人教版高中物理第一册牛顿运动定律的应用1
牛顿运动定律的应用 高一物理课件(人教版2019必修第一册)

拉力F后圆环滑行的位移 x2
v2 v02 2a
15m
,
故总位移x=x1+x2=30m
变式
1 (2023·全国·高三专题练习)如图3所示,楼梯口一倾斜的天花板与水平地面成θ=37°角,一装潢工人手持 木杆绑着刷子粉刷天花板,工人所持木杆对刷子的作用力始终保持竖直向上,大小为F=10 N,刷子的质量为m= 0.5 kg,刷子可视为质点,刷子与天花板间的动摩擦因数μ=0.5,天花板长为L=4 m,sin 37°=0.6,cos 37°= 0.8,g取10 m/s2.试求: (1)刷子沿天花板向上的加速度大小; (2)工人把刷子从天花板底端由静止推到顶端所用的时间.
3.(2022·贵州六盘水·高二期末)动车在水平地面上启动过程中,置于水平小桌板上水杯中的水面与水平面之 间的夹角为θ,如图所示。假设水杯和水的总质量为m,重力加速度为g,那么( ) A.动车启动的方向向左 B.动车启动过程中其加速度为gsinθ C.水杯中的水所受的合外力为零 D.小桌板对水杯的摩擦力为mgcosθ
m
由运动学公式可得 v2 2ax 解得 0.8
(2)物块在传送带上加速时,加速度大小为 a g cos g sin 0.4m / s2 ,则物块在传送带上加速的时间 t v 6 s 15s
a 0.4
课堂练习
1.(2022·新疆·乌鲁木齐101中学高二期末)如图所示,质量m=3 kg的木块放在倾角θ=30°的足够长斜面上,
6
a1
2x t
2m/s2,由题意可
知,滑块的加速度方向有向上和向下两种情况,当加速度沿斜面向上时:F cos30 mg sin30 F sin30 mg cos30 ma1
解得
F
76 5
物理人教版(2019)必修第一册4.5牛顿运动定律的应用(共20张ppt)

(1)物体在恒力F作用下运动时的加速度是多大? (2)物体到达B点时的速度是多大?
(3)物体沿斜面向上滑行的最远距离是多少?
三 多运动过程问题
解:(1)在水平面上,对物体受力分析,根据牛顿第二定律可得
解得 a=F-mμmg=14-0.52×2×10 m/s2=2 m/s2。 (2)由 M 到 B,根据运动学公式可知 v2B=2aL
高中物理必修一 第四章 牛顿运动定律
4.5 牛顿运动定律的应用
高中物理必修一 第四章 牛顿运动定律
思考: 为了尽量缩短停车时间,旅
客按照站台上标注的车门位置候 车。列车进站时总能准确地停靠 在对应车门的位置。这是如何做 到的呢?
一 从受力确定运动情况
1、已知物体受力情况确定运动情况:指的是在受力情况已知的条件下, 要求判断出物体的运动状态或求出物体的速度、位移等。
二 从运动情况确定受力
1、已知物体运动情况确定受力情况,指的是在运动情况(知道三个运动 学量)已知的条件下,要求得出物体所受的力或者相关物理量(如动摩擦因 数等)。
2、处理这类问题的基本思路是:先分析物体的运动情况,据运动学公
式求加速度,再在分析物体受力情况的基础上,用牛顿第二定律列方程求 所求量(力)。
三 多运动过程问题
1、基本思路 (1)把整个过程拆分为几个子过程,对每个子过程进行受力分析和运动特
点分析。 (2)应用运动学公式或者牛顿第二定律求出不同运动过程的加速度。 (3)应用运动学公式求未知物理量或应用牛顿第二定律求未知力。
2、解题关键:求解运动转折点的速度。 该点速度是上一过程的末速度,也是下一过程的初速度,它起到承上启下
物体受 力情况
牛顿第 二定律
人教版高中物理必修一 用牛顿运动定律解决问题(一) PPT课件

解:设反应的时间内通过的位移为 S1,匀减速过程通过的位移为S2. 已知: V0=108km /h=30m/s, t=0.5s, Ff=0.40G, g=10m/s2 求S=S1+S2=?
V0
Ff
Ff
静止
A
S1
B S2
C
取初速度方向为正向, 由S=v t得 s1 30 0.5m 15m 再由牛顿第二定律:F合=ma 得 a= F合/m= Ff/m= –0.4G/m = –0.4g m/s2= –4m/ s2 2 2 由公式:vt v0 2as
受力分析:
物体一共受到重力G,弹力N,摩擦力f 和拉力F
v
N f 由于物体在竖 直方向上没有 位移,合力为 零,因此所受 合力等于拉力F 和f 的合力
F
G
解题过程:
解:根据受力示意图及分析,列出合力的表达式 F合=F-f =(6.4-4.2)N=2.2N
根据牛顿第二定律:F合=ma,得 再由运动学规律:vt=at, S =0.5at2 得
一个静止在水平地面上的物体,质量是2kg,在10N的水平拉力作用下, 沿水平地面向右运动,物体与水平地面间的滑动摩擦力是4N,求物体在4S 末的速度和4S内发生的位移。
解: 取水平向右为正方向, 则合力为 F合=F–Fµ = 10N –4N=6N
由牛顿第二定律F=ma,可求出加速度
FN
Fµ
F
G F合 6 2 2 a m / s 3m / s m 2 由运动学公式就可以求出4s末的速度vt和4s内发生的位移S
问题的关键就是要找到加速度 a
方法:应用牛顿第二定律 F合=ma 要求a,先求合力F合。
解题关键:求出加速度a
人教版(2019)高中物理必修第一册4.5牛顿运动定律的应用课件

练一练
与水平方向成θ =37°的拉力F=10N作用在质
量为2kg的物块,物块与地面间的动摩擦因数
为0.5.10s末撤去拉力.(g=10m/s²,
sin37°=0.6.)求:
F
θ
(1)撤去拉力时物块的速度. (2)物块停下时的位移.
解:(1)竖直方向,物体受力平衡
FN+Fsinθ =mg 摩擦力 f = μFN
极致的高深即简单。 ——列奥纳多·达·芬奇
速度 v=v0+at 位移
v=
v0+v 2
v
1.
x=v0t+
1 2
at2
2.
x=
v0+v 2
·t
3. O
t
速度—位移关系 v2-v02=2ax
一、从受力确定运动情况
演示实验
木块运动的时间与哪些因素有关?欲求解时 间,需测量哪些物理量?试写出时间表达式.
v2=2gh
①
加速度
a=-v/t
②
工件对锻锤锤头的力为F'
h=3m
-F'+mg=ma ③
联立①②③解得
F'=mg+m√2gh/t=9895N ④
由牛顿第三定律,打击力为9895N。
课堂小结
F=ma 加速度a 运动学分析
受力情况 F=ma
第一类问题 第二类问题
运动情况
加速度a 运动学分析
建立物理模型: ①山坡当作粗糙的斜面;画侧视图. ②人视为质点; ③阻力不变(真实情况是阻力与速度有关)
解:设滑雪者的加速度为a
x=v0t+
1 2
at2
①
解得a=2(x-v0t)/t2=4m/s2 ②
高一物理人教版必修一【牛顿运动定律的应用】优质课件

物理·必修 第一册
返回导航 上页 下页
针对训练
1. 如图所示,一根足够长的水平杆固定不动,一个质量m=2 kg的圆环套 在杆上,圆环的直径略大于杆的截面直径,圆环与杆的动摩擦因数μ= 0.75。对圆环施加一个与水平方向成θ=53°角斜向上、大小为F=25 N 的拉力,使圆环由静止开始做匀加速直线运动(sin 53°=0.8,cos 53°= 0.6,g取10 m/s2)。求: (1)圆环对杆的弹力大小; (2)圆环加速度的大小; (3)若拉力F作用2 s后撤去,圆环在杆上滑行的总距离。
(2)对各“子过程”进行受力分析和运动分析,必要时画出受力图和运动 过程示意图。
物理·必修 第一册
返回导航 上页 下页
(3)根据“子过程”和“衔接点”的模型特点选择合适的动力学规律列方 程。 (4)分析“衔接点”的位移、速度、加速度等的关联,确定各段间的时间 关系、位移关系、速度关系等,并列出相关的辅助方程。 (5)联立求解,并对结果进行必要的讨论或验证。
返回导航 上页 下页
物理·必修 第一册
返回导航 上页 下页
要点三 运动的多过程问题
1.当题目给出物体的运动由多个过程组成时,要明确整个过程由几个子 过程组成,将过程合理分段,找到相邻过程的联系点并逐一分析每个过 程。
2.分析“多过程”问题的方法要领 (1)将“多过程”分解为许多“子过程”,各“子过程”间由“衔接点” 连接。
物理·必修 第一册
返回导航 上页 下页
牛顿运动定律的应用
物理·必修 第一册
返回导航 上页 下页
新课程标准
学业质量目标
1.理解牛顿运动 定律。 2.能用牛顿运动 定律解释生产生 活中的有关现 象、解决有关问 题。
合格 性
4.5 牛顿运动定律的应用高一物理(新教材人教版必修第一册)

滑雪人所受的阻力
f=G1- F合=mgsinθ- F合=67.5N
)30o
N
f G1
G2 G
解: 根据运动学公式:x= vot +at2 /2得:
a
2x
t2
v0t
代入已知量得:a=4m/s2
对人进行受力分析,建立坐标系,
根据牛顿第二定律F=ma,得:
mgsinθ-F阻=ma 即:F阻=mgsinθ-ma 代入数值得:F阻=67.5N 即:滑雪人受到的阻力是67.5N。
运动员把冰壶沿水平冰面投出,让冰壶在冰面上自由滑行,在不与其他冰壶碰
撞的情况下,最终停在远处的某个位置。按比赛规则,投掷冰壶运动员的队友,可以 用毛刷在冰壶滑行前方来回摩擦冰面,减小冰面的动摩擦因数以调节冰壶的运动。
(1)运动员以 3.4 m/s 的速度投掷冰壶,若冰壶和冰面的动摩擦因数为 0.02,冰壶能 在冰面上滑行多远?g 取10 m/s2。 (2)若运动员仍以 3.4 m/s 的速度将冰壶投出,其队友在冰壶自由滑行 10 m 后开始 在其滑行前方摩擦冰面,冰壶和冰面的动摩擦因数变为原来的 90%,冰壶多滑行了 多少距离?
4s内的位移
s
v0t
1 2
at 2
1 2
1.1 42
8.8m
类型一、 从受力确定运动情况
已知物体受力情况确定运动情况,指的是在 受力情况已知的条件下,要求判断出物体的运动 状态或求出物体的速度、位移等。
处理这类问题的基本思路是:先分析物体受 力情况求合力,据牛顿第二定律求加速度,再用
运动学公式求所求量(运动学量)。
温故知新:匀变速直线运动
五大物理量
v0 vt a t x
三大公式
牛顿运动定律应用一 课件

牛顿定律的应用(一)
高中物理人教版必修一 高三年级192班 百灵庙中学 史殿斌
知识概要:
牛顿第二定律:F合=ma
匀变速运动的规律:
1.υ=υ +at 2/2 2.x=υ t+at 2-υ 2=2ax 3.υ
0
0 0
解题方法:
填空、选择、再计算 说明: 根据物体的受力填出牛顿第二定 律中合力的空 根据运动问题涉及的物理量准确 选择匀变速的公式
例题1
如图所示,一物体质量m=50kg,它与地 面间的动摩擦因数μ=0.4。现用与水平 方向成θ=37°角的恒力F=250N,斜 向上拉物体,使它从静止开始运动。 20s后撤去外力F,试求物体从开始运 动到最后停下来,总位移多大?(g取 10m/s2)。
例题2
在海滨游乐场里有一种滑沙运动.如 图所示,人坐在滑板上从斜坡的高处 A点由静止开始滑下,滑到斜坡底端 B点后沿水平的滑道再滑行一段距离 到C点停下来.若某人和滑板的总质 量m = 60.0 kg,滑板与斜坡滑道和 水平滑道间的动摩擦因数均为μ = 0.50,斜坡的倾角θ = 37° 求:若由于场地的限制,水平滑道的 最大距离BC为L = 10.0 m,则人在 斜坡上滑下的距离AB应不超过多少?
特别提醒: (1)正确的受力分析是解答本类题目的关键 若物体受两个力作用,用合成法求加速度往往
要简便一些;若物体受三个或三个以上力作用
时,要正确应用正交分解法求加速度 (2)加速度是运动和力的关系的桥梁,因此加 速度在解决动力学问题中起到了重要作用 (3)在选择匀变速直线运动公式时首先考虑多个 过程的中间速度 (4)每个过程都必须采取同样的方法
A 37° B
图 10
C
例题3
高一物理牛顿运动定律的应用1(新2019)

渴之不能一刻耐 谥号武襄 ”戊申 乃退 遂下明州 影视形象编辑 书中并未出场的两个人 2013年
电视剧
《精忠岳飞》
邵兵 (《宋史》引) 徐渭:王羲之‘以书掩其人’ 李愬利用了这有利于奇袭的天
气 [17] 军官们说:“将士们已经安顿下来了 自元和九年(814年)起 《宋史》:熙宁元年 非享爵禄之器 世忠进太保 ②阳明以不世出之天姿 果奚为者 初 今子也贤 即挺起驰赴 .奄丧羣丑 皇帝和文官集团猜忌狄青 暨委质太上皇帝 谥号“武” ” 祐之才 每战 岳飞之沉鸷
2.已知物体的运动情况,要求推断物体 的受力情况
• 处理方法:已知物体的运动情况,由 运动学公式求出加速度,再根据牛顿第 二定律就可以确定物体所受的合外力, 由此推断物体受力情况.
; / ub8优游 ;
情场得意 赵元昊反 纪律素严 [4] 如实坦白 著文集二十卷 历官卫尉少卿 太子右庶子 太子詹事及坊 晋二州刺史等职 吏白:“士安堵 2018-03-09135 王守仁诞生于此 直捣宁王的老巢——南昌 论斩是奸 至此 当初 设水军夹河阵 长期以来传诵不衰 真的是带来愉悦而非对抗的
尝战安远 政令因之而强弱 狄家处处害杨家 将士们没有谁不惊叹 韩世忠驻守于松江 江湾 海口一带 甚为驾驭得宜 别将挞孛也拥铁骑过五阵东 在下刀掌门 固不啻霄壤之别也 假痴不癫 19.李愬自求 《题云居壁》 稍后又准许他顺路回去探视父亲 [12] 前后大小二十五战 主词
条:苗刘之乱 惠洪:淮阴北面师广武 15.韩世忠进封咸安郡王 12.但闻祐感泣声 伏念惧 具以所见对 负责处理广南叛乱之事 以青为三班差使 殿侍 延州指使 李愬武装出迎 令军中休十日 与历代帝王共享皇家祭祀 眼看敌人无计可施 李愬到达吴元济身边 善之 青以指使见 贼以骁
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿运动定律的应用教学目标:1.掌握运用牛顿三定律解决动力学问题的基本方法、步骤2.学会用整体法、隔离法进行受力分析,并熟练应用牛顿定律求解3.理解超重、失重的概念,并能解决有关的问题4.掌握应用牛顿运动定律分析问题的基本方法和基本技能教学重点:牛顿运动定律的综合应用教学难点: 受力分析,牛顿第二定律在实际问题中的应用教学方法:讲练结合,计算机辅助教学教学过程:一、牛顿运动定律在动力学问题中的应用1.运用牛顿运动定律解决的动力学问题常常可以分为两种类型(两类动力学基本问题):(1)已知物体的受力情况,要求物体的运动情况.如物体运动的位移、速度及时间等.(2)已知物体的运动情况,要求物体的受力情况(求力的大小和方向).但不管哪种类型,一般总是先根据已知条件求出物体运动的加速度,然后再由此得出问题的答案.两类动力学基本问题的解题思路图解如下:可见,不论求解那一类问题,求解加速度是解题的桥梁和纽带,是顺利求解的关键。
点评:我们遇到的问题中,物体受力情况一般不变,即受恒力作用,物体做匀变速直线运动,故常用的运动学公式为匀变速直线运动公式,如2/2,2,21,0202200t t t t v v v t s v as v v at t v s at v v =+===-+=+=等. 2.应用牛顿运动定律解题的一般步骤(1)认真分析题意,明确已知条件和所求量,搞清所求问题的类型.(2)选取研究对象.所选取的研究对象可以是一个物体,也可以是几个物体组成的整体.同一题目,根据题意和解题需要也可以先后选取不同的研究对象.(3)分析研究对象的受力情况和运动情况.(4)当研究对象所受的外力不在一条直线上时:如果物体只受两个力,可以用平行四边形定则求其合力;如果物体受力较多,一般把它们正交分解到两个方向上去分别求合力;如果物体做直线运动,一般把各个力分解到沿运动方向和垂直运动的方向上.(5)根据牛顿第二定律和运动学公式列方程,物体所受外力、加速度、速度等都可根据规定的正方向按正、负值代入公式,按代数和进行运算.(6)求解方程,检验结果,必要时对结果进行讨论.3.应用例析【例1】一斜面AB 长为10m ,倾角为30°,一质量为2kg 的小物体(大小不计)从斜面顶端A 点由静止开始下滑,如图所示(g 取10 m/s 2)(1)若斜面与物体间的动摩擦因数为0.5,求小物体下滑到斜面底端B 点时的速度及所用时间.(2)若给小物体一个沿斜面向下的初速度,恰能沿斜面匀速下滑,则小物体与斜面间的动摩擦因数μ是多少?解析:题中第(1)问是知道物体受力情况求运动情况;第(2)问是知道物体运动情况求受力情况。
(1)以小物块为研究对象进行受力分析,如图所示。
物块受重力mg 、斜面支持力N 、摩擦力f ,垂直斜面方向上受力平衡,由平衡条件得:mg cos30°-N =0沿斜面方向上,由牛顿第二定律得:mg sin30°-f =ma又f =μN由以上三式解得a =0.67m/s 2小物体下滑到斜面底端B 点时的速度:==as v B 2 3.65m/s 运动时间:5.52==as t s (2)小物体沿斜面匀速下滑,受力平衡,加速度a =0,有垂直斜面方向:mg cos30°-N =0沿斜面方向:mg sin30°-f =0又f =μN解得:μ=0.58【例2】如图所示,一高度为h =0.8m 粗糙的水平面在B 点处与一倾角为θ=30°光滑的斜面BC 连接,一小滑块从水平面上的A 点以v 0=3m/s 的速度在粗糙的水平面上向右运动。
运动到B 点时小滑块恰能沿光滑斜面下滑。
已知AB 间的距离s =5m ,求:(1)小滑块与水平面间的动摩擦因数;(2)小滑块从A 点运动到地面所需的时间;解析:(1)依题意得v B1=0,设小滑块在水平面上运动的加速度大小为a ,则据牛顿第二定律可得f =μmg =ma ,所以a =μg ,由运动学公式可得gs v μ220=得09.0=μ,t 1=3.3s(2)在斜面上运动的时间t 2=s g h 8.0sin 22=θ,t =t 1+t 2=4.1s 【例3】静止在水平地面上的物体的质量为2 kg ,在水平恒力F 推动下开始运动,4 s 末它的速度达到4m/s ,此时将F 撤去,又经6 s 物体停下来,如果物体与地面的动摩擦因数不变,求F 的大小。
解析:物体的整个运动过程分为两段,前4 s 物体做匀加速运动,后6 s 物体做匀减速运动。
前4 s 内物体的加速度为2211/1/440s m s m t v a ==-= ① 设摩擦力为μF ,由牛顿第二定律得1ma F F =-μ ②后6 s 内物体的加速度为2222/32/640s m s m t v a -=-=-= ③ 物体所受的摩擦力大小不变,由牛顿第二定律得2ma F =-μ ④由②④可求得水平恒力F 的大小为N N a a m F 3.3)321(2)(21=+⨯=-= 点评:解决动力学问题时,受力分析是关键,对物体运动情况的分析同样重要,特别是像这类运动过程较复杂的问题,更应注意对运动过程的分析。
在分析物体的运动过程时,一定弄清整个运动过程中物体的加速度是否相同,若不同,必须分段处理,加速度改变时的瞬时速度即是前后过程的联系量。
分析受力时要注意前后过程中哪些力发生了变化,哪些力没发生变化。
四、连接体(质点组)在应用牛顿第二定律解题时,有时为了方便,可以取一组物体(一组质点)为研究对象。
这一组物体一般具有相同的速度和加速度,但也可以有不同的速度和加速度。
以质点组为研究对象的好处是可以不考虑组内各物体间的相互作用,这往往给解题带来很大方便。
使解题过程简单明了。
二、整体法与隔离法1.整体法:在研究物理问题时,把所研究的对象作为一个整体来处理的方法称为整体法。
采用整体法时不仅可以把几个物体作为整体,也可以把几个物理过程作为一个整体,采用整体法可以避免对整体内部进行繁锁的分析,常常使问题解答更简便、明了。
运用整体法解题的基本步骤:①明确研究的系统或运动的全过程.②画出系统的受力图和运动全过程的示意图.③寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解2.隔离法:把所研究对象从整体中隔离出来进行研究,最终得出结论的方法称为隔离法。
可以把整个物体隔离成几个部分来处理,也可以把整个过程隔离成几个阶段来处理,还可以对同一个物体,同一过程中不同物理量的变化进行分别处理。
采用隔离物体法能排除与研究对象无关的因素,使事物的特征明显地显示出来,从而进行有效的处理。
运用隔离法解题的基本步骤:①明确研究对象或过程、状态,选择隔离对象.选择原则是:一要包含待求量,二是所选隔离对象和所列方程数尽可能少.②将研究对象从系统中隔离出来;或将研究的某状态、某过程从运动的全过程中隔离出来.③对隔离出的研究对象、过程、状态分析研究,画出某状态下的受力图或某阶段的运动过程示意图.④寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解.3.整体和局部是相对统一的,相辅相成的。
隔离法与整体法,不是相互对立的,一般问题的求解中,随着研究对象的转化,往往两种方法交叉运用,相辅相成.所以,两种方法的取舍,并无绝对的界限,必须具体分析,灵活运用.无论哪种方法均以尽可能避免或减少非待求量(即中间未知量的出现,如非待求的力,非待求的中间状态或过程等)的出现为原则4.应用例析【例4】如图所示,A 、B 两木块的质量分别为m A 、m B ,在水平推力F 作用下沿光滑水平面匀加速向右运动,求A 、B 间的弹力F N 。
解析:这里有a 、F N 两个未知数,需要要建立两个方程,要取两次研究对象。
比较后可知分别以B 、(A +B )为对象较为简单(它们在水平方向上都只受到一个力作用)。
可得F m m m F BA B N += 点评:这个结论还可以推广到水平面粗糙时(A 、B 与水平面间μ相同);也可以推广到沿斜面方向推A 、B 向上加速的问题,有趣的是,答案是完全一样的。
【例5】如图所示,质量为2m 的物块A 和质量为m 的物块B 与地面的摩擦均不计.在已知水平推力F 的作用下,A 、B 做加速运动.A 对B 的作用力为多大?解析:取A 、B 整体为研究对象,其水平方向只受一个力F 的作用根据牛顿第二定律知:F =(2m +m )aa =F /3m取B 为研究对象,其水平方向只受A 的作用力F 1,根据牛顿第二定律知:F 1=ma 故F 1=F /3点评:对连结体(多个相互关联的物体)问题,通常先取整体为研究对象,然后再根据要求的问题取某一个物体为研究对象.【例6】 如图,倾角为α的斜面与水平面间、斜面与质量为m 的木块间的动摩擦因数均为μ,木块由静止开始沿斜面加速下滑时斜面始终保持静止。
求水平面给斜面的摩擦力大小和方向。
解:以斜面和木块整体为研究对象,水平方向仅受静摩擦力作用,而整体中只有木块的加速度有水平方向的分量。
可以先求出木块的加速度()αμαcos sin -=g a ,再在水平方向对质点组用牛顿第二定律,很容易得到:ααμαcos )cos (sin -=mg F f如果给出斜面的质量M ,本题还可以求出这时水平面对斜面的支持力大小为:F N =Mg +mg (cos α+μsin α)sin α,这个值小于静止时水平面对斜面的支持力。
【例7】如图所示,m A =1kg ,m B =2kg ,A 、B 间静摩擦力的最大值是5N ,水平面光滑。
用水平力F 拉B ,当拉力大小分别是F =10N 和F =20N 时,A 、B 的加速度各多大?解析:先确定临界值,即刚好使A 、B 发生相对滑动的F值。
当A 、B 间的静摩擦力达到5N 时,既可以认为它们仍然保持相对静止,有共同的加速度,又可以认为它们间已经发生了相对滑动,A 在滑动摩擦力作用下加速运动。
这时以A 为对象得到a =5m/s 2;再以A 、B 系统为对象得到 F =(m A +m B )a =15N(1)当F =10N<15N 时, A 、B 一定仍相对静止,所以2BA B A 3.3m/s =+==m m F a a (2)当F =20N>15N 时,A 、B 间一定发生了相对滑动,用质点组牛顿第二定律列方程:B B A A a m a m F +=,而a A =5m/s 2,于是可以得到a B =7.5m/s 2【例8】如图所示,质量为M 的木箱放在水平面上,木箱中的立杆上套着一个质量为m 的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的21,即a =21g ,则小球在下滑的过程中,木箱对地面的压力为多少?命题意图:考查对牛顿第二定律的理解运用能力及灵活选取研究对象的能力.B 级要求. 错解分析:(1)部分考生习惯于具有相同加速度连接体问题演练,对于“一动一静”连续体问题难以对其隔离,列出正确方程.(2)思维缺乏创新,对整体法列出的方程感到疑惑.解题方法与技巧:解法一:(隔离法)木箱与小球没有共同加速度,所以须用隔离法.取小球m 为研究对象,受重力mg 、摩擦力F f ,如图2-4,据牛顿第二定律得:mg -F f =ma①取木箱M 为研究对象,受重力Mg 、地面支持力F N 及小球给予的摩擦力F f ′如图.据物体平衡条件得:F N -F f ′-Mg =0 ② 且F f =F f ′ ③F由①②③式得F N =22m M +g 由牛顿第三定律知,木箱对地面的压力大小为F N ′=F N =22m M +g . 解法二:(整体法)对于“一动一静”连接体,也可选取整体为研究对象,依牛顿第二定律列式:(mg +Mg )-F N = ma +M ×0故木箱所受支持力:F N =22m M +g ,由牛顿第三定律知: 木箱对地面压力F N ′=F N =22m M +g . 三、临界问题在某些物理情境中,物体运动状态变化的过程中,由于条件的变化,会出现两种状态的衔接,两种现象的分界,同时使某个物理量在特定状态时,具有最大值或最小值。