量交换来实现汞原子状态的改变。
由玻尔理论可知,处于基态的原子发生状态改变时,其所需能量不能小于该原子从基态跃迁到第一受激态时所需的能量,这个能量称作临界能量。
当电子与原子碰撞时,如果电子能量小于临界能量,则发生弹性碰撞;若电子能量大于临界能量,则发生非弹性碰撞。
这时,电子给予原子以跃迁到第一受激态时所需要的能量,其余的能量仍由电子保留。
一般情况下,原子在受激态所处的时间不会太长,短时间后会回到基态,并以电磁辐射的形式释放出所获得的能量。
其频率v 满足下式R eU hv (2)式中R U 为汞原子的第一激发电位。
所以当电子的能量等于或大于第一激发能时,原子就开始发光。
图2夫兰克-赫兹实验线路原理图夫兰克-赫兹实验的原理可用图2为证明。
其中夫兰克-赫兹管是一个具有双栅极结构的柱面型充汞四极管。
第一栅极1G 的作用主要是消除空间电荷对阴极电子发射的影响,提高发射效率。
第一栅极1G 与阴极K 之间的电位差由电源提供U G 。
电源f U 加热灯丝FF ,使旁热式阴极K 被加热,从而产生慢电子。
扫描电源a U 加在栅极2G 和阴极K 间,建立一个加速场,使得从阴极发出的电子被加速,穿过管内汞蒸气朝栅极2G 运动,由地阴极到栅极2G 之间的距离比较大,在适当的汞蒸气压下,这些电子与汞原子可以发生多次碰撞。
电源R U 在栅极2G 和板极P 之间建立一拒斥场,到达2G 附近而能量小于R eU 的电子不能到达板极。
板极电路中的电流强度P I 用微电流放大器A 为测量,其值大小反映了从阴极到达板极的电子数。
实验中保持R U 和C U 不变,直接测量板极电流I P 随加速电压a U 变化的关系。
加速电压a U 刚开始升高时,板极电流也随之升高,直到加速电压a U 等于或租大于汞原子的第一激发电位,这时在栅极2G 附近电子与汞原子发生非弹性碰撞,把几乎全部的能量交给汞原子,使汞原子激 。
这些损失了能量的电子不能越过U R 产生的拒斥场,到达板极的电子数减少,所以电流开始下降,继续增加,a U 电子在与汞原子碰撞后还能在到达2G 前被加速到足够的能量,克服拒斥场的阻力而以达板极P ,这时电流又开始上升。
直到2G 与K 间的电压是二倍于汞原子的第一激发电位(2U g )时,电子在G 2附近又会因第二次非弹必碰撞而失去能量,并且受到拒斥场的阻挡而不能到达板极,电流I p 再度下降。
同样的道理,随着加速电压的a U 增加,电子会在栅极2G 附近与汞原子发生第三次、第四次、……非弹性碰撞,因而板极电流I p 就会相应下跌,形成具有规则起伏的I P -a U 曲线。
图3是利用微电流放大器测得的汞原子的实验曲线,两峰之间的电位差等于汞原子第一激发电位。
本实验的任务就是要测出这条曲线,并由此定出汞原子的第一激发电位。
实验中板极电流I p 的下降并不是完全突然的,其峰值总有一定的宽度。
这是由于从阴极发出的电子初始能量不完全一样,服从一定的统计规律。
另外由于电子与原子的碰撞有一定的几率,当大部分电子恰好在栅极2G 前使汞原子激发而损失能量时,显然会有一些电子逃避了碰撞而直接到达板极,因此板极电流并不降到零。
图3夫兰克-赫兹实验曲线(汞蒸气管)[实验仪器]夫兰克-赫兹实验仪实验用线路如图2所示。
所用仪器由夫兰克-赫兹管、加热炉、温度控制仪、稳压电源、微电流放大器和扫描电源六个部分构成。
各仪器的特点及操作注意事项介绍如下:(1)夫兰克-赫兹管。
这是一个具有双栅结构的柱面的充汞四极管。
其工作温区为100℃~210℃,在小于180℃时可获得明显的第一谱峰。
图4加热炉外形面板图1—板极;2—接地端;3—栅板G2;4—灯丝;5—灯丝阴极;6—控制栅极G1;7—感温探头;8—加热炉电源交流220V(2)加热炉。
加热功率约400W。
炉内温度均匀,保温性好。
面板为实验用接线板,夫兰克-赫兹管的各电极均已连到面板上各相应接线端。
背面有玻璃观察窗,可观察到受激原子从高能态返回到正常态时所辐射的光。
加热炉外形如图4所示。
(3)温度控制仪,它由交流控温电桥、交流放大器、相敏放大器、控温扩行继电器四部分组成。
控温范围20℃~300℃,控温精度±1℃,同时也能指示被控温度大小。
(4)稳压电源。
稳压电源输出分为三组,均可调节。
第一组作为灯丝电压,第二组作为拒斥场电压,第三组作为控制栅电压。
(5)扫描电源。
用以改变加速电压U A。
输出波形:锯齿波,三角波。
扫描方式:手动,自动。
扫描电源上有电压表指示扫描电压大小。
为使读数精确,同时再外接一个量程200V 的数字电压表,指示该电压大小。
(6)微电流放大器。
该仪器是利用高输入阻抗运算放大器制成的I-U 变换器,可测量10-10A ~10-8A 的电流,在本实验中用来测量板极电流I p 。
使用时电路中接入一个微安表,指示被测电流的相对大小。
测量开始前调节“调零”旋纽,使电流表指针指零。
由于电流为电子流,应将极性开关板到“一”。
微机控制的夫兰克-赫兹实验数据采集系统系统选用的数据采集卡是AC 1095多功能12位A/D 接口板,它具有16路模拟输入,输入程控的放大倍数G =1、2、5、10,单极性输入幅度0V ~10V ,采样速率50kHZ ,1路12位D/A 转换器等多种功能。
图5数据采集系统框图系统中微电流放大器与A /D 接口板间加了一个光耦合隔离器,以解决电流数据I p 及电压数据U A 不共地的问题,否则A /D 采到的信号常会出现乱码。
在选定实验条件后,整个实验过程由微机控制,在接口板D/A 端的输出信号去控制扫描电压,A /D 端采样,每次要采回两个实验数据,即加速电压a U 和板极电流I p 。
因加速电压较高,进入采集板的a U 是经过分压的,范围在0V ~10V 。
因此要准确地知道加到管子上的实际电压a U 是多少,就需要对采集进行标定。
实验时请阅读实验室内的详细说明。
[实验步骤及注意事项](1)接线和检查线路:参考图2电路接线,将各电压调节旋钮反时针方向旋到底使电压最小;检查控温仪与加热炉之间连接线。
请教师检查线路后,方可通电。
(2)加热炉和微电流放大器通电;根据实验室给定的炉温控制值,在控温仪上预置炉温值,接通加热炉、控温仪电源,同时开启微电流放大器的电源。
(3)摸索实验条件,定性观察I p -a U 变化情况:开启稳压电源和扫描电源。
根据给定的U f 、U G 、U R 控制值,先预置一组数。
扫描电源置“手动”。
缓慢增加a U ,观察板极电流I p 的变化情况,此时应能看到I P 的起伏变化。
分别改变U f 、U G 、U R 及炉温值,观察每个参量对I P -U A 曲线的影响。
最后,要求随着U A 的增加能观察到I P 有8~10个峰,峰与谷的差别应比较明显,最大峰值应接近于电流表的满量程处,但又不过载,并且在三五分钟时间内I p -a U 变化规律无明显改变。
在改变条件过程中,要注意以下几点:①每个参量不能超过最大允许值;②电流表不要过载;③U f 和炉温改变时,对I p 的影响有一段滞后时间,不要一下子改变很多。
每改变一次,等2min ~3min 再观察I P 的变化;④若电流I P 迅速增大,表明汞原子已明显电离,此时应立即减小U A ;⑤有时扫描电源也可置于“知动”,周期选用“40s ”。
(4)测量I P -a U 线:在得到了满足3中要求的最佳条件,并待I P -a U 变化规律也已达稳定后,可开始逐点测量数据。
利用“手动”扫描方式,缓慢增加U A ,从0V 到60V 左右,逐点记录a U 及相应的I P 值。
利用“手动”扫描方式,缓慢增加a U ,从0V 到60V 左右,逐点记录a U 及相应的I P 值,合理选择测量间隔,峰值点附近测量点要多些。
(5)利用“自动”扫描方式和数据采集系统获得I P -a U 曲线。
[数据处理及误差分析]由前面的讨论可知,I p -a U 曲线上相邻两峰值之间的电位差就是汞原子的第一激发电位U g 。
实验得到几个峰值,用逐差法或线性拟合方法处理数据,可使U g 求得更准确。
计算方法自拟。
关于U g 的误差,应从测量过程中的随机误差和外接电压表的仪器误差两方面来考虑。
计算出△U g 值。
数字电压表精度为0.1%U +0.1V 。
思 考 题1.为什么I P -U P 呈周期性变化?2.拒斥电压U R 增大时,I P 如何改变?3.灯丝电压U f 改变时,夫兰克-赫兹管内什么参量将发生改变?4.炉温的大小直接影响管内什么参量?附录:智能夫兰克-赫兹性能简介该仪器用于测量氩原子的激发电位。
观察其特殊的伏安特性现象。
研究原子能级的量子特性。