红外光谱示例
红外光谱谱图解析实例

各种官能团的吸收频率范围
—C≡N
第 —N≡N 二 —C≡C—
区 域 —C=C=C—
2260—2220 2310—2135 2260—2100
1950附近
伸缩 伸缩 伸缩
伸缩
s针 状 m v
v
干扰少
R—C≡C—H,2100—2140;R— C≡C—R` , 2190—2260 ; 若 R`=R,对称分子无红外谱带
红外吸收光谱的解谱及应用
能力目标
解析红外谱图,获得官能团的基本信息,推导未知物 的可能结构
认识红外光谱图,分析特点
横坐标波数,纵坐标百分透过率 ,谷底表示吸收峰。
特征区:4000-1350 指纹区: 1350 650 cm-1
谱图解析的一般程序
图解析方法: 先根据分子式其不饱和度,初步判断结构,查看特征官能团
区域基团吸收频率cm1振动形式吸收强度说明第一oh游离oh缔合nh2nh游离nh2nh缔合shch伸缩振动不饱和chch叁键ch双键苯环中ch饱和ch3650358034003200350033003400310026002500伸缩伸缩伸缩伸缩伸缩伸缩伸缩伸缩mshsbmsbsss判断有无醇类酚类和有机酸的重要依据不饱和ch伸缩振动出现在3000cm1以上末端ch2出现在3085cm1附近强度上比饱和ch稍弱但谱带较尖锐饱和ch伸缩振动出现在3000cm1缩以下30002800cm1取代基影响较小区域ch3ch3ch2ch23300附近301030403030附近2960528701029305285010反对称伸缩对称伸缩反对称伸缩对称伸缩ssss现三元环中的ch2出现在3050cm1ch出现在2890cm1很弱第二区域cnnncccccccc2260222023102135226021001950附近伸缩伸缩伸缩伸缩伸缩s针状mv干扰少rcch21002140
红外分析实例

图1 是SBS 红外光谱图, 可以看出2921cm-1、2846cm-1为-CH2-的伸缩振动吸收峰, 1601cm-1、1493cm-1为苯核的动吸收峰, 699cm-1、757cm-1为单取代苯环的振动吸收峰, 966cm-1为C=C 的扭曲振动吸收峰, 911cm-1为=CH2面外摇摆振动吸收峰。
从图2、图 3 可以看出各特征峰所对应的基团:2924cm-1、2853cm-1为- CH2-的伸缩振动吸收峰, 2960cm-1为- CH3伸缩振动吸收峰,1460cm-1为- CH2-的剪式振动吸收峰, 1377cm-1为- CH3剪式振动吸收峰。
由图1可见,基质沥青红外光谱图中出现了3处吸收峰,其中波数650~910cm-1区域是苯环取代区,出现的几个吸收峰是由苯环上C-H面外摇摆振动形成的;而波数1375cm-1和1458cm-1处的吸收峰则由C-CH3和-CH2-中C-H面内伸缩振动形成的;波数2800~3000cn-1范围内的吸收峰比较强,是环烷烃和烷烃的C-H 伸缩振动的结果,由-CH2-伸缩振动形成的。
由全波段的红外光谱(图3)可知,改性沥青与基质沥青在2800~3000cm-1左右出现的强吸收峰带基本相同,吸收峰的位置没有发生变化。
就改性沥青而言,整个功能团没有发现新的吸收峰,但吸收峰的强度随SBD改性剂含量的增大而略有增强。
由650~1100cm-1波区的红外光谱(图\4、图5)可知,在指纹区改性沥青与基质沥青的吸收峰存在明显差异,即在波数690~710cm-1和950~980cm-1处,SBS改性沥青的红外波区吸收相对较强,并在966.1cm-1和698cm-1处出现了吸收峰,虽然波数698cm-1的绝对吸收峰值较波966.1cm-1处的大,但波数966.1cm-1处的吸峰特征更为明显。
每种物质分子都有一个由其组成和结构所决定的红外特征吸收峰,它只吸收一些特定波长的红外光。
由于掺入的SBS改性剂与基质沥青并没有发生化学反应,亦即聚苯乙烯和聚丁二烯并没有发生化学变化,所以SBS改性沥青的红外光谱只是在基质沥青的红外光谱上简单叠加了聚苯乙烯与聚丁二烯的红外光谱,而相应的吸收峰位置和强度基本保持不变,是基质沥青和SBS改性剂的红外光谱的简单合成图。
红外分析实例

图1 是SBS 红外光谱图, 可以看出2921cm-1、2846cm-1为- CH2- 的伸缩振动吸收峰, 1601cm-1、1493cm-1为苯核的动吸收峰, 699cm-1、757cm-1为单取代苯环的振动吸收峰, 966cm-1为C=C 的扭曲振动吸收峰, 911cm-1为=CH2面外摇摆振动吸收峰。
从图2、图 3 可以看出各特征峰所对应的基团:2924cm-1、2853cm-1为- CH2- 的伸缩振动吸收峰, 2960cm-1为- CH3伸缩振动吸收峰,1460cm-1为- CH2- 的剪式振动吸收峰, 1377cm-1为- CH3剪式振动吸收峰。
由图1可见,基质沥青红外光谱图中出现了3处吸收峰,其中波数650~910cm-1区域是苯环取代区,出现的几个吸收峰是由苯环上C-H面外摇摆振动形成的;而波数1375cm-1和1458cm-1处的吸收峰则由C-CH3和-CH2-中C-H面内伸缩振动形成的;波数2800~3000cn-1范围内的吸收峰比较强,是环烷烃和烷烃的C-H 伸缩振动的结果,由-CH2-伸缩振动形成的。
由全波段的红外光谱(图3)可知,改性沥青与基质沥青在2800~3000cm-1左右出现的强吸收峰带基本相同,吸收峰的位置没有发生变化。
就改性沥青而言,整个功能团没有发现新的吸收峰,但吸收峰的强度随SBD改性剂含量的增大而略有增强。
由650~1100cm-1波区的红外光谱(图\4、图5)可知,在指纹区改性沥青与基质沥青的吸收峰存在明显差异,即在波数690~710cm-1和950~980cm-1处,SBS改性沥青的红外波区吸收相对较强,并在966.1cm-1和698cm-1处出现了吸收峰,虽然波数698cm-1的绝对吸收峰值较波966.1cm-1处的大,但波数966.1cm-1处的吸峰特征更为明显。
每种物质分子都有一个由其组成和结构所决定的红外特征吸收峰,它只吸收一些特定波长的红外光。
2红外光谱

C-H (2000-1667cm-1)
-(CH2)n- (900-600cm-1)
一、红外光的区划
红外线:波长在0.76~500μm (1000μm) 范围内的电磁波
近红外区:0.76~2.5μm 主要用于研究O-H、N-H、C-H键的倍频吸收或组
频吸收,此区域吸收峰强度较弱。
中红外区:2.5~25μm (400-5000cm-1) 振动、伴随转动光谱主要研究
基本形式 伸缩振动:原子沿键轴方向伸缩,键长变化但键角不变的振动。 变形振动:基团键角发生周期性变化,但键长不变的振动。又称 弯曲振动或变 角振动。 下图给出了各种可能的振动形式(以甲基和亚甲基为例)。
HH C
对称伸缩振动 s
symmetric stretching
HH C
面内弯曲振动或剪切振动 s
红外吸收强度
红外吸收强度由振动时偶极矩变化的大小决定。 分子中含有杂原子时,其红外谱峰一般都较强。
如C=C,C-C因对称度高,其振动峰强度小;而C=X,C-X,因对
称性低,其振动峰强度就大。峰强度可用很强(vs)、强(s)、 中(m)、弱(w)、很弱(vw)等来表示。
五 、红外谱图解析
红外吸收波段
面内弯曲振动 ✓ 特点:吸收峰密集、难辨认→指纹 ✓ 注:相关峰常出现在指纹区
• 经典力学导出的波数计算式为近似式。因 为振动能量变化是量子化的,分子中各基 团之间、化学键之间会相互影响,即分子 振 动的波数与分子结构(内因)和所处的化 学环境(外因)有关。
六、影响吸收峰位的因素
1.内部因素:化学键的振动频率不仅与其性质有关, 还受分子的内部结构和外部因素影响。相同基团的特 征吸收并不总在一个固定频率上。 (1)诱导效应(吸电效应): 使振动频率移向高波数区
红外分析实例

图1 是SBS 红外光谱图, 可以看出2921cm-1、2846cm-1为- CH2- 的伸缩振动吸收峰, 1601cm-1、1493cm-1为苯核的动吸收峰, 699cm-1、757cm-1为单取代苯环的振动吸收峰, 966cm-1为C=C 的扭曲振动吸收峰, 911cm-1为=CH2面外摇摆振动吸收峰。
从图2、图 3 可以看出各特征峰所对应的基团:2924cm-1、2853cm-1为- CH2- 的伸缩振动吸收峰, 2960cm-1为- CH3伸缩振动吸收峰,1460cm-1为- CH2- 的剪式振动吸收峰, 1377cm-1为- CH3剪式振动吸收峰。
由图1可见,基质沥青红外光谱图中出现了3处吸收峰,其中波数650~910cm-1区域是苯环取代区,出现的几个吸收峰是由苯环上C-H面外摇摆振动形成的;而波数1375cm-1和1458cm-1处的吸收峰则由C-CH3和-CH2-中C-H面内伸缩振动形成的;波数2800~3000cn-1范围内的吸收峰比较强,是环烷烃和烷烃的C-H 伸缩振动的结果,由-CH2-伸缩振动形成的。
由全波段的红外光谱(图3)可知,改性沥青与基质沥青在2800~3000cm-1左右出现的强吸收峰带基本相同,吸收峰的位置没有发生变化。
就改性沥青而言,整个功能团没有发现新的吸收峰,但吸收峰的强度随SBD改性剂含量的增大而略有增强。
由650~1100cm-1波区的红外光谱(图\4、图5)可知,在指纹区改性沥青与基质沥青的吸收峰存在明显差异,即在波数690~710cm-1和950~980cm-1处,SBS改性沥青的红外波区吸收相对较强,并在966.1cm-1和698cm-1处出现了吸收峰,虽然波数698cm-1的绝对吸收峰值较波966.1cm-1处的大,但波数966.1cm-1处的吸峰特征更为明显。
每种物质分子都有一个由其组成和结构所决定的红外特征吸收峰,它只吸收一些特定波长的红外光。
第8章 红外光谱

k=4.5
1200~700cm-1
k=9.77
1700~1450 cm-1
k=12.2
2300~2100cm-1
24
(2) 振动频率或波数与原子的折合质量的平方根成反比。 折合质量m小,υ越大;红外吸收在高波数段 当两个振动原子中有一个为氢原子时,折合 质量小,振动频率或波数就大。
如:C-H,O-H,N-H键的伸缩振动吸收出现在高 波数区( 3000cm-1 以上); 而: C- O ( 1100cm-1 左右)。
根据吸收峰的大小,一般可以分为四种相对吸收强度:
① 很强峰 vs (very strong) , ② 强峰
s (strong ) , ③ 中等峰 m (medium) , ④ 弱峰 w (week) 。
13
甲基环己烷的红外光谱图
很强峰
弱峰
很强峰
中等峰
强峰
14
8.3 基本原理
8.3.1分子的振动类型: 分子中的原子通过化学键相连,且在它的平衡位 置周围振动。 伸缩振动 振动类型 弯曲振动
H C
H
H C
H
剪式弯曲 面内弯曲
平面摇摆
17
+
+ +
-
H C
H
H C
H
非平面摇摆 面外弯曲
面外扭曲
18
亚甲基的振动模式:
19
注:
①伸缩振动在高波数段吸收,弯曲振动在低波数段吸 收;伸缩振动往往是表示其化学键的特征吸收。 ②分子振动方式很多,但只有分子的振动能引起分子 的瞬间偶极矩变化时,才会产生明显的吸收峰。高 度对称的化学键(如: RC CR )由于伸缩振动 无偶极矩变化,不引起红外吸收。 ③偶极矩变化大的振动吸收峰强。
红外光谱解析方法(含结构分析实例)

无 CH 3 吸收
否定结构 1 和 3
且无芳环对位取代特征吸收
1680 ~ 1630 cm1 无 C O吸收
否定结构 4
续前
综上所述,峰归属如下 :
H 3060 ,3040 和3020 cm 1
1 C (芳环) 1600 , 1584 和 1493 cm C 1 H (单取代) 756 和 702 cm (双峰)
该化合物为结构 2
练习 (书后P276题15)
H 3030
as CH 3
C (芳) 1588 , 1494 和1471 C2925as CH 3
s CH 1380 3 1442 C N 1303, 1268
1 H 748cm (单)
NH 3430 , 3300 (双)
CH 2 2938 , 2918 和 2860
CH 2 1452
续前
解: 此题五个化合物有四个 含有苯环, 其中三个还分别具有 C N , NH 和C O;
只有化合物2无苯环,但具有 OH
图上可见芳香化合物的 一系列特征吸收 3060 ,3040 和3020 cm 1有吸收 为芳环 H 1600 , 1584 和 1493cm 1三处吸收 为芳环 C C
示例
CH 3300
NH 3270 H 3030 C C 2100
C (芳环) 1597 , 1495 , 1445 C
NH 1533 C N 1323
C O 1638
CH 1268
H 763 , 694 (双峰)
续前
2 2 9 1 7 7 可能含有苯环 解: U 2 1638 cm1强吸收 为 C O 3270 cm 1有吸收 NH
红外光谱-实例

NHR C
H2 p
O
H
CC
H2
n
COOCH3
( OMMT-g-PMA )
11:38:22
11:38:22
NHR
OH OH NHR
NHR
OH
( OMMT )
NHR
H
O
CC
H2 q
COOCH3
RHN OH
H
CC
H2
m
COOCH3
H
NHR
CC
H2 p
COOCH3
O
H
CC
H2
n
COOCH3
( OMMT-g-PMA )
11:38:22
拉曼光谱与红外光谱的比较
1. 物理过程不同:拉 曼光谱为散射光 谱,而红外光谱为 吸收光谱
2. 分子结构变化不同:拉曼光谱源于 诱导偶机矩,与分子极化率的变化 相关,而后者与分子永久偶机矩的 变化相关.
红外与拉曼判断原则:
1. 相互排斥原则: 存在对称中心分子,若有拉曼活性,则红 外无活性;若有红外活性,则拉曼无活性.例如CO2
Heat flow (mw)
20.0
17.5
A
15.0
B
12.5
10.0
A: PMA B: OMMT-g-PMA
7.5
-40
-20
0
20
40
60
Temperature (oC)
DSC curve for PMA (A) and OMMT-g-PMA (B)
NHR OH OH NHR NHR OH
( OMMT )
11:38:22
DSC 测得的纯组分聚合物PC、PS 以及它们共混物的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
பைடு நூலகம்
(C),问哪种结构可能给出这种光谱?为什么?
无νC=O
ν≡C-H
νC≡C
答案:B
例2. 归属信号
1) 1751cm-1 2) 1710cm-1
O O
3) 1667cm-1
C O CH3
2
1
O
3
例3. 下图(图11-2)是某化合物的IR光谱图,试问该化合物是芳
收峰,则该化合物可能是( A. CH3CH2CH2CH3 B )
B. CH3CH2CCH
C. CH3CH2CH=CH2 D. CH3CH2C=CCH2CH3 例7. 某化合物在紫外光区270 nm处有一弱吸收带,在红外光区有
2820、2720、1725 cm-1吸收峰。则该化合物可能是(
A. 醛 B. 酮 C. 羧酸 D. 酯
B. 3000~2700 cm-1
C. 2400~2100 m-1
D. 1900~1650 cm-1
例10. 在苯的红外吸收光谱图中
(1) 3300~3000
cm-1处,
由
苯环C-H的伸缩
振动引起的吸收峰;
振动引起的吸收峰;
(2) 1675~1400 cm-1处, 由 苯环C=C伸缩 (3) 1000~650 cm-1处, 由
B )
1475~1300 cm-1 1475~1300 cm-1
A. 3000~2700 cm-1 B. 3000~2700 cm-1
C. 3300~3010 cm-1
D. 3300~3010 cm-1
1675~1500 cm-1
1900~1650 cm-1
1475~1300 cm-1
1475~1300 cm-1
A
)
例8. 某一化合物在UV光区无吸收,在红外光谱的官能团区出现如
下吸收峰:3400~3200 cm-1(宽而强),1400 cm-1,则该化合
物最有可能是( B A. 羧酸 B. 醇 ) D. 醚
C. 伯胺
例9.有一种含氮的药物,如用红外光谱判断它是否为腈类物质时, 主要依据的谱带范围为( A. 3300~3000 cm-1 )C
香族还是脂肪族?
以下事实可以证明存在芳香环:
(1)C-H吸收均在3000 cm-1以上; (2)在1620 cm-1,1500 cm-1有芳香化合物的骨架振动。
例4. 下列4组数据中,哪一组数据所涉及的红外光谱区能包括
H3 C
H2 C H2 C O C H
的吸收带( 1675~1500 cm-1 1900~1650 cm-1
苯环C-H的弯曲振动 振动引起的吸收峰。
例5. 一个含氧化合物的红外光谱图在 3600 ~3200 cm-1有吸收峰 , 下列化合物最可能的是( A A. CH3-CHOH-CH3 C. CH3-CHO )
B. CH3-CO-CH3
D. CH3-O-CH2-CH3
例6. 已知某化合物不含氮,它的红外光谱中2240 ~ 2100 cm-1有吸