第6讲 分式方程

合集下载

第6讲 一元一次方程与分式方程及其应用PPT课件

第6讲 一元一次方程与分式方程及其应用PPT课件

A.1 B.-1 C.0 D.2
类型二 一元一次方程的解法 例2 解下列方程:x-x-2 1=2-x+3 2.
【思路分析】根据解一元一次方程的基本步 骤解答即可.
【答案】6x-3(x-1)=12-2(x+2), 6x-3x+3=12-2x-4,3x+3=8-2x, 3x+2x=8-3,5x=5,∴x=1.
【解后感悟】(1)去分母,方程两边同乘各 分母的最小公倍数时,不要漏乘没有分母的项 (尤其是常数项),若分子是多项式,则要把它看 成一个整体加上括号;(2)去括号可用分配律, 注意符号,勿漏乘.
4.解方程:(1)(2016·贺州)解方程:x6-30- 4 x=5.
【答案】x=30
(2)7x-12x-21(x-1)=23(x-1).
【答案】方程两边都乘以(x-3)得,2-x-m= 2(x-3),∵分式方程有增根,∴x-3=0,
解得x=3,
∴2-3-m=2(3-3),解得m=-1.故选A.
【答案】x=-753.
类型三 分式方程的解法
例3 (1)(2015·营口)若关于x的分式方程x-2 3+3x-+xm =2有增根,则m的值是( )
A.m=-1 B.m=0 C.m=3 D.m=0或m=3 【思路分析】方程两边都乘以最简公分母(x-3),
把分式方程化为整式方程,再根据分式方程的增根就是 使最简公分母等于0的未知数的值求出x的值,然后代入 进行计算即可求出m的值.
3x+n 【答案】解方程 2x+1 =2得x=n-2. ∵关于x的
3x+n 方程2x+1=2的解是负数,∴n-2<0.解得:n<2.
1 又∵原方程有意义的条件为:x≠- 2 ,∴n-2≠
1
3
3
-2,即n≠2.∴n<2且n≠2.

第6讲:分式方程

第6讲:分式方程
2%” 等量关 系: 5 得
解答 时要 注意验根 ; 二是 已知方 程有增 根 , 方程 中 求 字母 系数 ; 三是分式方程 的应用题. 外分式 方程 与 此

元 二 次 方 程 相 结 合 的 问题 也 时 有 出 现 .
原来每位工人的工作 效率 ×( +2 %) 1 5 一现在每 位工人 的工作效率 , 而每位工人的工作效率 一每天工
5“ 一” .五 江北 水 城 文 化 旅 游 节期 间 , 名 同 学 包 几
租一辆 面包 车前 去旅 游 , 面包 车的租 价为 1 0元 , 8 出
发时又增加了两名同学 , 结果每个 同学 比原来少摊 了
3 元钱车费 , 设参加游 览 的同学 共 人 , 所列 方程 则
为( ) .
点评 本题是以工作 效率 为背景 的常见 的分式 方程实际问题. 实际 背景 比较 复杂 , 重在 考查学 生理 解能力 、 分析能力. 意在检验时 , 注 还应该考 虑是否符 合实际.
数 学Z 鬟 H

OG LK, N Ei X E  ̄
露黧
例3 ( 典题 ) 若解 + 一 ( 于 关
去分 母 , 到 一个 整式 方程 ;2 解 这 个 整 式 方 程 ;3 得 () ()
检验 : 把所得的整式方程 的解代 入

— —
使
() 1按此计划 , 公 司平均 每天应生 产帐篷 多少 该
顶?
不 为 0的根 就是 原方 程 的根 , 否则 为增
根, 根必须 增
— —

() 产 2 后 , 司又 从 其 他 部 门抽 调 了 5 2生 天 公 O名
4 在 解 分 式 方 程 的 应 用 题 时 , 了要 检 验 所 列 方 . 除 程 的根 是 否为 增 根 外 , 还要 检 验 .

讲义6:分式方程

讲义6:分式方程

七年级上:初一数学提高(1)班辅导讲义6:分式方程及整数指数幂姓名______________辅导时间______【知识要点】1、 分式方程:分母中含有未知数的方程。

.解分式方程的基本思想:去分母,把分式方程转化为整式方程解分式方程的一般步骤:(1) 去分母:在原方程的两边同时乘以最简公分母,把分式方程转化成整式方程(2) 解这个整式方程:得到整式方程的根(3) 验根:检验整式方程的根是否为原分式方程的根(把整式方程的根代入最简公分母检验,使最简公分母等于零的根是原方程的增根,必须舍去)(4) 写结论:原方程的根为……,或原方程无解列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。

2、整数指数幂:正整数、0、负整数都可以作指数;幂的有关运算法则依然成立(0和负整数作指数时要求底数不等于0)3、科学计数法的简单应用【基础自测】1、下列方程中是分式方程的是( )A.2413x x +-+ B. 5042x x -+= C. ()34243x x -= D. 142x x +=+ 2、1a =-是下列哪个方程的根?( )A. 21012a a -=++B. 2201a a-=- C. 21012a a +=-+ D. 2212a a =-+ 3、下列运算正确的是( )A. ()224--=B. 2124--=C. 22155x x -=D. ()122xy xy-= 4、下列等式正确的是( )A. ()311--=B. ()()236222-⨯-=C. ()()826555-÷-=-D. ()0241-=5、分式方程5231x x=-的解是______________ 6、 若分式方程()()2815x a a x +=--的解为15x =-,则a =____________; 7、x =1_________(是、不是)方程1111x x x +=--的根8、去分母解关于x 的方程3022x m x x --=--时会产生增根,则m = _______ 9、科学计数法表示:1340000= _________________;0.0001034= __________________10、写出原数:65.7110-⨯=______________;84.0310-⨯=______________; 11、大小比较:24--,20.2-,0133⎛⎫- ⎪⎝⎭,334-⎛⎫ ⎪⎝⎭:___________________________________ 12、用50克盐加水调制成浓度为25%的盐水,需要加水____________克13、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队恰好同时开工同时完工;甲队比乙队每天多安装2台,设乙队每天安装x 台空调,根据题意,可以列出方程为____________【例题选讲】:1、解方程 (1)21211x x =-- (2)3233x x x =+--(3)22254212343x x x x x -=-+-++ (4)23251x x x x x +-=+-2、(1)m 为何值时,关于x 的方程22432x mx x x -+-=+2会产生增根?(2)已知关于x 的方程323-=--x m x x 解为正数,求m 的取值范围.3、计算:(1)()11xy x y --+; (2)()()1122x y x y ----+÷-(3)2110162123733---⎛⎫⎛⎫⎛⎫⎛⎫⋅-+-⋅- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (4)()110111432232---⎡⎤⎡⎤⎛⎫⎛⎫-⨯÷+--⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦4、 应用题:(1)轿车和货车同时从上海出发,轿车行270千米到达南京时,货车才行120千米到达无锡,如果轿车每小时比货车多行50千米,那么求轿车的速度(2)一个分数的分母比它的分子大5;如果这个分数的分子加上14,分母减去1,那么所得的分数为原分数的倒数,去这个分数(3)某文具厂加工一种学生画图工具2500套,在加工了1000套后,采用了新技术,使每天的工作效率提高到原来的1.5倍,结果提前5天完成任务。

2014中考总复习第6讲一元一次方程与分式方程

2014中考总复习第6讲一元一次方程与分式方程

第一部分
复习目标
知识回顾
重点解析
探究拓展
真题演练
一、一元一次方程和分式方程的有关概念 1. 一元一次方程: 只含有 这样的方程叫做一元一次方程. 一元一次方程的一般形式为 2. 分式方程: 分母中含有 二、等式的性质 1. 性质 1 等式两边加( 或减) a± c= . , 结果仍相等. 用式子表示: 如果 a=b, 那么 . 的方程叫做分式方程. 未知数( 元) , 并且含有未知数的项的次数是 ,
第一部分
复习目标
2. 性质 2 等式两边乘 ac=
知识回顾
重点解析
探究拓展
真题演练
或除以 ( c≠0) .
, 结果仍相等. 用式子表示: 如果 a=b, 那么
c ; 如果 a=b, 那么 a =
三、解一元一次方程的一般步骤 1. 2. 3.
: 在方程两边都乘以各分母的最小公倍数, 注意别漏乘; : 注意括号前的系数与符号; : 把含有未知数的项移到方程的一边, 其他项移到方程的另一边, 注意移项要
第一部分
复习目标
知识回顾
重点解析
探究拓展
真题演练
9. (2013·三明中考)兴发服装店老板用 4 500 元购进一批某款 T 恤衫, 由于深受顾 客喜爱, 很快售完, 老板又用 4 950 元购进第二批该款式 T 恤衫, 所购数量与第一批 相同, 但每件进价比第一批多了 9 元. ( 1) 第一批该款式 T 恤衫每件进价是多少元?
=0,
则原方程可化为 y2- 2 y+ 2 =0, 解得 y=1 或 y= 2 , 若 若
x2 1 y=1, 则 x =1, 此方程无实数解;
5 y= 2
5
5
5

《分式方程》 讲义

《分式方程》 讲义

《分式方程》讲义一、什么是分式方程在我们学习数学的过程中,方程是一个非常重要的概念。

之前我们接触过一元一次方程、二元一次方程等,今天我们要来认识一种新的方程类型——分式方程。

那到底什么是分式方程呢?分式方程是指方程里含有分式,并且分母里含有未知数或含有未知数整式的有理方程。

比如说,像这样的方程:$\frac{x}{x-1} = 2$ ,$\frac{2}{x} + 3 = 5$ ,它们都是分式方程。

因为在这些方程中,分母中都含有未知数。

二、分式方程的解法接下来,我们重点来学习一下分式方程的解法。

解分式方程的一般步骤可以总结为以下几步:1、去分母这是解分式方程最为关键的一步。

我们要找到所有分式的最简公分母,然后将方程两边同时乘以这个最简公分母,把分式方程化为整式方程。

例如,对于方程$\frac{x}{x-1} = 2$ ,最简公分母是$x 1$ ,方程两边同时乘以$x 1$ ,得到$x = 2(x 1)$。

2、解整式方程完成去分母后,我们得到了一个整式方程。

接下来,按照解整式方程的方法求解这个方程。

就以上面得到的整式方程$x = 2(x 1)$为例,展开得到$x =2x 2$ ,移项可得$2x x = 2$ ,即$x = 2$ 。

3、检验这一步非常重要,却很容易被忽略。

我们将求得的解代入原分式方程的分母中,如果分母不为零,那么这个解就是原分式方程的解;如果分母为零,那么这个解就是增根,原分式方程无解。

还是以方程$\frac{x}{x-1} = 2$ 为例,把$x = 2$ 代入分母$x 1$ ,$2 1 = 1$ ,不为零,所以$x = 2$ 是原方程的解。

三、分式方程的增根在解分式方程的过程中,增根是一个需要特别关注的概念。

增根是分式方程化为整式方程后,产生的使分式方程的分母为零的根。

为什么会产生增根呢?这是因为在去分母的过程中,我们乘以了一个含有未知数的式子,这个式子有可能为零。

而等式两边同乘以零是不符合数学规则的,所以可能会产生额外的根,也就是增根。

第06课时 分式方程及其应用PPT课件

第06课时 分式方程及其应用PPT课件

根据题意得:26a+35(200-a)=6280,
(2)若两种芯片共购买了 200 条,且购买的总费用为 6280 元,求购
解得:a=80.
买了多少条 A 型芯片?
答:购买了 80 条 A 型芯片.
+3
例 1 [2017·宁夏] 解方程:
-
4
-3 +3
=1.
[方法模型] 解分式方程时易出现的错误:
(1)漏乘没有分母的项;
(2)没有验根;
(3)去分母时,没有注意符号的变化.
解:去分母,得 x2+6x+9-4x+12=x2-9,
移项、合并同类项,得 2x=-30,
系数化为 1,得 x=-15,
)
B.4
=1 的解为 x=2,则 m
C.3
D.2
-1
=1 的解
为 x=2,∴x=2 满足关于 x 的分式方程
-3
-1
-3
=1,∴
2-1
=1,解得 m=4.故选 B.
高频考向探究
探究三 分式方程的应用
例 3 [2018·岳阳] 为落实党中央“长江大保护”新发展理念,我
市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然
完成的绿化面积的 2 倍,并且甲工程队完成 300 平方米的绿化
面积比乙工程队完成 300 平方米的绿化面积少用 3 小时.乙工
程队每小时能完成多少平方米的绿化面积?
解:设乙工程队每小时能完成 x 平方米的
300 300
绿化面积.根据题意,得

-
2
=3.
解得 x=50.
经检验,x=50 是分式方程的解且符合题意.

一元一次方程与分式方程及其应用

一元一次方程与分式方程及其应用

C.x=2
4.(2014·扬州)某漆器厂接到制作480件漆器的订 单,为了尽快完成任务,该厂实际每天制作的件 数比原来每天多50%,结果提前10天完成任务,则 16 原来每天制作 件.
第一篇 数与代数
第二章 方程与不等式 第6讲 一元一次方程与分式方程及其应用
(学P15) 1.方程的有关概念: (1)含有未知数的 等式 叫做方程; (2)能够使方程左右两边的值 相等的 未知数的值, a 叫做方程的解.求方程解的过程叫做解方程.(只 含有一个未知数的方程的解也叫做根) (3)方程的两边都是关于未知数的整式,这样的方 程叫做整式方程.
2.一元一次方程和分式方程 (1)只含有 一个 未知数,且未知数的次数是 一次 , 这样的整式方程叫做一元一次方程;一元一次方程的 一般式形式是ax+b=0(a≠0). (2)分母里含有未知数的方程叫做分式方程. 3.一元一次方程和分式方程的解法 (1)解一元一次方程主要有以下步骤: 去分母 ; 去括号 ; 移项 ;合并同类项 ;未知数的系数 化为1; (2)解分式方程的步骤:①去分母,转化为 整式方程 ; ②解整式方程,得根;③验根.
【答案】解:设九(1)班人均捐款x元,则九(2)班人 均捐款(1+20%)x=1.2x元,根据题意列方程得:
1200 1200 =8,解之得x=25. x 1.2 x
检验:当x=25,分母不为0, ∴x=25是原方程的根. 当x=25时,1.2x=30. 答:这两个班级每班的人均捐款数分别为25元和30元.
【解后感悟】本题是分式方程的解和解一元一次不 等式,关键是得出n-2<0和n-2≠- ,注意题 目中的隐含条件2x+1≠0,不要忽略.
1.如果方程x+2=0与方程2x-a=0的解相同, 那么a= -4 . a x 2.已知关于x的方程2+ x 1 x 1 有增根, 则a的值是( A )

最新中考数学总复习第一部分数与代数 第二章 方程与不等式 第6讲 分式方程

最新中考数学总复习第一部分数与代数 第二章 方程与不等式 第6讲 分式方程
x 1.2x
C. 10 - 10=12
1.2x x
B. 10 - 10=0.2
1.2x x
D.10 - 10 =0.2
x 1.2x
返回
数学
6.(2021威海)六一儿童节来临之际,某商店用3 000元购进一批 玩具,很快售完;第二次购进时,每件的进价提高了20%,同样用 3 000元购进的数量比第一次少了10件. (1)第一次每件的进价为多少元? (2)若两次购进的玩具售价均为70元,且全部售完,两次的总利 润为多少元?
(2)设猪肉粽每盒售价x元(50≤x≤65),y表示该商家每天销售猪 肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润.
返回
数学
解:(1)设猪肉粽每盒进价 a 元,则豆沙粽每盒进价(a-10)元,
则8
000 a

a6-00100,解得
a=40,经检验
a=40
是方程的解.
答:猪肉粽每盒的进价为 40 元,豆沙粽每盒的进价为 30 元.
返回
数学
考点2 分式方程的应用
5.(2021江西)甲、乙两人去市场采购相同价格的同一种商品,
甲用2 400元购买的商品数量比乙用3 000元购买的商品数量
少10件.求这种商品的单价.
解:设这种商品的单价为 x 元/件,由题意得3 000 - 2 400=10,
x
x
解得 x=60,经检验:x=60 是原方程的根.
x+1 x
8.(2010 广东)分式方程 2x =1 的解是 x= 1 .
x+1
返回
数学
9.(2018广东)某公司购买了一批A,B型芯片,其中A型芯片的单 价比B型芯片的单价少9元,已知该公司用3 120元购买A型芯 片的条数与用4 200元购买B型芯片的条数相等. (1)求该公司购买的A,B型芯片的单价各是多少元? (2)若两种芯片共购买了200条,且购买的总费用为6 280元,求 购买了多少条A型芯片?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6讲 分式方程表头加底纹注意事项:只是章首页考纲要求 命题趋势1.理解分式方程的概念,会解可化为一元一次(二次)方程的分式方程(方程中的分式不超过两个),知道解分式方程的基本思想是把分式方程化为整式方程. 2.了解解分式方程产生增根的原因,能解决有关字母系数的问题. 3.会列分式方程解决实际问题. 中考中多以选择题、填空题、解答题的形式考查以下几点:(1)找分式方程的最简公分母,将分式方程化成整式方程;(2)已知方程有增根,确定有关字母的值;(3)解分式方程.列分式方程解决实际问题是中考的重点.知识梳理一、分式方程1.分母里含有________的有理方程叫做分式方程.2.使分式方程分母为零的未知数的值即为__________;分式方程的增根有两个特征:(1)增根使__________为零;(2)增根是分式方程化成的__________方程的根.二、分式方程的基本解法 解分式方程的一般步骤:(1)去分母,把分式方程转化为__________方程.(2)解这个整式方程,求得方程的根.(3)检验,把解得整式方程的根代入最简公分母,如果最简公分母为零,则它不是原方程的根,而是方程的__________,必须舍去;如果使最简公分母不为零,则它是原分式方程的根.三、分式方程的实际应用分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列分式方程的解;(2)检验所求的解是否符合实际.自主测试1.分式方程32x -4-x x -2=12的解为( ) A .x =52 B .x =53 C .x =5 D .无解 2.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,那么两车的速度各为多少?设货车的速度为x 千米/时,依题意列方程正确的是( )A .25x =35x -20 B .25x -20=35xC .25x =35x +20D .25x +20=35x3.已知关于x 的分式方程a +2x +1=1的解是非正数,则a 的取值范围是__________.考点一、分式方程的解法【例1】解方程:x +12x =x +13.分析:把分式方程转化为整式方程,通过解整式方程求得分式方程的解.解:原方程两边同乘6x ,得3(x +1)=2x ·(x +1),整理得2x 2-x -3=0,解得x =-1或x =32.经验证知它们都是原方程的解,故原方程的解为x =-1或x =32. 方法总结 解分式方程时应注意以下两点:(1)去分母时,要将最简公分母乘以每一个式子,不要“漏乘”;(2)解分式方程时必须检验,检验时只要代入最简公分母看其是否为0即可.若能使最简公分母为0,则该解是原方程的增根.触类旁通1 解方程:x x +2+x +2x -2=8x 2-4. 【例2】解方程:x -1x +x x -1=52. 解:设x -1x =y ,则原方程化为y +1y =52. 解得y 1=2,y 2=12.当y =2时,x -1x=2,解得x =-1; 当y =12时,x -1x =12,解得x =2. 经检验,x 1=-1,x 2=2均符合题意,所以原方程的解为x 1=-1,x 2=2.方法总结 解分式方程时,如按常规用约去分母的方法解,所得到的整式方程比较复杂,不易继续求解,我们可采用换元法求解.一般分式方程有以下两种情况时,可考虑换元法:第一种情况是“倒数型”,如2x x -1+x -1x =52,由于x x -1与x -1x 互为倒数,当设x x -1=y 时,原方程可化为2y +1y =52;第二种情况是“平方型”,如⎝⎛⎭⎫x -1x 2-2⎝⎛⎭⎫x -1x -3=0,此时设x -1x=y ,则原方程可化为y 2-2y -3=0. 触类旁通2 方程66x +3-60x=0的根是________. 考点二、分式方程的增根【例3】分式方程x x -1-1=m (x -1)(x +2)有增根,则m 的值为( ) A .0或3 B .1C .1或-2D .3解析:由(x -1)(x +2)=0得增根可能是x =1或x =-2,把方程两边都乘(x -1)(x +2)得x (x +2)-(x -1)·(x +2)=m ,当x =1时,得m =3,当x =-2时,得m =0,此时方程变为x x -1-1=0,即x =x -1,此时方程无解,故m =0舍去,∴当m =3时,原方程有增根x =1.答案:D方法总结 利用增根求分式方程中字母的值:(1)确定增根;(2)将原分式方程化成整式方程;(3)增根代入变形后的整式方程,求出字母的值.触类旁通3 若解分式方程mx +1x -1=-1时产生增根,则m 的值是( ) A .0 B .1 C .-1 D .±1考点三、分式方程的应用【例4】某品牌瓶装饮料每箱价格26元.某商店对该瓶装饮料进行“买一送三”促销活动,若整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元.问该品牌饮料一箱有多少瓶?解:设该品牌饮料一箱有x 瓶,依题意,得26x -26x +3=0.6,化简,得x 2+3x -130=0,解得x 1=-13(不合题意,舍去),x 2=10.经检验:x =10符合题意.答:该品牌饮料一箱有10瓶.方法总结 列分式方程解决实际问题关键是找到“等量关系”,将实际问题抽象为方程问题.同时,既要注意求得的根是否是原分式方程的根,又要根据具体问题的实际意义,检验是否合理.触类旁通4 某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工要多用30天才可完成.(1)求甲、乙两工程队单独完成此项工程各需要多少天;(2)若甲工程队独做a 天后,再由甲、乙两工程队合作__________天(用含a 的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?1.(2012浙江丽水)把分式方程2x +4=1x 转化为一元一次方程时,方程两边需同乘以( ) A .x B .2xC .x +4D .x (x +4)2.(2012四川宜宾)分式方程12x 2-9-2x -3=1x +3的解为( ) A .3 B .-3 C .无解 D .3或-33.(2012浙江台州)小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了14,设公共汽车的平均速度为x 千米/时,则下面列出的方程中正确的是( ) A .40x +20=34×40xB .40x =34×40x +20C .40x +20+14=40xD .40x =40x +20-14 4.(2012四川攀枝花)若分式方程:2+1-kx x -2=12-x有增根,则k =__________. 5.(2012广东梅州)解方程:4x 2-1+x +21-x=-1. 6.(2012山东临沂)某工厂加工某种产品,机器每小时加工产品的数量比手工每小时加工产品的数量的2倍多9件.若加工1 800件这样的产品,机器加工所用的时间是手工加工所用时间的37倍.求手工每小时加工产品的数量.1.解方程x x 2-1+2(x 2-1)x =3时,设x x 2-1=y ,则原方程化为y 的整式方程为( ) A .2y 2-6y +1=0 B .y 2-3y +2=0C .2y 2-3y +1=0D .y 2+2y -3=02.分式方程2x -5x -2=32-x的解是( ) A .x =-2 B .x =2C .x =1D .x =1或x =23.若关于x 的方程m -1x -1-x x -1=0没有增根,则m 的值不能是( )A .3B .2C .1D .-14.某单位向一所希望小学赠送1 080件文具,现用A ,B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装15件文具,单独使用B 型包装箱比单独使用A 型包装箱可少用12个.设B 型包装箱每个可以装x 件文具,根据题意列方程为( )A .1 080x =1 080x -15+12B .1 080x =1 080x -15-12 C .1 080x =1 080x +15-12 D .1 080x =1 080x +15+12 5.已知x =1是分式方程1x +1=3k x的根,则实数k =________. 6.若2x -1与1互为相反数,则x 的值是__________. 7.已知关于x 的方程2x +m x -2=3的解是正数,则m 的取值范围为__________. 8.解分式方程:(1)x x +1+1=2x +1x ; (2)1x +1-2x x 2-1=1. 9.某市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米.参考答案导学必备知识自主测试1.B 去分母,得3-2x =x -2,解得x =53.经检验x =53是原方程的解. 2.C 相等关系为:货车行驶25千米所用时间=小车行驶35千米所用时间.3.a ≤-1 去分母,得a +2=x +1,解得x =a +1,由题意得a +1≤0,所以a ≤-1. 探究考点方法触类旁通1.解:去分母,得x (x -2)+(x +2)2=8.去括号,得x 2-2x +x 2+4x +4=8.整理,得x 2+x -2=0.解得x 1=-2,x 2=1.检验,当x 1=-2时,x 2-4=4-4=0,∴x 1=-2是增根;当x 2=1时,x 2-4=1-4=-3≠0,∴原方程的根是x =1.触类旁通2.解:66x +3-60x=0, 60x +180=66x ,x =30.触类旁通3.C 使分母为零的未知数的值即为增根,增根一定是分式方程转化为整式方程后的这个整式方程的根.∵mx +1x -1=-1有增根,∴x -1=0,∴x =1,∴mx +1=-x +1.当x =1时,解得m =-1.触类旁通4.解:(1)设乙单独做x 天完成此项工程,则甲单独做(x +30)天完成此项工程.由题意,得20⎝⎛⎭⎫1x +1x +30=1, 整理,得x 2-10x -600=0,解得x 1=30,x 2=-20.经检验:x 1=30,x 2=-20都是分式方程的解.但x 2=-20不符合题意舍去,x +30=60.答:甲、乙两工程队单独完成此项工程各需要60天、30天.(2)设甲单独做a 天后,甲、乙再合作⎝⎛⎭⎫20-a 3天,可以完成此项工程. (3)由题意,得1×a +(1+2.5)⎝⎛⎭⎫20-a 3≤64, 解得a ≥36.答:甲工程队至少要单独做36天后,再由甲、乙两队合作完成剩下的此项工程,才能使施工费不超过64万元.品鉴经典考题1.D2.C 解方程去分母得12-2(x +3)=x -3解得x =3,经检验x =3是原方程的增根,原方程无解.3.A 因为公共汽车的平均速度为x 千米/时,则出租车的平均速度为(x +20)千米/时,小王乘公共汽车从甲地到乙地所花的时间为40x 小时,回来时路上所花时间为40x +20小时,根据相等关系:回来时路上所花时间=去时路上所花时间×34,列方程为40x +20=34×40x. 4.1 解方程去分母得2(x -2)+1-kx =-1,由于原方程有增根,则x =2,解得k =1.5.解:方程两边都乘以(x +1)(x -1),得4-(x +1)(x +2)=-(x 2-1),整理,得3x =1,解得x =13. 经检验,x =13是原方程的解. 故原方程的解是x =13. 6.解:设手工每小时加工产品x 件,则机器每小时加工产品(2x +9)件.根据题意,得1 800x ×37=1 8002x +9. 解这个方程,得x =27.经检验,x =27是原方程的解.答:手工每小时加工产品27件.研习预测试题1.B 设x x 2-1=y ,则原方程化为y +2y =3,去分母移项得y 2-3y +2=0. 2.C 去分母,得2x -5=-3,解得x =1.检验,当x =1时,x -2≠0,所以原方程的解为x =1.3.B 将分式方程两边都乘以(x -1),得m -1-x =0,把x =1代入m -1-x =0,解得m =2.所以若原分式方程没有增根,则m ≠2.4.B 因为B 型包装箱每个可以装x 件文具,则A 型包装箱每个可以装(x -15)件文具.相等关系为:单独使用B 型包装箱数=单独使用A 型包装箱数-12,列方程为1 080x =1 080x -15-12.5.16 把x =1代入方程,得12=3k ,解得k =16. 6.-1 由题意,得2x -1+1=0,所以2+(x -1)=0, 所以x =-1.经检验x =-1是方程2x -1+1=0的解. 7.m >-6且m ≠-4 由2x +m x -2=3,得x =m +6,∴m +6>0,m >-6.又∵x -2≠0,即x ≠2,∴m ≠-4,故m >-6且m ≠-4.8.解:(1)去分母,得x 2+x (x +1)=(2x +1)(x +1),解得x =-12.经检验:x =-12是原方程的解,所以原方程的解为x =-12. (2)去分母,得x -1-2x =x 2-1,化简,得x 2+x =0,解得x 1=0,x 2=-1.经检验:x =-1不是原方程的解.所以原方程的解为x =0.9.解:设原计划每天铺设管道x 米.则120x +300-120x (1+20%)=27.解得x =10(米).经检验,x =10是原方程的解.答:原计划每天铺设管道10米.。

相关文档
最新文档