勾股定理解决动点构成直角三角形练习题及答案解析
中考数学直角三角形与勾股定理专题训练(含答案)

中考数学直角三角形与勾股定理专题训练一、选择题1. 如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD 的面积为()A.B.3 C.D.52. 如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.3. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米4. 如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点,则点D的个数共有()B,C),若线段AD长为正整数...A. 5个B. 4个C. 3个D. 2个5.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB的长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于A.1和2之间B.2和3之间C.3和4之间D.4和5之间6. 如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE ⊥AB,垂足为E.若DE=1,则BC的长为()A.2+B.+C.2+D.37. 如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A. x-y2=3B. 2x-y2=9C. 3x-y2=15D. 4x-y2=218. 已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为()A.32B.332C.32D. 不能确定二、填空题9. 如图所示的网格是正方形网格,则∠P AB+∠PBA=°(点A,B,P是网格线交点).10. 如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8.分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F.过点E,F作直线EF,交AB于点D,连接CD,则CD的长是________.11. 三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C 在FD 的延长线上,点B 在ED 上,AB ∥CF ,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD 的长度是 .12. 如图,△ABC中,∠ABC=90°,BA=BC=2,将△ABC 绕点C 逆时针旋转60°得到△DEC ,连接BD ,则BD 2的值是 .13. (2019•通辽)腰长为5,高为4的等腰三角形的底边长为__________.14. 如图,在Rt △ABC 中,∠BAC =90°,AB =15,AC =20,点D 在边AC 上,AD =5,DE ⊥BC 于点E ,连接AE ,则△ABE 的面积等于________.15. 在等腰直角三角形ABC 中,∠ACB =90°,AC =3,点P 为边BC 的三等分点,连接AP ,则AP 的长为________.16. (2019•伊春)一张直角三角形纸片ABC ,90ACB ∠=︒,10AB =,6AC =,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的△是直角三角形时,则CD的长为__________.点E处,当BDE三、解答题17. 如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.(1)线段DC=;(2)求线段DB的长度.18. 已知:整式A=(n2-1)2+(2n)2,整式B>0.[尝试] 化简整式A.[发现] A=B2,求整式B.[联想] 由上可知,B2=(n2-1)2+(2n)2,当n>1时,n2-1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2-1 2n B勾股数组Ⅰ8勾股数组Ⅱ3519. 如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF ∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.20. 在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完.............成解答过程.....21.如图,一艘船由A港沿北偏东60°方向航行10 km至B港,然后再沿北偏西30°方向航行10 km至C港.(1)求A,C两港之间的距离(结果保留到0.1 km,参考数据:2≈1.414,3≈1. 732);(2)确定C港在A港的什么方向.22. 已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.答案一、选择题1. 【答案】B2. 【答案】D[解析]如图,过C作CD⊥AB于D,则∠ADC=90°,∴AC===5.∴sin∠BAC==.故选D.3. 【答案】C[解析]在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A'BD中,∵∠A'DB=90°,A'D=2米,BD2+A'D2=A'B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2(米).4. 【答案】C【解析】如解图,当AD⊥BC时,∵AB=AC,∴D为BC的中点,BD=CD=12BC=4,∴AD=AB2-BD2=3;又∵AB=AC=5,∴在BD和CD之间一定存在AD=4的两种情况,∴点D的个数共有3个.5. 【答案】C【解析】由作法过程可知,OA=2,AB=3,∵∠OAB=90°,∴OB=22222313+=+=,∴P点所表示的数就是OA AB13,∵91316<<,<<,∴3134即点P所表示的数介于3和4之间,故选C.6. 【答案】A[解析]过点D作DF⊥AC于F,如图所示,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DE=DF=1.在Rt△BED中,∠B=30°,∴BD=2DE=2.在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CD=DF=,∴BC=BD+CD=2+.7. 【答案】B【解析】连接DE,过点A作AF⊥BC,垂足为F,过E作EG⊥BC,垂足为G.∵AB=AC,AF⊥BC,BC=12,∴BF=FC=6,又∵E是AC的中点,EG⊥BC,∴EG∥AF,∴CG=FG=12CF=3,∵在Rt△CEG中,tan C=EG CG,∴EG=CG×tan C=3y;∴DG=BF+FG-BD=6+3-x=9-x,∵HD是BE的垂直平分线,∴BD=DE=x,∵在Rt△EGD中,由勾股定理得,ED2=DG2+EG2,∴x2=(9-x)2+(3y)2,化简整理得,2x-y2=9.8. 【答案】B【解析】如解图,△ABC是等边三角形,AB=3,点P是三角形内任意一点,过点P分别向三边AB,BC,CA作垂线,垂足依次为D,E,F,过点A作AH⊥BC于点H,则BH=32,AH=AB2-BH2=332.连接P A,PB,PC,则S△P AB+S△PBC+S△PCA=S△ABC,∴12AB·PD+12BC·PE+12CA·PF=12BC·AH,∴PD+PE+PF=AH=332.二、填空题9. 【答案】45[解析]本题考查三角形的外角,可延长AP交正方形网格于点Q,连接BQ,如图所示,经计算PQ=BQ=,PB=,∴PQ2+BQ2=PB2,即△PBQ为等腰直角三角形,∴∠BPQ=45°,∴∠P AB+∠PBA=∠BPQ=45°,故答案为45.10. 【答案】5【解析】由题意知EF垂直平分AB,∴点D是AB的中点,∵∠ACB=90°,∴CD为斜边AB的中线,∴CD=12AB.∵BC=6,AC=8,∴AB=AC2+BC2=82+62=10,∴CD=5.11. 【答案】15-5[解析]过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10.∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC×sin30°=10=5,CM=BC×cos30°=15.在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.12. 【答案】8+4[解析]如图,连接AD,设AC与BD交于点O,由题意得CA=CD,∠ACD=60°,∴△ACD为等边三角形,∴AD=CD,∠DAC=∠DCA=∠ADC=60°.∵∠ABC=90°,AB=BC=2,∴AC=CD=2.∵AB=BC,CD=AD,∴BD垂直平分AC,∴BO=AC=,OD=CD·sin60°=,∴BD=,∴BD 2=()2=8+4.13. 【答案】6或25或45【解析】①如图1,当5AB AC ==,4AD =,则3BD CD ==,∴底边长为6;②如图2,当5AB AC ==,4CD =时,则3AD =,∴2BD =,∴222425BC =+=,∴此时底边长为25;③如图3,当5AB AC ==,4CD =时,则223AD AC CD =-=,∴8BD =,∴45BC = ∴此时底边长为56或54514. 【答案】78 【解析】如解图,过A 作AH ⊥BC ,∵AB =15,AC =20,∠BAC=90°,∴由勾股定理得,BC =152+202=25,∵AD =5,∴DC =20-5=15,∵DE ⊥BC ,∠BAC =90°,∴△CDE ∽△CBA ,∴CE CA =CD CB ,∴CE =1525×20=12.法一:BC·AH =AB·AC ,AH =AB·AC BC =15×2025=12,S △ABE =12×12×13=78.法二:DE =152-122=9,由△CDE ∽△CAH 可得,CD CA =ED HA ,∴AH =9×2015=12,S △ABE =12×12×13=78.15. 【答案】13 或10 【解析】(1)如解图①所示,当P 点靠近B 点时,∵AC =BC =3,∴CP =2,在Rt △ACP 中,由勾股定理得AP =13;(2)如解图②所示,当P 点靠近C 点时,∵AC =BC =3,∴CP =1,在Rt △ACP 中,由勾股定理得AP =10.综上可得:AP 长为13 或10.16. 【答案】3或247【解析】分两种情况:①若90DEB ∠=︒,则90AED C ∠=︒=∠,CD ED =,连接AD ,则Rt Rt ACD EAD △≌△,∴6AE AC ==,1064BE =-=,设CD DE x ==,则8BD x =-,∵Rt BDE △中,222DE BE BD +=,∴2224(8)x x +=-,解得3x =,∴3CD =;②若90BDE ∠=︒,则90CDE DEF C ∠=∠=∠=︒,CD DE =,∴四边形CDEF 是正方形,∴90AFE EDB ∠=∠=︒,AEF B ∠=∠, ∴AEF EBD △∽△,∴AF EF ED BD=, 设CD x =,则EF DF x ==,6AF x =-,8BD x =-, ∴68x x x x -=-,解得247x =,∴247CD =, 综上所述,CD 的长为3或247,故答案为:3或247.三、解答题17. 【答案】解:(1)4(2)∵AC=AD ,∠CAD=60°,∴△CAD 是等边三角形,∴CD=AC=4,∠ACD=60°.过点D 作DE ⊥BC 于E ,∵AC ⊥BC ,∠ACD=60°,∴∠BCD=30°.在Rt △CDE 中,CD=4,∠BCD=30°,∴DE=CD=2,CE=2,∴BE=,在Rt△DEB中,由勾股定理得DB=.18. 【答案】解:[尝试] A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2. [发现] ∵A=B2,B>0,∴B==n2+1.[联想] ∵2n=8,∴n=4,∴B=n2+1=42+1=17.∵n2-1=35,∴B=n2+1=37.∴填表如下:直角三角形三n2-1 2n B边勾股数组Ⅰ8 17勾股数组Ⅱ35 3719. 【答案】解:(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F.∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF.(2)∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3.∵AD⊥BC,BD=CD,∴AC=AB=3.20. 【答案】解:如解图,过点A作AD⊥BC,垂足为点D,设BD=x,则CD=14-x,根据勾股定理可得:AD2=AB2-BD2=AC2-CD2,即152-x2=132-(14-x)2,解得x=9.(3分)∴AD2=152-x2=152-92=144.(5分)∵AD>0,∴AD=12.(8分)∴S△ABC=12BC·AD=12×14×12=84.(10分)21. 【答案】(1)由题意可得,∠PBC=30°,∠MAB=60°,∴∠CBQ=60°,∠BAN=30°,∴∠ABQ=30°,∴∠ABC=90°.∵AB=BC=10,∴22AB BC102.答:A、C两地之间的距离为14.1 km.(2)由(1)知,△ABC为等腰直角三角形,∴∠BAC=45°,∴∠CAM=15°,∴C港在A港北偏东15°的方向上.22. 【答案】13证明:(1)∵△ACB 和△ECD 都是等腰直角三角形,∴CD =CE ,AC =BC ,∠ECD =∠ACB =90°,∴∠ECD -∠ACD =∠ACB -∠ACD ,即∠ACE =∠BCD ,(1分) 在△ACE 与△BCD 中,⎩⎪⎨⎪⎧EC =DC ∠ACE =∠BCD AC =BC,(3分)∴△ACE ≌△BCD(SAS ).(4分)(2)∵△ACE ≌△BCD ,∴AE =BD ,∠EAC =∠B =45°,(6分)∴∠EAD =∠EAC +∠CAD =90°,在Rt △EAD 中,ED 2=AD 2+AE 2,∴ED 2=AD 2+BD 2,(8分)又ED 2=EC 2+CD 2=2CD 2,∴2CD 2=AD 2+DB 2.(10分)。
第04讲 勾股定理的应用(解析版)

第04讲勾股定理的应用类型一:勾股定理解决路径问题类型二:勾股定理解决折叠问题类型三:勾股定理解决实际问题类型四:勾股定理探究动点问题中的直角三角形存在问题【类型一:勾股定理解决路径问题】1.(2023春•分宜县期末)如图,在长方体ABCD﹣EFGH盒子中,已知AB=4cm,BC=3cm,CG=5cm,长为10cm的细直木棒IJ恰好从小孔G处插入,木棒的一端I与底面ABCD接触,当木棒的端点Ⅰ在长方形ABCD内及边界运动时,GJ长度的最小值为()A.(10﹣5)cm B.3cm C.(10﹣4)cm D.5cm【分析】当GI最大时,GJ最小,当I运动到点A时,GI最大,根据勾股定理求解即可.【解答】解:当GI最大时,GJ最小,当I运动到点A时,GI最大,此时GI=cm,而AC2=AB2+BC2=42+32=25,∴GI===5(cm),∴GJ长度的最小值为(10﹣5)cm.故选:A.2.(2022秋•永州期末)如图,在Rt△ABC中,∠A=90°,BD平分∠ABC交AC于D点,AB=12,BD =13,点P是线段BC上的一动点,则PD的最小值是()A.6B.5C.13D.12【分析】过点D作DE⊥BC于点E,则PD的最小值是DE的长,根据角平分线的性质定理可得AD=DE,再由勾股定理求出AD的长,即可求解.【解答】解:如图,过点D作DE⊥BC于点E,则PD的最小值是DE的长,∵∠A=90°,BD平分∠ABC,∴AD=DE,∵AB=12,BD=13,∴,∴DE=5,即PD的最小值是5.故选:B.3.(2023秋•北仑区校级期中)如图,△ABC中,∠C=90°,AC=8,BC=6,线段DE的两个端点D、E 分别在边AC,BC上滑动,且DE=6,若点M、N分别是DE、AB的中点,则MN的最小值为()A.2B.2.5C.3D.3.5【分析】根据勾股定理得到AB=10,根据直角三角形斜边中线的性质求得CN=AB=5,CM==3,由当C、M、N在同一直线上时,MN取最小值,即可求得MN的最小值为2.【解答】解:如图,连接CM、CN,∵∠C=90°,AC=8,BC=6,∴AB==10,∵DE=6,点M、N分别是DE、AB的中点,∴CN=AB=5,CM=DE=3,当C、M、N在同一直线上时,MN取最小值,∴MN的最小值为:5﹣3=2.故选:A.4.(2022秋•绵阳期末)如图,在△ABO中,∠AOB=90°,∠BAO=30°,BO=6,⊙O的面积为12π,点M,N分别在⊙O、线段AB上运动,则MN长度的最小值等于()A.B.C.D.【分析】过点O作OC⊥AB,交⊙O于点P,当点M与点P重合,点N与点C重合时,MN长度的最小即为线段PC的长度,利用含30度角的直角三角形的性质及勾股定理得出,再由等面积法确定,由圆的面积得出,结合图形即可得出结果.【解答】解:过点O作OC⊥AB,交⊙O于点P,当点M与点P重合,点N与点C重合时,MN长度的最小即为线段PC的长度,∵∠AOB=90°,∠BAO=30°,BO=6,∴AB=2BO=12,∴,∴,解得:,∵⊙O的面积为12π,设半径为r,∴πr2=12π,,即MN长度的最小值为,故选:C.5.(2023春•廊坊期末)在△ABC中,AB=AC=5,BC=6,若点P在边AC上移动,则BP的最小值是()A.5B.6C.4D.4.8【分析】根据点到直线的连线中,垂线段最短,得到当BP垂直于AC时,BP的长最小,过A作等腰三角形底边上的高AD,利用三线合一得到D为BC的中点,在直角三角形ADC中,利用勾股定理求出AD 的长,进而利用面积法即可求出此时BP的长.【解答】解:根据垂线段最短,得到BP⊥AC时,BP最短,过A作AD⊥BC,交BC于点D,∵AB=AC,AD⊥BC,∴D为BC的中点,又BC=6,∴BD=CD=3,在Rt△ADC中,AC=5,CD=3,根据勾股定理得:AD==4,=BC•AD=BP•AC,又∵S△ABC∴BP===4.8.故选:D.6.(2023秋•桐柏县期中)如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD⊥BC.若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是.【分析】连接BP,利用等腰三角形的对称性得BP=PC,则PC+PQ=BP+PQ=BQ,当B,P,Q共线时,PC+PQ的值最小,当BQ⊥AC时,BQ的值最小,利用勾股定理列方程即可解决问题.【解答】解:如图,连接BP,在△ABC中,AB=AC=10,BC=12,AD=8,∴BD=DC,∴BP=PC,∴PC+PQ=BP+PQ=BQ,∴当B,P,Q共线时,PC+PQ的值最小,∴当BQ⊥AC时,BQ的值最小,令AQ'=a,则CQ'=10﹣a,∵BQ'⊥AC,∴AB2﹣AQ'2=BC2﹣CQ'2,即102﹣a2=122﹣(10﹣a)2,解得a=,∴BQ'==,∴PC+PQ的最小值为,故答案为:.7.(2023秋•吴中区期中)如图,一支铅笔放在圆柱笔筒中,笔筒的内部底面直径是9cm,内壁高12cm.若铅笔长为18cm,则这只铅笔露在笔筒外面的长度h的最小值是3cm.【分析】由勾股定理求出AC=15cm,即可解决问题.【解答】解:如图,由题意可得:AB=12cm,BC=9cm,AB⊥BC,∴∠ABC=90°,在Rt△ABC中,由勾股定理得:AC===15(cm),∴这只铅笔露在笔筒外面的长度h的最小值是:18﹣15=3(cm),故答案为:3cm.8.(2023秋•大冶市期中)如图,在△ABC中,∠ABC=45°,AB=,AC=6,BC>4,点E,F分别在BC,AC边上,且AF=CE,则AE+BF的最小值为2.【分析】过A点作AG∥BC,截取AG=AC,连接FG,BG,过B作BR⊥AG,交AG的反向延长线于R,则∠RBC=∠BRA=90°,利用SAS证明△AFG≌△CEA可求得AE+BF的最小值即为BG的长,再结合等腰直角三角形的性质及勾股定理可求解.【解答】解:过A点作AG∥BC,截取AG=AC,连接FG,BG,过B作BR⊥AG,交AG的反向延长线于R,则∠RBC=∠BRA=90°,∴∠GAF=∠ACE,在△AFG和△CEA中,,∴△AFG≌△CEA(SAS),∴GF=AE,∴AE+BF的最小值,即为BG的长,∵∠ABC=45°,∴∠RAB=∠EBA=45°,∵AB=4,∴BR=AR=4,∵AC=6,∴AG=AC=6,∴RG=AR+AG=4+6=10,∴BG===2,即AE+BF的最小值为2.故答案为:2.【类型二:勾股定理解决折叠问题】9.(2023春•息县月考)已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm2【分析】根据折叠的条件可得:BE=DE,在直角△ABE中,利用勾股定理就可以求解.【解答】解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选:C.10.(2023春•岳麓区校级期末)如图,△ABC中,∠ACB=90°,AC=4,BC=3,将△ADE沿DE翻折,使点A与点B重合,则AE的长为()A.B.3C.D.【分析】在Rt△BCE中,由BE2=CE2+BC2,得到(8﹣x)2=x2+62,即可求解.【解答】解:设AE=BE=x,则CE=4﹣x,在Rt△BCE中,BE2=CE2+BC2,即x2=(4﹣x)2+32,解得x=,故选:D.11.(2022秋•西峡县期末)如图,在长方形ABCD中,AB=3cm,BC=4cm.将长方形沿对角线AC折叠,点D落在了D′位置,AD′与BC相交于点E.则BE的长等于()A.B.C.D.【分析】设BE=x cm,则EC=(4﹣x)cm,根据题意可证得Rt△ABE≌Rt△CED′,可得BE=ED′=x cm,根据EC2=ED′2+CD′2可得到关于x的方程,求解即可得到答案.【解答】解:设BE=x cm,则EC=(4﹣x)cm.根据图形折叠的性质可知CD=CD′,∠D=∠D′.∵四边形ABCD为长方形,∴AB=CD=3cm,∠B=∠D=90°.∴AB=CD′=3cm,∠B=∠D′=90°.在△ABE和△CED′中∴△ABE≌△CED′(AAS).∴BE=ED′=x cm.在Rt△CED′中EC2=ED′2+CD′2,即(4﹣x)2=x2+32.解得.∴cm.故选:A.12.(2023秋•九台区期末)如图,Rt△ABC中,∠B=90°,AB=4,BC=6,将△ABC折叠,使点C与AB的中点D重合,折痕交AC于点M,交BC于点N,则线段CN的长为()A.B.C.3D.【分析】由折叠的性质可得DN=CN,根据勾股定理可求DN的长,即可求CN的长.【解答】解:∵D是AB中点,AB=4,∴AD=BD=2,∵将△ABC折叠,使点C与AB的中点D重合,∴DN=CN,∴BN=BC﹣CN=6﹣DN,在Rt△DBN中,DN2=BN2+DB2,∴DN2=(6﹣DN)2+4,∴DN=,∴CN=DN=,故选:D.13.(2022秋•东坡区期末)如图,将长方形纸片ABCD的边沿折痕AE折叠,使点D落在BC上的点F处,若AB=5,AD=13,则EF的长为()A.B.C.1D.【分析】先由长方形的性质得到BC=AD=13,∠B=∠C=90°,CD=AB=5,再由折叠的性质得到AF =AD=13,EF=DE,利用勾股定理求出BF=12,则CF=1,设EF=DE=x,则CE=CD﹣DE=5﹣x,利用勾股定理建立方程x2=12+(5﹣x)2,解方程即可得到答案.【解答】解:由长方形的性质可得BC=AD=13,∠B=∠C=90°,CD=AB=5,由折叠的性质可得AF=AD=13,EF=DE,在Rt△ABF中,由勾股定理得,∴CF=BC﹣BF=1,设EF=DE=x,则CE=CD﹣DE=5﹣x,在Rt△CEF中,由勾股定理得EF2=CE2+CF2,∴x2=12+(5﹣x)2,解得,∴,故选:B.14.(2023秋•银川期中)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.【分析】先由勾股定理求AB=10.再用勾股定理从△DEB中建立等量关系列出方程即可求CD的长.【解答】解:∵两直角边AC=6cm,BC=8cm,在Rt△ABC中,由勾股定理可知AB=10,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,则CD=DE,AE=AC=6,∴BE=10﹣6=4,设DE=CD=x,BD=8﹣x,在Rt△BDE中,根据勾股定理得:BD2=DE2+BE2,即(8﹣x)2=x2+42,解得x=3.即CD的长为3cm.15.(2023秋•青岛期中)如图,平面直角坐标系中,点D的坐标为(15,9),过点D作DA⊥y轴,DC⊥x 轴,点E为y轴上一点,将△AED沿直线DE折叠,点A落在边BC上的点F处.(1)请你直接写出点A的坐标;(2)求FC,AE的长;(3)求四边形EOFD的面积.【分析】(1)证明四边形AOCD是矩形,再结合D的坐标即可得出结果;(2)根据折叠的性质得出DF的长,再根据勾股定理求出CF的长,即可得出OF的长,设AE=x,在Rt△OEF中根据勾股定理得出等式求解得出AE的长即可;+S△EFD=S△EOF+S△AED,再根据三角形的面积(3)根据折叠的性质可知,四边形EOFD的面积=S△EOF公式求解即可.【解答】解:(1)∵DA⊥y轴,DC⊥x轴,∠AOC=90°,∴四边形AOCD是矩形,∵D的坐标为(15,9),∴AD=OC=15,CD=AO=9,∴A(0,9);(2)∵将△AED沿直线DE折叠,点A落在边BC上的点F处.∴DF=AD=15,∴CF==12,∴OF=OC﹣CF=15﹣12=3,设AE=x,则EF=x,OE=9﹣x,在Rt△OEF中,由勾股定理得,OE2+OF2=EF2,即(9﹣x)2+32=x2,解得x=5,∴AE=5;(3)由(2)知AE=5,∴OE=9﹣5=4,=S△DFE,由折叠的性质可知,S△AED+S△EFD=S△EOF+S△AED∴四边形EOFD的面积=S△EOF===.【类型三:勾股定理解决实际问题】16.(2022秋•辉县市校级期末)如图1,一棵大树在一次强烈的地震中于离地面5米处折断倒下,树顶落在离树根12米处,图2是这棵大树折断的示意图,则这棵大树在折断之前的高是()A.20米B.18米C.16米D.15米【分析】利用勾股定理进行求解即可.【解答】解:设大树在折断之前的高是x m,由勾股定理得:(x﹣5)2=122+52,解得:x=18或x=﹣8(不符合题意,舍去),∴大树在折断之前的高是18m;故选:B.17.(2022秋•古县期末)如图,为了测量池塘的宽度DE,在池塘周围的平地上选择了A,B,C三点,且A,D,E,C四点在同一条直线上,∠C=90°,已测得AB=100m,BC=60m,AD=20m,EC=10m,则池塘的宽度DE是()A.80m B.60m C.50m D.40m【分析】根据已知条件在直角三角形ACB中,利用勾股定理求得AC的长,用AC减去AD、CE求得DE 即可.【解答】解:在Rt△ABC中,∠C=90°,AB=100m,BC=60m,∴AC===80(m),∴DE=AC﹣AD﹣EC=80﹣20﹣10=50(m),∴池塘的宽度DE为50米.故选:C.18.(2022秋•万荣县期末)山西地形较为复杂,境内有山地、丘陵、高原、盆地、台地等多种地貌类型,整个地貌是被黄土广泛覆盖的山地型高原.如图,在A村与B村之间有一座大山,原来从A村到B村,需沿道路A→C→B(∠C=90°)绕过村庄间的大山,打通A,B间的隧道后,就可直接从A村到B村.已知AC=9km,BC=12km,那么打通隧道后从A村到B村比原来减少的路程为()A.7km B.6km C.5km D.2km【分析】由勾股定理求出AB==15(km),因此AC+BC﹣AB=6(km),即可得到答案.【解答】解:∵∠C=90°,AC=9km,BC=12km,∴AB==15(km),∴AC+BC﹣AB=9+12﹣15=6(km),∴从A村到B村比原来减少的路程为6km.故选:B.19.(2023秋•尤溪县期中)如图,一架25m长的梯子AB,斜靠在竖直的墙AC上,这时梯子的底部B到墙底端C的距离为7m.(1)这个梯子的顶端距地面有多高?(2)如果梯子的底部B在水平方向滑动了8m至D,那么梯子的顶端A沿墙垂直也下滑了8m吗?【分析】(1)根据勾股定理即可得到结论;(2)根据勾股定理,求出EC即可解答.【解答】解:(1)根据题意得:AB=25,BC=7,∴AC==24(m),答:这个梯子的顶端距地面有24m;(2)梯子的顶端A沿墙垂直不是下滑了8m,∵BC=7,BD=8,∴CD=15m,∴CE==20(m),∴AE=AC﹣CE=24﹣20=4(m),∴梯子的顶端A沿墙垂直也下滑了4m.20.(2023秋•左权县期中)在学校组织的研学活动中,辰星小组合作搭建帐篷.图是他们搭建帐篷的支架示意图.在△ABC中,两根支架从帐篴顶点A支撑在水平的支架上,一根支架AD⊥BC于点D,另一根支架AE的端点E在线段BD上,且AE=BE.经测量,知BD=1.6m,AD=1.2m,AC=1.5m.根据测量结果,解答下列问题:(1)求AE的长;(2)按照要求,当帐篷支架AB与AC所夹的角度为直角时,帐篷最为稳定.请通过计算说明辰星小组搭建的帐篷是否符合要求.【分析】(1)设AE=x m,则BE=AE=x m,ED=(1.6﹣x)m,在Rt△ADE中,利用勾股定理即可求解;(2)利用勾股定理求出AB与CD的长,从而得出BC的长,再利用勾股定理逆定理得出△ABC是直角三角形,∠BAC=90°,进而得出结论.【解答】解:(1)设AE=x m,则BE=AE=x m,ED=(1.6﹣x)m,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ADE中,AD2+ED2=AE2,1.22+(1.6﹣x)2=x2,解得.∴AE的长为;(2)帐篷符合要求.理由如下:在Rt△ABD中,BD=1.6m,AD=1.2m,∴,在Rt△ADC中,AD=1.2m,AC=1.5m,∴,∴BC=BD+CD=2.5m,∵AB2+AC2=22+1.52=6.25,BC2=2.52=6.25,∴AB2+AC2=BC2.∴△ABC是直角三角形,∠BAC=90°.∴帐篷符合要求.21.(2023秋•二道区期末)某实践探究小组在放风筝时想测量风筝离地面的垂直高度,通过勘测,得到如下记录表:测量示意图测量数据边的长度①测得水平距离BC的长为15米.②根据手中剩余线的长度计算出风筝线AB的长为17米.③小明牵线放风筝的手到地面的距离为1.7米.数据处理组得到上面数据以后做了认真分析,他们发现根据勘测组的全部数据就可以计算出风筝离地面的垂直高度AD.请完成以下任务.(1)已知:如图,在Rt△ABC中,∠ACB=90°,BC=15,AB=17.求线段AD的长.(2)如果小明想要风筝沿DA方向再上升12米,BC长度不变,则他应该再放出多少米线?【分析】(1)根据勾股定理求出AC,进而求出AD;(2)先根据勾股定理求出风筝线的长,再根据题意计算,得到答案.【解答】解:(1)在Rt△ABC中,∠ACB=90°,BC=15,AB=17,由勾股定理得:AC===8,则AD=AC+CD=8+1.7=9.7;(2)风筝沿DA方向再上升12米后,风筝的高度为20米,则此时风筝线的长为:=25(米),25﹣17=8(米),答:他应该再放出8米线.【类型四:勾股定理探究动点问题中的直角三角形存在问题】22.(2023秋•新吴区期中)如图,点A是射线BC外一点,连接AB,若AB=5cm,点A到BC的距离为3cm,动点P从点B出发沿射线BC以2cm/s的速度运动.设运动的时间为t秒,当t为()秒时,△ABP 为直角三角形.A.B.C.2或D.2或【分析】过点A作AH⊥BC于点H,由勾股定理求得BH=4cm,当∠APB=90°时,此时点P与点H重合,求出t=2;当∠BAP=90°时,HP=(2t﹣4)cm,由勾股定理得AP2=BP2﹣AB2=AH2+HP2,列出方程,解方程即可.【解答】解:如图1,过点A作AH⊥BC于点H,∵点A到BC的距离为3cm,∴AH=3cm,在Rt△AHB中,由勾股定理得:BH===4(cm),分两种情况:①当∠APB=90°时,此时点P与点H重合,由题意得:2t=4,解得:t=2;②如图2,当∠BAP=90°时,∵AB=5cm,BP=2t cm,AH=3cm,BH=4cm,∴HP=(2t﹣4)cm,由勾股定理得:AP2=BP2﹣AB2=(2t)2﹣25,AP2=AH2+HP2=32+(2t﹣4)2,∴(2t)2﹣25=32+(2t﹣4)2,解得:t=,综上所述,当t为(2或)秒时,△ABP为直角三角形,故选:D.23.(2022秋•泌阳县期末)如图,在Rt△ABC中,∠ACB=90°,BC=40cm,AC=30cm,动点P从点B 出发沿射线BA以2cm/s的速度运动.则当运动时间t=25或16s时,△BPC为直角三角形.【分析】首先根据勾股定理求出斜边AB的长度,利用三角形的面积求出斜边上的高CD,再分两种情况进行讨论:①当∠BCP为直角时,②当∠BPC为直角时,分别求出此时的t值即可.【解答】解:在Rt△ABC中,∠ACB=90°,BC=40cm,AC=30cm,∴AB===50(cm).如图,作AB边上的高CD.=AB•CD=AC•BC,∵S△ABC∴CD===24(cm).①当∠BCP为直角时,点P与点A重合,BP=BA=50cm,∴t=50÷2=25(秒).②当∠BPC为直角时,P与D重合,BP=2t cm,CP=24cm,BC=40cm,在Rt△BCP中,∵BP2+CP2=BC2,∴(2t)2+242=402,解得t=16.综上,当t=25或16秒时,△BPC为直角三角形.故答案为:25或16.24.(2023秋•乐平市期中)如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以每秒1cm的速度运动,设运动时间为t秒.当t为6或13或12或10.8时,△ACP是等腰三角形.【分析】分CA=CP、PA=PC、AC=AP、AC=CP四种情况,根据等腰三角形的性质解答.【解答】解:∵∠ACB=90°,AC=6cm,BC=8cm,∴AB==10,当CA=CP时,如图:∴CP=6cm,∴t=6÷1=6;当PA=PC时,如图:∴∠PAC=∠PCA,∵∠PAC+∠B=90°,∠ACP+∠PCB=90°,∴∠PCB=∠PBC∴PA=PC=PB=AB=5cm,∴t=(CB+BP)÷1=13;当AC=AP时,如图:AP=6cm,AB=10cm,∴PB=AB﹣AP=4cm,∴t=(CB+BP)÷1=12;当AC=CP时,如图:作CD⊥AB于点D△ABC的面积=×AC×BC=×AB×CD,即×6×8=×10×CD,解得,CD=4.8,在Rt△ACD中,AD==3.6,∴AP=2AD=7.2,∴BP=AB﹣AP=2.8,∴t=(CB+BP)÷1=10.8;综上所述,当t为6或13或12或10.8时,△ACP是等腰三角形.25.(2023秋•阜宁县期中)如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发,沿射线BC以2cm/s的速度移动设运动的时间为ts当t=2s或s时,△ABP为直角三角形.【分析】首先根据勾股定理求出BC的长度,再分两种情况:①当∠APB为直角时,②当∠BAP为直角时,分别求出此时的t值即可.【解答】解:∵∠C=90°,AB=5cm,AC=3cm,∴BC=4cm.①当∠APB为直角时,点P与点C重合,BP=BC=4cm,∴t=4÷2=2s.②当∠BAP为直角时,BP=2tcm,CP=(2t﹣4)cm,AC=3cm,在Rt△ACP中,AP2=32+(2t﹣4)2,在Rt△BAP中,AB2+AP2=BP2,∴52+[32+(2t﹣4)2]=(2t)2,解得t=s.综上,当t=2s或s时,△ABP为直角三角形.故答案为:2s或s.26.(2022秋•南阳期末)如图,在△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若动点P从点A出发,以1cm/s的速度沿折线A﹣C﹣B﹣A运动.设运动时间为t(t>0)s.当点P运动到恰好到点A和点B的距离相等的位置时,t的值为或19.【分析】设存在点P,使得PA=PB,此时PA=PB=t cm,PC=(8﹣t)cm,根据勾股定理列方程即可得到结论;【解答】解:在△ABC中,∠ACB=90°,AB=10cm,BC=6cm,则由勾股定理得到:AC===8(cm)当点P在AC上时,设存在点P,使得PA=PB,此时PA=PB=t cm,PC=(8﹣t)cm,在Rt△PCB中,PC2+CB2=PB2,即:(8﹣t)2+62=t2,解得:t=,∴当t=时,PA=PB;当点P在AB上时,此时AC+BC+BP=8+6+5=19cm,∴当t=19时,PA=PB;故答案为:或19.27.(2023春•陈仓区期末)如图,在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,动点P从B出发沿射线BC以1cm/s的速度运动,设运动时间为t(s).(1)求BC边的长.(2)当△ABP为等腰三角形时,求t的值.【分析】利用勾股定理求解BC的长,再分3中情况讨论:当AP=BP时,当AB=BP时,当AB=AP 时,分别计算可求解.【解答】解:在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,∴BC=,当AP=BP时,如图1,则AP=t,PC=BC﹣BP=8﹣t,在Rt△ACP中,AC2+CP2=AP2,∴62+(8﹣t)2=t2,解得t=;当AB=BP时,如图2,则BP=t=10;当AB=AP时,如图3,则BP=2BC;∴t=2×8=16,综上,t的值为或10或16.28.(2023春•乳山市期末)如图,在△ABC中,∠ACB=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以每秒1cm的速度运动,设运动的时间为t秒.(1)若△ABP是以BP为斜边的直角三角形,求t的值;(2)若△ABP是以BP为腰的等腰三角形,求t的值.【分析】(1)依题意,AP=t,利用勾股定理即可求得t的值;(2)分情况讨论:AB=BP时,直接可得t的值;BP=AP时,在Rt△APC中,利用勾股定理求解即可.【解答】解:(1)∵∠ACB=90°,AB=5cm,AC=3cm,∴,∴CP=t﹣4,由∠ACP=∠BAP=90°,可得AP2=t2﹣25=(t﹣4)2+9,解得,所以t的值为;(2)当AB=BP时,t=5.当BP=AP时,∴CP=4﹣t,在Rt△APC中,可得9+(4﹣t)2=t2,。
勾股定理专题训练试题精选八附答案

勾股定理专题训练试题精选(八)一.选择题(共29小题)1.如图,△ABC的三边长为5,12,13.设其三条高的交点为H,外心为O,求OH.2.在△ABC中,∠ACB﹣∠B=90°,∠BAC的角平分线交BC于E,△BAC的外角平分线交BC于F,证明:AE=AF.3.如图,以等腰直角△ABC的直角边AC作等边△ACD,CE⊥AD于E,BD、CE交于点F.(1)求∠DFE的度数;(2)求证:AB=2DF.4.如图,△OBD和△OCA是等腰直角三角形,∠ODB=∠OCA=90°.M是线段AB中点,连接DM、CM、CD.若C在直线OB上,试判断△CDM的形状.5.请在所给网格中按下列要求画出图形.(1)从点A出发的一条线段AB,使它的另一个端点落在格点(即小正方形的顶点)上,且长度为;(2)以(1)中的AB为边的一个等腰三角形ABC,使点C在格点上,且另两边的长都是无理数;(在图甲中画出)(3)以(1)中的AB为边的两个四边形,使它们都是中心对称图形且不全等,其顶点都在格点上,各边长都是无理数.(在图乙中画出)7.△ABC中,AB=,BC=,AC=,求这个三角形的面积.(1)小明同学是用构图法解答本题的,建立一个正方形网格(小正方形的边长为1),在网格中画出符合条件的格点三角形ABC,这样不必求△ABC的高而借助网格可得△ABC面积为_________.(2)若△ABC三边长为、、(a>0),请利用图2的正方形网格(小正方形边长为a),画出相应的△ABC,并求出它的面积.8.如图所示,在△ABC中,∠B=90°,AB=6厘米,BC=3厘米,点P从点A开始沿AB边向B以2厘米/秒的速度移动,点Q从点B开始沿BC边向点C以1厘米/秒的速度移动,如果P、Q分别从A、B同时出发,几秒钟后P、Q间的距离等于2厘米?(把实际问题转化为几何问题)9.(1)等腰△ABC的直角边AB=BC=10cm,点P、Q分别从A、C两点同时出发,均以1cm/秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D,过P作PE⊥AC于点E.设P点运动时间为t.①当点P在线段AB上运动时,线段DE的长度是否改变?若不改变,求出DE的值;若改变,请说明理由.下面给出一种解题的思路,你可以按这一思路解题,也可以选择另外的方法解题.解:过Q作QF⊥直线AC于点M∵PE⊥AC于点E,QF⊥直线AC于点M∴∠AEP=∠F=90°(下面请你完成余下的解题过程)②当点P在线段AB的延长线上运动时,(1)中的结论是否还成立?请在图2画出图形并说明理由.(2)若将(1)中的“腰长为10cm的等腰直角△ABC”改为“边长为a的等边△ABC”时(其余条件不变),则线段DE的长度又如何?(直接写出答案,不需要解题过程)(3)若将(2)中的“等边△ABC”改为“△ABC”(其余条件不变),请你做出猜想:当△ABC满足_________条件时,(2)中的结论仍然成立.(直接写出答案,不需要解题过程)10.如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)设AC和DE交于点M,若AD=6,BD=8,求ED与AM的长.11.已知:如图1,当△ABO和△CDO是两个等腰直角三角形,OA与OC,OB与OD,都在同一条直线上,∠ABO 和∠CDO的角平分线分别交AC于点E和F.(1)求证:AC=2(BE+DF)(2)如图2,当△ABO和△CDO变为两个全等的直角三角形且OA与OC不在同一条直线上时,连接AC与BD 交于点G,其余条件都不变,那么(1)中的结论还成立吗?如果成立请证明,不成立说明你的理由.12.已知:在四边形ABCD中,∠D=90°,DC=3cm,AD=4cm,AB=12cm,BC=13cm.求四边形ABCD的面积.13.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,所得的差就是小数部分.又例如:因为,即,所以的整数部分为2,小数部分为.请解答:(1)如果的整数部分为a,那么a=_________.如果,其中b是整数,且0<c<1,那么b= _________,c=_________.(2)将(1)中的a、b作为直角三角形的两条直角边,请你计算第三边的长度.14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=10,CD是射线,∠BCF=60°,点D在AB上,AF、BE分别垂直于CD(或延长线)于F、E,求EF的长.(1)图1中阴影正方形的面积是多少?并由已求面积求边长AB的长;(2)在图2:3×3正方形方格中,由题(1)的解题思路和方法,设计一个方案画出长为的线段,并说明理由.16.正方形网格中,小格的顶点叫做格点,以格点为顶点的三角形叫做格点三角形.下图1中的正方形网格中△ABC 是格点三角形,小正方形网格的边长为1(单位长度).(1)△ABC的面积是_________(平方单位);(2)在图2所示的正方形网格中作出格点△A′B′C′和△A″B″C″,使△A′B′C′∽△ABC,△A″B″C″∽△ABC,且AB、A′B′、A″B″中任意两条线段的长度都不相等;(3)在所有与△ABC相似的格点三角形中,是否存在面积为3(平方单位)的格点三角形?如果存在,请在图3中作出,如果不存在,请说明理由.17.如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,将△ABC沿AC边所在直线向右平移x个单位,记平移后的对应三角形为△DEF,连接BE.(1)当x=4时,求四边形ABED的周长;(2)当x为何值时,△BED是等腰三角形?18.已知一个三角形的三边长分别是7厘米,3厘米,第三边长为x厘米.(1)求第三边x的取值范围;(2)在(1)的条件下,取x的偶数值为直角△ABC的两直角边长(AC>BC),此时AB=10厘米,若P为斜边AB上的一个动点,求PC的最小值.19.阅读下列材料:小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为、、,求△ABC的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.请回答:(1)图1中△ABC的面积为_________;参考小明解决问题的方法,完成下列问题:(2)图2是一个正方形网格(每个小正方形的边长为1).①利用构图法在答题卡的图2中画出三边长分别为、、的格点△DEF;②计算△DEF的面积为_________.(3)如图3,已知△ABC,以AB,AC为边向外作正方形ABDE,ACFG,连接EG.若AB=,BC=,AC=,则六边形BCFGED的面积为_________.20.如图,在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.(1)写出点O到△ABC的三个顶点A、B、C的距离的关系(不要求证明)(2)如果点M、N分别在线段AB、AC上移动,在移动过程中保持AN=BM,请判断△OMN的形状,请证明你的结论.21.如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.22.如图:在△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,点E是BC上一个动点(点E与B、C不重合),连接A、E.若a、b满足,且c是不等式组的最大整数解.(1)求a、b、c的长.(2)若AE平分△ABC的周长,求∠BEA的大小.23.如图1,在△ABC,∠A=45°,延长CB至D,使得BD=BC.(1)若∠ACB=90°,求证:BD=AC;(2)如图2,分别过点D和点C作AB所在直线的垂线,垂足分别为E、F,求证:DE=CF;(3)如图3,若将(1)中“∠ACB=90°”改为“∠ACB=m°,并在AB延长线上取点G,使得∠1=∠A”.试探究线段AC、DG的数量与位置关系.24.如图,已知△ABC中,∠BAC=90°,AB=AC.D为线段AC上任一点,连接BD,过C点作CE∥AB且AD=CE,试说明BD和AE之间的关系,并证明.25.已知:两个等腰直角三角形(△ACB和△BED)边长分别为a和b(a<b)如图放置在一起,连接AD.(1)求△ABD的面积;(2)如果有一个P点正好位于线段CE的中点,连接AP、DP得到△APD,求△APD的面积;(3)(2)中的△APD的面积记为S1,(1)中的△ABD的面积记为S2,则S1与S2的大小关系是_________.A.S1=S2B.S1<S2C.S1>S2D.无法确定.26.如图,正三角形ABC的边长为a,D是BC的中点,P是AC边上的点,连接PB和PD得到△PBD.求:(1)当点P运动到AC的中点时,△PBD的周长;(2)△PBD的周长的最小值.27.如图,直角坐标系中,已知A(2,4),B(5,0),动点P从B点出发,沿BO向终点O移动;动点Q从点A 点出发,沿AB向终点B移动.两点同时出发,速度均为每秒1个单位.设从出发起运动了x秒.(1)点P的坐标是(_________,_________);(2)点Q的坐标是(_________,_________);(3)x为何值时,△APQ是以AP为腰的等腰三角形?28.如图,在直角三角形ABC中∠C=90°.AC=4,BC=3,在直角三角形ABC外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形,见图示.请在四个备用图中分别画出与示例图不同的拼接方法,并在图中标明拼接的直角三角形的三边长.29.如图,Rt△ABC中,∠C=90°,AD、BE分别是BC、AC边上的中线,AD=2,BE=5,求AB的长.二.解答题(共1小题)30.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,且AD=4cm,AB=6cm,DC=10cm,若动点P从A点出发,以每秒1cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:(1)BC=_________cm;(2)当t为多少时,四边形PQCD成为平行四边形?勾股定理专题训练试题精选(八)参考答案与试题解析一.选择题(共29小题)1.如图,△ABC的三边长为5,12,13.设其三条高的交点为H,外心为O,求OH.就是斜边上的中线,等于斜边的一半是.×.2.在△ABC中,∠ACB﹣∠B=90°,∠BAC的角平分线交BC于E,△BAC的外角平分线交BC于F,证明:AE=AF.(∠(∠BAE=3.如图,以等腰直角△ABC的直角边AC作等边△ACD,CE⊥AD于E,BD、CE交于点F.(1)求∠DFE的度数;(2)求证:AB=2DF.BDC=(=,4.如图,△OBD和△OCA是等腰直角三角形,∠ODB=∠OCA=90°.M是线段AB中点,连接DM、CM、CD.若C在直线OB上,试判断△CDM的形状.5.请在所给网格中按下列要求画出图形.(1)从点A出发的一条线段AB,使它的另一个端点落在格点(即小正方形的顶点)上,且长度为;(2)以(1)中的AB为边的一个等腰三角形ABC,使点C在格点上,且另两边的长都是无理数;(在图甲中画出)(3)以(1)中的AB为边的两个四边形,使它们都是中心对称图形且不全等,其顶点都在格点上,各边长都是无理数.(在图乙中画出)26.已知:如图所示,Rt△ABC中,∠C=90°,∠ABC=60°,DC=11,D点到AB的距离为2,求BD的长.DE=2BD=即可求AE=,7.△ABC中,AB=,BC=,AC=,求这个三角形的面积.(1)小明同学是用构图法解答本题的,建立一个正方形网格(小正方形的边长为1),在网格中画出符合条件的格点三角形ABC,这样不必求△ABC的高而借助网格可得△ABC面积为 3.5.(2)若△ABC三边长为、、(a>0),请利用图2的正方形网格(小正方形边长为a),画出相应的△ABC,并求出它的面积.×﹣×××﹣8.如图所示,在△ABC中,∠B=90°,AB=6厘米,BC=3厘米,点P从点A开始沿AB边向B以2厘米/秒的速度移动,点Q从点B开始沿BC边向点C以1厘米/秒的速度移动,如果P、Q分别从A、B同时出发,几秒钟后P、Q间的距离等于2厘米?(把实际问题转化为几何问题)PQ=PQ=,.9.(1)等腰△ABC的直角边AB=BC=10cm,点P、Q分别从A、C两点同时出发,均以1cm/秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D,过P作PE⊥AC于点E.设P点运动时间为t.①当点P在线段AB上运动时,线段DE的长度是否改变?若不改变,求出DE的值;若改变,请说明理由.下面给出一种解题的思路,你可以按这一思路解题,也可以选择另外的方法解题.解:过Q作QF⊥直线AC于点M(下面请你完成余下的解题过程)②当点P在线段AB的延长线上运动时,(1)中的结论是否还成立?请在图2画出图形并说明理由.(2)若将(1)中的“腰长为10cm的等腰直角△ABC”改为“边长为a的等边△ABC”时(其余条件不变),则线段DE的长度又如何?(直接写出答案,不需要解题过程)(3)若将(2)中的“等边△ABC”改为“△ABC”(其余条件不变),请你做出猜想:当△ABC满足∠A=∠ACB条件时,(2)中的结论仍然成立.(直接写出答案,不需要解题过程)AE=CF=EFAC==10=EF=((=AC=5DE=DF=a AC10.如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)设AC和DE交于点M,若AD=6,BD=8,求ED与AM的长.=10=,DE=5DG==﹣,==,,MG=AM===,即AM=11.已知:如图1,当△ABO和△CDO是两个等腰直角三角形,OA与OC,OB与OD,都在同一条直线上,∠ABO 和∠CDO的角平分线分别交AC于点E和F.(1)求证:AC=2(BE+DF)(2)如图2,当△ABO和△CDO变为两个全等的直角三角形且OA与OC不在同一条直线上时,连接AC与BD 交于点G,其余条件都不变,那么(1)中的结论还成立吗?如果成立请证明,不成立说明你的理由.BE=AO DF=OC12.已知:在四边形ABCD中,∠D=90°,DC=3cm,AD=4cm,AB=12cm,BC=13cm.求四边形ABCD的面积.AD==5cm=×13.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,所得的差就是小数部分.又例如:因为,即,所以的整数部分为2,小数部分为.请解答:(1)如果的整数部分为a,那么a=3.如果,其中b是整数,且0<c<1,那么b=4,c=﹣1.(2)将(1)中的a、b作为直角三角形的两条直角边,请你计算第三边的长度.<)∵<<的整数部分为=b+c=5﹣14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=10,CD是射线,∠BCF=60°,点D在AB上,AF、BE分别垂直于CD(或延长线)于F、E,求EF的长.即EG==5CE=515.观察图1:每个小正方形的边长均是1,我们可以得到小正方形的面积1.(1)图1中阴影正方形的面积是多少?并由已求面积求边长AB的长;(2)在图2:3×3正方形方格中,由题(1)的解题思路和方法,设计一个方案画出长为的线段,并说明理由.×,==16.正方形网格中,小格的顶点叫做格点,以格点为顶点的三角形叫做格点三角形.下图1中的正方形网格中△ABC 是格点三角形,小正方形网格的边长为1(单位长度).(1)△ABC的面积是5(平方单位);(2)在图2所示的正方形网格中作出格点△A′B′C′和△A″B″C″,使△A′B′C′∽△ABC,△A″B″C″∽△ABC,且AB、A′B′、A″B″中任意两条线段的长度都不相等;(3)在所有与△ABC相似的格点三角形中,是否存在面积为3(平方单位)的格点三角形?如果存在,请在图3中作出,如果不存在,请说明理由.﹣=16,是不可能由格点三角形构成,所以不存在.17.如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,将△ABC沿AC边所在直线向右平移x个单位,记平移后的对应三角形为△DEF,连接BE.(1)当x=4时,求四边形ABED的周长;(2)当x为何值时,△BED是等腰三角形?=或18.已知一个三角形的三边长分别是7厘米,3厘米,第三边长为x厘米.(1)求第三边x的取值范围;(2)在(1)的条件下,取x的偶数值为直角△ABC的两直角边长(AC>BC),此时AB=10厘米,若P为斜边AB上的一个动点,求PC的最小值.厘米,由勾股定理可知,=10由勾股定理可知,=÷19.阅读下列材料:小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为、、,求△ABC的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.请回答:(1)图1中△ABC的面积为5;参考小明解决问题的方法,完成下列问题:(2)图2是一个正方形网格(每个小正方形的边长为1).①利用构图法在答题卡的图2中画出三边长分别为、、的格点△DEF;②计算△DEF的面积为7.(3)如图3,已知△ABC,以AB,AC为边向外作正方形ABDE,ACFG,连接EG.若AB=,BC=,AC=,则六边形BCFGED的面积为22.×﹣×﹣×﹣﹣﹣﹣×﹣﹣3=×﹣×﹣.(+20.如图,在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.(1)写出点O到△ABC的三个顶点A、B、C的距离的关系(不要求证明)(2)如果点M、N分别在线段AB、AC上移动,在移动过程中保持AN=BM,请判断△OMN的形状,请证明你的结论.21.如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.22.如图:在△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,点E是BC上一个动点(点E与B、C不重合),连接A、E.若a、b满足,且c是不等式组的最大整数解.(1)求a、b、c的长.(2)若AE平分△ABC的周长,求∠BEA的大小.)方程组的解为不等式组23.如图1,在△ABC,∠A=45°,延长CB至D,使得BD=BC.(1)若∠ACB=90°,求证:BD=AC;(2)如图2,分别过点D和点C作AB所在直线的垂线,垂足分别为E、F,求证:DE=CF;(3)如图3,若将(1)中“∠ACB=90°”改为“∠ACB=m°,并在AB延长线上取点G,使得∠1=∠A”.试探究线段AC、DG的数量与位置关系.24.如图,已知△ABC中,∠BAC=90°,AB=AC.D为线段AC上任一点,连接BD,过C点作CE∥AB且AD=CE,试说明BD和AE之间的关系,并证明.25.已知:两个等腰直角三角形(△ACB和△BED)边长分别为a和b(a<b)如图放置在一起,连接AD.(1)求△ABD的面积;(2)如果有一个P点正好位于线段CE的中点,连接AP、DP得到△APD,求△APD的面积;(3)(2)中的△APD的面积记为S1,(1)中的△ABD的面积记为S2,则S1与S2的大小关系是C.A.S1=S2B.S1<S2C.S1>S2D.无法确定.ABBD==××﹣,﹣﹣﹣abab+b(ab=26.如图,正三角形ABC的边长为a,D是BC的中点,P是AC边上的点,连接PB和PD得到△PBD.求:(1)当点P运动到AC的中点时,△PBD的周长;(2)△PBD的周长的最小值.BP=DP=BD=),所以BE=2a,,,.的周长的最小值是27.如图,直角坐标系中,已知A(2,4),B(5,0),动点P从B点出发,沿BO向终点O移动;动点Q从点A 点出发,沿AB向终点B移动.两点同时出发,速度均为每秒1个单位.设从出发起运动了x秒.(1)点P的坐标是(5﹣x,0);(2)点Q的坐标是(2+,4﹣);(3)x为何值时,△APQ是以AP为腰的等腰三角形?=,,x﹣x=2+,﹣=x=;=或秒时,,)x=或28.如图,在直角三角形ABC中∠C=90°.AC=4,BC=3,在直角三角形ABC外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形,见图示.请在四个备用图中分别画出与示例图不同的拼接方法,并在图中标明拼接的直角三角形的三边长.的等腰三角形.29.如图,Rt△ABC中,∠C=90°,AD、BE分别是BC、AC边上的中线,AD=2,BE=5,求AB的长.,.二.解答题(共1小题)30.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,且AD=4cm,AB=6cm,DC=10cm,若动点P从A点出发,以每秒1cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:(1)BC=12cm;(2)当t为多少时,四边形PQCD成为平行四边形?EC==8cm。
勾股定理练习题及答案

勾股定理练习题及答案勾股定理练习题及答案勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。
下面小编给大家带来勾股定理练习题及答案,欢迎大家阅读。
勾股定理练习题:1、在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为__________2、已知直角三角形两边的长为3和4,则此三角形的周长为__________.3、某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要 __________元.4、如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m.同时梯子的顶端B 下降至B′,那么BB′().A.小于1m B.大于1m C.等于1m D.小于或等于1m5、将一根24cm的.筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是().A.h≤17cm B.h≥8cmC.15cm≤h≤16cm D.7cm≤h≤16cm6、如图,某公园内有一棵大树,为测量树高,小明C处用侧角仪测得树顶端A的仰角为30°,已知侧角仪高DC=1。
4m,BC=30米,请帮助小明计算出树高AB.(取1。
732,结果保留三个有效数字)◆典例分析如图1,一个梯子AB长2。
5m,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1。
5m,梯子滑动后停在DE的位置上,如图2,测得BD长为0。
5m,求梯子顶端A下落了多少米.解法指导:直角三角形中,已知一直角边和斜边是勾股定理的重要应用之一.勾股定理:a2+b2=c2的各种变式:a2=c2-b2,b2=c2-a2.应牢固掌握,灵活应用.分析:先利用勾股定理求出AC与CE的长,则梯子顶端A下落的距离为AE=AC-CF.解:在Rt△ABC中,AB2=AC2+BC2∴2.52=AC2+1。
北师大版八年级(上)第一章勾股定理练习题(分节练习)【带答案解析】

第一章勾股定理分节练习第1节探索勾股定理一、求边长问题. ★★★题型一:已知直角三角形的两边,求第三边.1、【基础题】求出下列两个直角三角形中x和y边的长度.、【基础题】(1)求斜边长为17 cm,一条直角边长为15 cm的直角三角形的面积.(2)已知一个Rt△的两边长分别为3和4,则第三边长的平方是________.、【综合Ⅰ】已知一个等腰三角形的两腰长为5 cm,底边长6 cm,求这个等腰三角形的面积.、【综合Ⅰ】如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米 B.10米C.12米D.14米、【综合Ⅰ】强大的台风使得一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处,求旗杆折断之前有多高、【综合Ⅱ】如图,某储藏室入口的截面是一个半径为 m的半圆形,一个长、宽、高分别是 m、1 m、 m的箱子能放进储藏室吗题型二:用“勾股定理 + 方程”来求边长.2、【综合Ⅱ】一个直角三角形的斜边为20 cm,且两直角边的长度比为3∶4,求两直角边的长.【综合Ⅱ】 如图,小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,下端刚好接触地面,求旗杆AC 的高度.、【综合Ⅱ】在我国古代数学著作《九章算术》中记载了一个有趣的问趣,这个问题的意思是:如左下图,有一个边长是10尺的正方形水池,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边中点的水面,请问这个水池的深度和这根芦苇的长度各是多少【综合Ⅲ】如右上图,有一块直角三角形纸片,两直角边AC =6 cm ,BC =8 cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,求CD 的长.【提高题】(2011年北京市竞赛题)两张大小相同的纸片,每张都分成7个大小相同的矩形,放置如图所示,重合的顶点记作A ,顶点C 在另一张纸的分隔线上,若BC =28,则AB 的长是 ______ .类型三: “方程 + 等面积” 求直角三角形斜边上的高.3、 直角三角形两直角边分别为5、12,则这个直角三角形斜边上的高为 ( ).(A )6 (B ) (C )1320 (D )1360二、面积问题. ★4、【基础题】求出左下图中A 、B 字母所代表的正方形的面积.、【综合Ⅰ】如右上图,所有的四边形都是正方形,所有的三角形都是直角三角形,请在图中找出若干图形,使它们的面积之和等于最大正方形1的面积,尝试给出两种方案.、【综合Ⅰ】如左下图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积之和为___________cm 2.、【综合题】如右上图2,以Rt△ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中阴影部分的面积为( ).(A )9 (B )3 (C )49 (D )295、【综合Ⅲ】如图,在直线l 上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则1S +2S +3S +4S =________三、证明问题6、【综合Ⅲ】1876年,美国总统加菲尔德利用右图验证了勾股定理,你能利用左下图验证勾股定理吗说一说这个方法和本节的探索方法的联系.7、【提高题】 如右上图,在Rt △ABC 中,∠A = 90,D 为斜边BC 的中点,DE ⊥DF ,求证:222CF BE EF +=.8、【提高题】 如图,AD 是△ABC 的中线,证明:)+(=+22222CD AD AC AB第2节 一定是直角三角形吗9、【基础题】一个零件的形状如图所示,按规定这个零件中∠A 和∠DBC 都应为直角,工人师傅量得这个零件各边的尺寸如图所示,这个零件符合要求吗并求出四边形ABCD 的面积.、【综合Ⅰ】如左下图,6个三角形分别标号,哪些三角形是直角三角形,哪些不是,请说明理由.、【综合Ⅰ】如右上图,在正方形ABCD 中,4=AB ,2=AE ,1=DF ,图中有几个直角三角形,说明理由.10、【基础题】下列各组中,不能构成直角三角形三边长度的是 ( )(A )9,12,15 (B )15,32,39 (C )16,30,34 (D )9,40,41、【基础题】(1)如果将直角三角形的三条边长同时扩大一个相同的倍数,得到的三角形还是直角三角形吗(2)下表中第一列每组数都是勾股数,补全下表,这些勾股数的2倍、3倍、4倍、10倍还是勾股数吗任意正整数倍呢说说你的理由。
勾股定理基础练习题(含答案与解析)

勾股定理基础练习题(含答案与解析)勾股定理勾股定理基础练习题(含答案与解析)第Ⅰ卷(选择题)请点击修改第I卷的文字说明一.选择题(共15小题)1.在直角三角形中,有两边分别为3和4,则第三边是()A.1 B.5 C.D.5或2.直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为()A.20 B.22 C.24 D.263.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.644.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A.8 B.4 C.6 D.无法计算5.如图,在△ABC中,AD⊥BC于D,AB=17,BD=15,DC=6,则AC的长为()A.11 B.10 C.9 D.86.若等腰三角形的腰长为10,底边长为12,则底边上的高为()A.6 B.7 C.8 D.97.一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为()A.4 B.6 C.8 D.108.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()勾股定理基础练习题(含答案与解析)A.5m B.6m C.7m D.8m9.如图,已知,CD是Rt△ABC斜边上的高,∠ACB=90°,AC=4m,BC=3m,则线段CD的长为()A.5m B.C.D.10.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2B.2cm2 C.3cm2 D.4cm211.直角三角形的一直角边长是12,斜边长是15,则另一直角边是()A.8 B.9 C.10 D.1112.如图,2×2的方格中,小正方形的边长是1,点A、B、C都在格点上,则AB边上的高长为()A.B.C.D.13.用下列各组线段为边,能构成直角三角形的是()A.1cm,2cm,3cm B.cm,cm,cm C.1cm,2cm,cm D.2cm,3cm,4cm14.将一个直角三角形的三边扩大3倍,得到的三角形是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.不能确定15.下列条件中,不能判断△ABC为直角三角形的是()A.a=1.5,b=2,c=2.5 B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5勾股定理基础练习题(含答案与解析)第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共13小题)16.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积和是49cm2,则其中最大的正方形S 的边长为cm.17.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.18.如图:5米长的滑梯AB开始在B点距墙面水平距离3米,当向后移动1米,A点也随着向下滑一段距离,则下滑的距离(大于,小于或等于)1米.19.如图,长方体长、宽、高分别为4cm,3cm,12cm,则BD′=.勾股定理基础练习题(含答案与解析)20.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是.21.2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是25,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为.22.把两个全等的直角三角形拼成如图图形,那么图中三角形面积之和与梯形面积之间的关系用式子可表示为,整理后即为.23.如图,正方形网格中的△ABC,若小方格边长都为1,则△ABC是:三角形.勾股定理基础练习题(含答案与解析)24.如图,四边形ABCD中,∠B=90°,AB=4cm,BC=3cm,AD=13cm,CD=12cm,则四边形ABCD的面积cm2.25.如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于.26.已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止当t=时,△PBQ是直角三角形.27.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm 的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为cm.勾股定理基础练习题(含答案与解析)28.一个圆桶儿,底面直径为16cm,高为18cm,有一只小虫从底部点A处爬到上底B处,则小虫所爬的最短路径长是(π取3).评卷人得分三.解答题(共5小题)29.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯AB=13m,梯子底端离墙角的距离BO=5m.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离BD=4m吗?为什么?30.如图,一个直径为10cm的杯子,在它的正中间竖直放一根筷子,筷子露出杯子外1cm,当筷子倒向杯壁时(筷子底端不动),筷子顶端刚好触到杯口,求筷子长度和杯子的高度.勾股定理基础练习题(含答案与解析)31.在甲村至乙村的公路有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险而需要暂时封锁?请通过计算进行说明.32.如图,一只蜘蛛在一块长方体木块的一个顶点A处,一只苍蝇在这个长方体的对角顶点G处,若AB=3cm,BC=5cm,BF=6cm,问蜘蛛要沿着怎样的路线爬行,才能最快抓到苍蝇?这时蜘蛛走过的路程是多少厘米?33.有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多什么米?勾股定理基础练习题(含答案与解析)本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
苏教版八年级第3章 勾股定理与三角形动点题型练习(答案版)

练习:勾股定理与等腰三角形综合学生姓名:年级:科目:得分:练习内容1.如图,在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,点D在线段AB上从点B出发,以2cm/s 的速度向终点A运动,设点D的运动时间为t0.(1)AB=50 cm,AB边上的高为24 cm;(2)点D在运动过程中,当△BCD为等腰三角形时,求t的值.【分析】(1)在Rt△ABC中,由勾股定理即可求出AB;由直角三角形的面积即可求出斜边上的高;(2)分三种情况:①当BD=BC=30cm时,得出2t=30,即可得出结果;②当CD=CB=30cm时,作CE⊥AB于E,则BE=DE=BD=t,由(1)得出CE=24,由勾股定理求出BE,即可得出结果;③当DB=DC时,∠BCD=∠B,证明DA=DC,得出AD=DB=AB,即可得出结果.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,∴AB===50(cm);作AB边上的高CE,如图1所示:∵Rt△ABC的面积=AB•CE=AC•BC,∴CE===24(cm);故答案为:50,24;(2)分三种情况:①当BD=BC=30cm时,2t=30,∴t=15(s);②当CD=CB=30cm时,作CE⊥AB于E,如图2所示:则BE=DE=BD=t,由(1)得:CE=24,在Rt△BCE中,由勾股定理得:BE===18(cm),∴t=18s;③当DB=DC时,∠BCD=∠B,∵∠A=90°﹣∠B,∠ACD=90°﹣∠BCD,∴∠ACD=∠A,∴DA=DC,∴AD=DB=AB=25(cm),∴2t=25,∴t=12.5(s);综上所述:t的值为15s或18s或12.5s.【点评】本题考查了勾股定理、等腰三角形的判定与性质、三角形面积的计算;本题综合性强,有一定难度,特别是(2)中,需要进行分类讨论,运用勾股定理和等腰三角形的性质才能得出结果.2.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求出发时间为几秒时,△PQB是等腰三角形?(3)若Q沿B→C→A方向运动,则当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.【分析】(1)根据点P、Q的运动速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;(2)由题意得出BQ=BP,即2t=8﹣t,解方程即可;(3)当点Q在边CA上运动时,能使△BCQ成为等腰三角形的运动时间有三种情况:①当CQ=BQ时(图1),则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得t;②当CQ=BC时(图2),则BC+CQ=12,易求得t;③当BC=BQ时(图3),过B点作BE⊥AC于点E,则求出BE,CE,即可得出t.【解答】(1)解:(1)BQ=2×2=4cm,BP=AB﹣AP=8﹣2×1=6cm,∵∠B=90°,PQ===2(cm);(2)解:根据题意得:BQ=BP,即2t=8﹣t,解得:t=;即出发时间为秒时,△PQB是等腰三角形;(3)解:分三种情况:①当CQ=BQ时,如图1所示:则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ∴BQ=AQ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷2=5.5秒.②当CQ=BC时,如图2所示:则BC+CQ=12∴t=12÷2=6秒.③当BC=BQ时,如图3所示:过B点作BE⊥AC于点E,则BE===4.8(cm)∴CE==3.6cm,∴CQ=2CE=7.2cm,∴BC+CQ=13.2cm,∴t=13.2÷2=6.6秒.由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.【点评】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.3.如图1,在6×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动到点C时,两个点都停止运动.(1)请在6×8的网格纸图2中画出运动时间t为2秒时的线段PQ并求其长度;(2)在动点P、Q运动的过程中,△PQB能否成为PQ=BQ的等腰三角形?若能,请求出相应的运动时间t;若不能,请说明理由.【分析】(1)根据点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,和运动时间t为2秒,分别求出PE、QE,再利用勾股定理即可求出PQ其长度.(2)设时间为t,则在t秒钟,P运动了2t格,Q运动了t格,由题意得PQ=BQ,然后根据勾股定理列出关于t的方程,解得t即可.【解答】解:(1)∵点Q的运动速度为每秒1个单位,和运动时间t为2秒,运动时间t为2秒,∴由图中可知PQ的位置如下图2,则由已知条件可得PD=4,AQ=2,QE=2,PE=6,∴PQ===2,(2)能.设时间为t,则在t秒钟,P运动了2t格,Q运动了t格,由题意得PQ=BQ(2t﹣t)2+62=(8﹣t)2解得t=.答:(1)PQ的长为2;(2)能,运动时间t为.【点评】此题主要考查勾股定理和等腰三角形的性质等知识点,此题涉及到动点问题,有一定的拔高难度,属于难题.4.如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD=3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动.设点P的运动时间为t.连结AP.(1)当t=3秒时,求AP的长度(结果保留根号);(2)当△ABP为等腰三角形时,求t的值;(3)过点D做DE⊥AP于点E.在点P的运动过程中,当t为何值时,能使DE=CD?【分析】(1)根据动点的运动速度和时间先求出PC,再根据勾股定理即可求解;(2)根动点运动过程中形成三种等腰三角形,分情况即可求解;(3)根据动点运动的不同位置利用勾股定理即可求解.【解答】解:(1)根据题意,得BP=2t,PC=16﹣2t=16﹣2×3=10,AC=8,在Rt△APC中,根据勾股定理,得AP===2.答:AP的长为2.(2)在Rt△ABC中,AC=8,BC=16,根据勾股定理,得AB===8若BA=BP,则2t=8,解得t=4;若AB=AP,则BP=32,2t=32,解得t=16;若PA=PB,则(2t)2=(16﹣2t)2+82,解得t=5.答:当△ABP为等腰三角形时,t的值为4、16、5.【分析】(1)①先根据∠B=∠C,BD=CE,AB=DC,判定△ABD≌DCE,得出AB=DC,进而得到△ADE 为等腰三角形;②根据△ABD≌△DCE,得出∠BAD=∠CDE,再根据∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC,得到∠ADE=∠B=60°,最后判定等腰△ADE为等边三角形;(2)分三种情况讨论:∠CPD为直角顶点;∠PCD是直角顶点;∠PDC是直角顶点,分别进行画图即可.第一种情况:使得AP=BD,BP=AC;第二种情况:使得AC=AB,CE=AP,BD=AE;第三种情况:使得BD=AB,DF=BP,AC=BF.【解答】解:(1)①证明:∵∠B=∠C,BD=CE,AB=DC,∴△ABD≌DCE,∴AB=DC,∴△ADE为等腰三角形;②∵△ABD≌△DCE,∴∠BAD=∠CDE,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=∠ADE+∠EDC,又∵∠BAD=∠CDE.∴∠ADE=∠B=60°,∴等腰△ADE为等边三角形.(2)有三种结果,如图所示:2.如图,△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为2cm/s和lcm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为ts,则当运动时间t为多少秒时,△PBQ为直角三角形。
勾股定理经典例题(全解版)

类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6, c=10,求b, (2)已知a=40,b=9,求c; (3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。
解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b=(2) 在△ABC中,∠C=90°,a=40,b=9,c=(3) 在△ABC中,∠C=90°,c=25,b=15,a=举一反三【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?【答案】∵∠ACD=90°AD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD、DC的长,进而求出BC的长.解析:作于D,则因,∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半).根据勾股定理,在中,.根据勾股定理,在中,.∴.举一反三【变式1】如图,已知:,,于P. 求证:.解析:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵(已知),∴.在中,根据勾股定理有,∴.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD的面积。
分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。
解析:延长AD、BC交于E。