人教版八年级数学下册化简求值方程专题训练及答案.doc
八年级下册分式化简求值练习50题

分式的化简求值练习50题(1-缶)亠諾齐I,其中X2耳X),其中X1 X 1 X-,再从-1、0、1三个数中,选择一个你认为合适的数作为X19、先化简,再求值:1)壬,其中X=2.X 110、先化简,再求值: 光,其中X皿3。
1先化简, 再求值:2、先化简, 再求值:2川 1 、a 2a 1 甘由a1.3、先化简, 再求值:4、先化简, 再求值:(1丄)X—,其中X 1X 25先化简,再求值(2X 1 X 2 2X X 甘由-- ----- ) --- ----- ,其中X满足2x -X—6、先化简(1宀)代入求值. X2 4X 4X2 1,然后从一2< x< 2的范围内选取一个合适的整数作为X的值7、先化简,再求值:2a~2 ~a 2a豊OH1,其中a^2a.8先化简(丄X 1 的值代入求值.m宁,再从2,- 2, 1,0,- 1中选择一个合适的数进行计算.12、先化简,再求值:2),其中x=2. x 1 x13、先化简,再求值: (U JL,其中x 1 x 2x 1 x 114、先化简(亠丄x 5 5 意的x的值代入求值. 然后从不等组x2x21233的解集中,选一个你认为符合题15、先化简, 再求值:a2 4~2a 6a 9皂2,其中2a 616、先化简, 再求值: 汁其中x17、先化简。
再求值:2a 1 a2 a21—2a_1 -J—其中a2 5 /、丨Qa a a 118、先化简, 再求值:2- 1 、X 2x 1 甘由U (1 ---- ) 一2----- ,其中x= —5.x 2 x 4219.先化简再计算:辛」(x红」),其中x是一元二次方程X22x 2 0的正数根.x x x20、化简,求值:2m 2m 1 , d m 1、甘由匚2 (m 1) -- 其中m=V3 m 1 m 12 11先化简(代231、先化简,再求值:a 1无a2 1,其中a 血1 .221、已知x 、y 满足方程组x y 3,先将旦化简,再求值。
初二数学分式计算化简解答精选100题(2021年整理)

(完整)初二数学分式计算化简解答精选100题(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)初二数学分式计算化简解答精选100题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)初二数学分式计算化简解答精选100题(word版可编辑修改)的全部内容。
提升课堂托辅中心初二数学分式计算化简解答精选100题2013年1月25日一、填空 1当1-=x 时,_________112-+x x;当x 、y满足 时,)(3)(2y x y x ++的值为32. 2当_____x 时,x --11的值为负数;当x 时,分式21612xx+-的值为非负数。
3分式xx -+212中,当____=x 时,分式没有意义,当____=x 时,分式的值为零。
4当____=x 时,23-x x 无意义,当x 、y 满足 时,分式xyyx +的值为零。
5若分式y x xy -中x 、y 都扩大3倍,则分式值 ;若xy x 23+中x 、y 都缩小12倍,则分式值 .6当____x 时,分式8x 32x +-无意义;若分式2x 1x --有意义,则x 应满足 。
7若1233215,7x y z x y z ++=++=,则111x y z++= ;若x +y =-1,则_____222=++xy y x 。
8当m=_____时,分式23)3)(1(2+---m m m m 的值为0;当m=__ ___时,分式无意义。
9已知y x 11-=3,则分式y xy x y xy x ---+2232= ;若x 2+xy+y 2=O ,则x y +yx = 。
八年级数学下册化简求值方程专题训练及答案

八年级数学下册化简求值方程专题训练及答案2013-2014学年度第二学期八年级数学化简求值方程专题训练1.解方程:$\dfrac{14x^2}{x+2}+\dfrac{1}{x^2-4}=\dfrac{1}{x-2}$。
2.先化简,再求值:1) $\dfrac{1-\frac{1}{x+2}}{x^2+2x+1} \div \dfrac{1}{x^2-4}$,其中$x=-3$。
2) $\dfrac{2x}{x-3}-\dfrac{x}{x^2-9} \cdot \dfrac{1}{x+3}$,其中$x=2$。
3.先化简,再求值:$\dfrac{x-3}{x+3}+\dfrac{6x}{x^2-9}\div \dfrac{1}{x^2-9}$,其中$x=-2008$(应为$x=2008$),解释这是因为$x$的平方相减为负数,所以$x$的正负不影响结果。
4.先化简,再求值:$\dfrac{a-1}{a+2} \cdot \dfrac{a^2-41}{a^2-2a+1} \div \dfrac{a^2-1}{a^2}$,其中$a$满足$a^2-a=1$。
一。
化简求值1.化简 $\dfrac{x-\frac{2x}{x+1}}{-2x+1} \div \dfrac{x^2-1}{x^2-1}$。
2.化简,并代入一个数值求值:$\dfrac{1}{1+\frac{1}{x}} \div x$,其中$x$取你喜欢的数。
3.化简:$\dfrac{41}{x^2-4}+\dfrac{x+2}{x-2} \div (x-2)$。
4.化简:$\dfrac{x-1}{x^2-2x+1} \div \left(\dfrac{x^2}{x-1}+\dfrac{1}{x-1}\right) \cdot \dfrac{1}{x^2-2xy+y^2}$。
5.化简:$\dfrac{x}{2-xy} \div \dfrac{x-y}{yx}$,再将$x=3-3,y=3$代入求值。
八下数学每日一练:利用分式运算化简求值练习题及答案_2020年综合题版

八下数学每日一练:利用分式运算化简求值练习题及答案_2020年综合题版答案答案答案答案答案2020年八下数学:数与式_分式_利用分式运算化简求值练习题~~第1题~~(2019博罗.八下期中) 先化简,再求值: ,其中 满足 .考点: 绝对值的非负性;利用分式运算化简求值;非负数的性质:算术平方根;~~第2题~~(2019宁都.八下期中) 对于形如的式子可以用如下的方法化简:== =+ .请仿照这样的方法,解决下列问题.(1) 化简:(2) 化简求值:已知x = ,求( + )•考点: 利用分式运算化简求值;二次根式的性质与化简;~~第3题~~(2017胶州.八下期末) 化简与求值:(1) 计算:(1+ )• ;(2) 先化简,再求值:( + )÷,其中x=1+ ,y=1﹣ .考点: 利用分式运算化简求值;~~第4题~~(2017岳池.八下期中) 根据题意解答(1) 已知x= +1,y= ﹣1,求下列各式的值.①x +2xy+y ②x﹣y (2)先化简,再求值: ÷( ﹣a ),其中a= ﹣2.考点: 利用分式运算化简求值;二次根式的化简求值;~~第5题~~(2017江阴.八下期中) 解答题(1) 解分式方程:(2) 先化简,再求值:,其中x 满足不等式组 且x 为整数.考点: 分式的加减法;利用分式运算化简求值;解一元一次不等式组;解分式方程;2020年八下数学:数与式_分式_利用分式运算化简求值练习题答案1.答案:22222.答案:3.答案:4.答案:5.答案:。
初二分式的化简求值练习题

初二分式的化简求值练习题化简分式是初中数学中重要的基础知识之一,对于初二学生来说,熟练掌握化简分式的方法和技巧是非常重要的。
本文将介绍一些初二分式的化简求值练习题,并提供详细的解题步骤和方法,帮助同学们更好地理解和掌握相关知识。
1. 化简分式 $\frac{3x^2-8}{6x^2-18x+12}$解析:首先,我们观察分子和分母的因式,发现它们都可以因式分解为$3(x-2)(x+1)$和$6(x-1)(x-2)$。
将分子和分母进行因式分解后,化简分式为:$\frac{3x^2-8}{6x^2-18x+12}=\frac{3(x-2)(x+1)}{6(x-1)(x-2)}$然后,我们可以将分子和分母进行约分,消去公共因式$(x-2)$,得到最简形式的分式:$\frac{3(x+1)}{6(x-1)}=\frac{1}{2}\cdot\frac{x+1}{x-1}$所以,化简后的分式为$\frac{1}{2}\cdot\frac{x+1}{x-1}$。
2. 求值分式 $\frac{2x+1}{3}-\frac{5x+2}{2}$,其中$x=4$解析:将$x=4$代入分式中,得到:$\frac{2(4)+1}{3}-\frac{5(4)+2}{2}$计算分子和分母的值,化简分式为:$\frac{9}{3}-\frac{22}{2}$然后,我们可以对分式进行通分,得到同分母的分式:$\frac{9}{3}-\frac{22}{2}=\frac{9\cdot2}{3\cdot2}-\frac{22\cdot3}{2\cdot3}$继续化简分式,得到:$\frac{18}{6}-\frac{66}{6}$最后,我们可以将分式进行减法运算,得到结果:$\frac{18}{6}-\frac{66}{6}=\frac{18-66}{6}=-\frac{48}{6}=-8$所以,当$x=4$时,求值分式的结果为$-8$。
初中数学分式的化简求值专项训练题10(附答案详解)

初中数学分式的化简求值专项训练题W (附答案详解)1•计算:个合适的X值代入求值.5.先化简,再求值:z7-~4^~4÷(--/H-1),其中Z,7=√2-2.m -1 7/7-14 16先化简’再求值:L一三’其中心•7.先化简再求值:(a-卫匸匕)÷伫二伫,其中a=l+√2 * b=l - √2 • a a8.先化简,再求值:(1 + —,其中。
=一3・。
一2 Cr -43x9∙(I)≡ □τE对一112・先化简,再求值:疋一1一口厂TT齐0其中"满足*6=0(1) 4√6-3∙l+√8 ÷2y∕2Z⑵宀’心字求泻的值.2.先化简,再求值:(x+2--^―X — 2m— 3 3・(1)先化简,再求值° r ;・3nΓ + 6〃?4γ +1⑵解方程:—÷i-7=ι匚其中x=3+√3・< + 35-m÷2)t其中m是方程x2+3x-l=0的根; m + 24先化简’再求值:⅛÷^2- A-2 )÷-,其中一2<x≤2,且X为整数,请你选一(2)先化简3x u'^1,再取一个适当的数代入求值•10・先化简, 再求值:亠L —其中V 对一2Λ +1 Xi 1 + X 211・先化简, 再求值:x2一2x1Xr- -1 i(2)先化简,再求值:( 一?—一丄)÷ 丄,其中X=-I. Λ'-2Λ + 1 X x-115.已知F-3Λ∙-3 = O,那么请化简代数式(―-—)÷ lr ~A '并求值.X x + 1 f +2Λ + 1已知X-------------------- = — 1 , ( 1)求兀2 -------------- 7的值;XΛΓ18∙先化简式子:≡÷ (^- ⅛λ再从3' 2'。
三个数中选一个恰当的数作为"的值代入求值.19. 先化简,再求值:x + 4 x-1 X 2 -1 x + 1 XX 2+ Ix20. (1) 2X 2-(Λ∙ + 2)(X -2)-(-1)°(X ^2)'1. (2)先化简,再求值:—-∕~λ^÷∆l±∑,其中x = 2.x + 1 J Γ-6X + 9 X - 3α — 2 9Λ -1 \21. 先化简,再求值: j÷「1-斗 ,其中a 是方程χ2-χ=2019的解./ 一 1 α +1 丿 2 Y 1—22. 先化简,再求值:-一,其中X= √2 - 1.2—1 x-1/牙 _] Or λ 123. 先化简:-一 + = ÷丁再从1中选一个合适的X 的值代入求值・< X +1 X —1丿 X —124. 计算:Cr -4Cr -4t∕ + 4 2(I)/+2α + l= (" + I)?2y X 4xyx + 2y 2y-x 4),一疋Z、 x+ y",.f U->[χ-2-y-2)÷(w)∖其中 χ = r ∖y = -3L(2)求疋-丄的值.X17.先化简,再求值:-y ÷IX+y 丿-(x-2y)(x+y),其中χ = -l, y = 2.16. (1)已知 αb = 12(d>0e>0),求其中x = √2-L(2)先化简再求值:已知X= →½14.先化简,再求值:的值;25.先化简(1・一 )J 厂-6"_9,然后a在.2, 0, 2, 3中选择一个合适的数代入。
八年级下册分式化简求值练习50题(精选)

分式的化简求值练习50题1、先化简,再求值:(1﹣)÷,其中12x =.2、先化简,再求值:2121(1)1a a a a++-+,其中1a =.3、先化简,再求值:22(1)2()11x x x x x+÷---,其中x =4、先化简,再求值:211(1)x x x-+÷,其中12x =5先化简,再求值22122()121x x x x x x x x ----÷+++,其中x 满足x 2﹣x ﹣1=0.6、先化简22144(1)11x x x x -+-÷--,然后从-2≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.7、先化简,再求值:2222211221a a a a a a a a -+--÷+++,其中2a =a .8、先化简211111x x x x -÷-+-(),再从﹣1、0、1三个数中,选择一个你认为合适的数作为x 的值代入求值.9、先化简,再求值:2(1)11x x x x +÷--,其中x =2.10、先化简,再求值:231839x x ---,其中3x =。
11、先化简242()222x x x x x++÷--,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算..12、先化简,再求值:21(2)1x x x x---,其中x =2.13、先化简,再求值:211()1211x x x x x x++÷--+-,其中x =14、先化简22()5525x x x x x x -÷---,然后从不等组23212x x --≤⎧⎨<⎩的解集中,选一个你认为符合题意的x 的值代入求值.15、先化简,再求值:62296422+-÷++-a a a a a ,其中5-=a .16、先化简,再求值:232()111x x x x x x --÷+--,其中x =17、先化简。
部编数学八年级下册专题2二次根式化简求值技巧(解析版)含答案

专题2 二次根式化简求值技巧(解析版)第一部分典例精析+变式训练类型一a|化简典例1(2022春•郯城县期末)化简二次根式―AB C.D.思路引领:根据二次根式有意义的条件以及二次根式的性质与化简进行计算即可.解:由题意可知,x<0,原式=﹣x因此选项A是正确的,应选:A.总结提升:本题考查二次根式的性质与化简,二次根式有意义的条件,掌握二次根式有意义的条件以及化简方法是得出正确答案的前提.变式训练1.已知a=1,求思路引领:先将a的值分母有理化,判断出a﹣1的符号,继而根据二次根式的性质求解可得.解:∵a====2―∴a﹣1=2――1=1―0,∴原式==|a﹣1|=﹣(a﹣1)=―1.总结提升:本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.2.(1)当a<0(2)实数a,b思路引领:(1)直接利用a的取值范围结合二次根式的性质化简得出答案;(2)直接利用a,b的取值范围结合二次根式的性质化简得出答案.解:(1)当a<0a1aa(a1)=―1a;(2)由数轴可得:1<a<2,﹣3<b<﹣2,+=a+2﹣(2﹣b)﹣(a+b)=0.总结提升:此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.类型二含有隐含条件的化简求值典例2(2019春•黄石期中)已知x、y为实数,xy=3,那么+A.B.﹣C.±D.思路引领:根据二次根式有意义条件分析出x与y是同号,然后化简(2,代入xy=3,最后再开方即可.解:根据二次根式有意义的条件可得x与y是同号,所以(2=x2⋅yx+y2⋅xy+2xy=xy+xy+2xy=4xy,∵xy=3,所以4xy=12,即(+2=12.∵x与y是同号,所以原式=±故选:C.总结提升:本题主要考查了二次根式的化简求值,解决这类问题一定要注意二次根式有意义的条件,在此条件下解答不会漏解.变式训练1.(2021春•阳新县月考)已知x+y=﹣6,xy=8,求代数式+思路引领:根据加法法则、乘法法则和已知条件得出x 、y 同号,并且都是负数,化简所求式子,代值即可.解:∵x +y =﹣6,xy =8,∴x 、y 同号,并且都是负数,∴=―=﹣(y x +xy )=―=―(6)22×88=﹣总结提升:本题考查了解二元二次方程组和二次根式的混合运算与求值等知识点,能正确根据二次根式的性质进行化简是解此题的关键.2.(2021春•虎林市校级期末)昨天的数学作业:化简求值.当a =3时,求a +小红的答案是5.小明却认为:原式=a +a +(1―a )=1.即:无论a 取何值,a 1.你认为小明说得对么?为什么?思路引领:根据题意得到1﹣a <0,根据二次根式性质化简,判断即可.解:小明的解答是错误的,理由如下:∵a =3,∴1﹣a =﹣2<0,∴原式=a +a ﹣1=2a ﹣1,当a =3时,原式=2×3﹣1=5,∴小明的解答是错误的.总结提升:=|a |是解题的关键.类型三 利用整体思想进行求值典例3 已知x =5﹣y =3x 2+5xy +3y 2的值.思路引领:先计算出x +y 与xy 的值,再利用完全平方公式得到3x 2+5xy +3y 2=3(x +y )2﹣xy ,然后利用整体代入的方法计算.解:∵x =5﹣y =∴x +y =10,xy =25﹣24=1,∴3x 2+5xy +3y 2=3(x +y )2﹣xy =3×102﹣1=299.总结提升:本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.使用整体代入的方法可简化计算.变式训练1.(2020秋•武侯区校级月考)已知x y (1)x 2﹣xy +y 2;(2)y x +xy +2.思路引领:先根据完全平方公式、平方差公式和二次根式的乘除和加减运算得出x 2+y 2和xy 的值,(1)直接代入即可求得;(2)利用异分母分式加减法相加后直接代入即可.解:∵x y =∴xy 32,x ―y =―1,又∵(x ﹣y )2=x 2+y 2﹣2xy ,∴x 2+y 2=(x ―y )2+2xy =1+2×32=4,(1)x 2﹣xy +y 2=x 2+y 2﹣xy =4―32=52.(2)y x +x y +2=y 2x 2xy +2=432+2=83+2=143.总结提升:本题考查完全平方公式,平方差公式,二次根式的加、减、乘运算,分式的加法.能结合二次根式的性质和乘法公式求得x 2+y 2和xy 的值是解题关键.2.(1)已知:x =1,y =1.求2x 2+2y 2﹣xy 的值;(2)已知x ,求x 3x 1x 3的值.思路引领:(1)分母有理化后,代入求解即可;(2)由x 2x =+1,可得2x ﹣1=4x 2﹣4x =4,即x 2﹣x =1,x +1=x 2,利用整体代入的思想解决问题.解:(1)x2―y =2+所以原式=2(2―2+2(2+2﹣(2―(2+=14﹣―1=27;(2)∵x =∴2x +1,∴2x ﹣1=∴4x 2﹣4x =4,即x 2﹣x =1,∴x +1=x 2,∴原式=x 3x 2x 3=x 2(x 1)x 3=x 4x 3=x 总结提升:本题考查二次根式的化简求值,分母有理化等知识,解题的关键是学会用整体代入的思想解决问题,属于中考常考题型.类型四 化简二次根式比较大小典例4(2022秋•修水县期中)阅读下面的材料,解答后面所给出的问题:两个含二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因+11.(1)请你写出两个二次根式,使它们互为有理化因式: .化简一个分母含有二次根式的式子时,可以采用分子、分母同乘分母的有理化因式的方法.例如:3.(2)请仿照上述方法化简:3.(3)比较1与1的大小.思路引领:(1)根据有理化因式的概念写出乘积不含二次根式的两个式子即可;(2)分子,分母同时乘以分母的有理化因式即可;(3)分母有理化后再比较.解:(122互为有理化因式,+22(答案不唯一);(2=(3∴1<1.总结提升:本题考查二次根式的混合运算,解题的关键是掌握二次根式的分母有理化.变式训练1.(2022春•翔安区期末)观察下列一组等式,然后解答后面的问题+1)1)=1,+1,+1…(1)观察上面规律,计算下面的式子1+1+1+⋯+1(2)利用上面的规律思路引领:(1)根据题目中材料,可以先将所求式子分母有理化,再化简即可解答本题;(2―解:(1++⋯+=1)+++⋯+―=―1+―⋯=1=10﹣1=9;(2==1,=∴1>1,――总结提升:本题考查分母有理化、实数大小的比较,解题的关键是明确题意,发现其规律,解答相关问题.第二部分专题提优训练1.(2021春•上城区校级期中)已知a=b=ab的值为 .思路引领:a=b=ab=1即可.解:a=b=∴ab+3﹣2=1.故答案为:1.总结提升:本题考查了二次根式的化简求值,根据二次根式的乘法可得ab的值.2.(2018春•沙坪坝区校级期末)如果一个三角形的三边分别是2,3,m(m为正整数),则|1﹣3m|+3化简求值的所有结果的和是 .思路引领:直接利用三角形三边关系得出m的取值范围,进而化简得出答案.解:∵一个三角形的三边分别是2,3,m(m为正整数),∴1<m<5,|1﹣3m|+3=2m+1﹣(3m﹣1)+3=﹣m+5,当m=2时,﹣m+5=3,当m=3时,﹣m+5=2,当m=4时,﹣m+5=1,故所有结果的和是:1+2+3=6.故答案为:6.总结提升:此题主要考查了三角形三边关系以及二次根式的化简,正确得出m 的取值范围是解题关键.3.(2021春•“>”或“=”或“<”).思路引领:根据分母有理化分别化简,即可得出答案.解:∵14=11+1,∴11,故答案为:<.总结提升:本题考查了分母有理化,实数的比较大小,分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式.4.(2022春• > 12(填“>”“<”“=”).思路引领:决问题.1>1,>12.故填空结果为:>.总结提升:此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n 次方的方法等.当分母相同时比较分子的大小即可.5.(2021秋•淮安区校级月考)已知实数a 满足|2020﹣a |a ,那么a ﹣20202+1的值是 .思路引领:根据二次根式有意义的条件得出a ≥2021,根据绝对值的性质把原式变形,代入计算即可.解:由题意得:a ﹣2021≥0,解得:a ≥2021,则a ﹣2020a ,=2020,∴a ﹣2021=20202,∴a ﹣20202=2021,∴原式=2021+1=2022,故答案为:2022.总结提升:本题考查的是二次根式有意义的条件、绝对值的性质,掌握二次根式的被开方数是非负数是解题的关键.6.(2022春•宁武县期末)先化简再求值:当a =9时,求a +甲的解答为:原式=a =a +(1﹣a )=1;乙的解答为:原式a =a +(a ﹣1)=2a ﹣1=17.两种解答中, 的解答是错误的,错误的原因是 .思路引领:利用二次根式的性质化简即可;解:∵a =9,∴1﹣a <0,∴原式=a +a +a ﹣1=2a ﹣1=17.∴甲错误,故答案为甲,没有注意到1﹣a <0.总结提升:本题考查二次根式的性质,解题的关键是熟练掌握基本公式,注意公式的应用条件.7.(2010秋•=5―2;16请回答下列问题:(1)观察上面的解题过程,请直接写出1的结果为 .(2)利用上面所提供的解法,求值:1+1+1+⋯+1 .思路引领:(1)直接利用分母有理化化简得出答案;(2)直接将原式化简,进而计算得出答案.解:(1)1(2)原式=―1+―...―=1.1.总结提升:此题主要考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.8.(2022春•彭州市校级月考)已知x=1,y=1,求值:(1)xy;(2)x2+3xy+y2.思路引领:(1)利用平方差公式进行运算即可;(2)利用完全平方公式及平方差公式进行运算即可.解:(1)xy=11=1 75=1 2;(2)x2+3xy+y2=(x+y)2+xy2+122+122+12=7+12=712.总结提升:本题主要考查二次根式的化简求值,分母有理化,解答的关键是对相应的运算法则的掌握.9.(2022秋•静安区校级期中)先化简,再求值,如果a=2―b=1,求思路引领:直接利用二次根式的性质分母有理化,进而化简二次根式得出答案.解:∵b===2+a=2―∴a ﹣b =2――(2+2―2――0,=总结提升:此题主要考查了二次根式的化简求值,正确化简二次根式是解题关键.10.(2022秋•章丘区校级月考)已知a =,b =1.(1)求ab 的值;(2)求a 2+b 2的值.思路引领:(1)根据平方差公式计算即可;(2)根据二次根式的加法法则求出a +b ,根据完全平方公式把原式变形,代入计算即可.解:(1)∵a +1,b 1,∴ab 1)1)=3﹣1=2;(2)∵a =+1,b =―1,∴a +b 1)+1)=∴a 2+b 2=(a +b )2﹣2ab =(2﹣2×2=8.总结提升:本题考查的是二次根式的化简求值,掌握平方差公式、完全平方公式是解题的关键.11.(2022•南京模拟)计算:(1)已知x =,y =1,试求x 2﹣xy +y 2的值.(2)先化简,再求值:a 21a 2a ÷(2+a 21a),其中a 思路引领:(1)先计算出x ﹣y =2,xy =1,再将所求代数式变形为(x ﹣y )2+xy ,然后整体代入计算即可;(2)先根据分式混合运算法则化简,再把x 值代入化简式计算即可.解:(1)∵x =,y =1,∴x ﹣y =2,xy =1,∴x 2﹣xy +y 2=(x ﹣y )2+xy =22+1=5;(2)a 21a 2a ÷(2+a 21a )=(a 1)(a 1)a (a 1)÷a 22a 1a=(a1)(a1)a(a1)⋅a(a1)2=1a1,当a原式=―1.总结提升:本题考查代数式求值,逆用完全平方公式,分式化简求值,二次根式运算,熟练掌握完全平方公式与分式混合运算法则是解题的关键.12.(2022春•a=思路引领:先分母有理化,再利用二次根式的性质化简得到原式=1)a﹣|a﹣1|,接着利用a=>1去绝对值,合并得到原式+1,然后把a=+1)a+1)a﹣|a﹣1|,∵a1,+1)a﹣(a﹣1)=+1,当a=1=3.总结提升:本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.13.已知a=b=2―c=2,比较a,b,c的大小.思路引领:先求出a0.318,b=2―0.268,c=2≈0.236,再根据实数大小比较的方法进行比较即可求解.解:∵a=≈0.318,b=2―≈0.268,c=2≈0.236,0.318>0.268>0.236,∴a>b>c.总结提升:考查了实数大小比较,关键是求出a,b,c的大小.14.(2022春•金华月考)在一节数学课上,李老师出了这样一道题目:先化简,再求值:|x﹣1|+x=9.小明同学是这样计算的:解:|x﹣1|+=x﹣1+x﹣10=2x﹣11.当x=9时,原式=2×9﹣11=7.小荣同学是这样计算的:解:|x﹣1|+=x﹣1+10﹣x=9.聪明的同学,谁的计算结果是正确的呢?错误的计算错在哪里?思路引领:根据二次根式的性质判断即可.解:小荣的计算结果正确,小明的计算结果错误,错在去掉根号:|x﹣1|+=x﹣1+x﹣10(应为x﹣1+10﹣x).总结提升:本题考查了二次根式的性质与化简,能熟记二次根式的性质是解此题的关键,|a|=a(a≥0)―a(a<0).15.(2021春•五华区期中)阅读下列简化过程:1=1―11(1)请用n(n为正整数)表示化简过程规律.(2)计算1+1+1+⋯⋯1.(3)设a=1,b=1,c=1比较a,b,c的大小关系.思路引领:(1)观察题目可得分母上的数相差1,即可得出结论;(2)利用(1)中的规律先化简,随后进行加减即可;(3)先将a,b,c按照题目中的形式化简,再进行比较即可.解:(1)∵分母上的每个数都含有根号,根号内的数相差为1,分子为1,==(2⋯⋯+⋯⋯=―1+⋯⋯+=1.(3)∵ab=c=∴ab 2c2,∴a <b <c .总结提升:本题考查二次根式的化简,平方差公式,分母有理化,实数的大小比较,涉及的知识点比较多,本题的难点在于通过题干得出计算规律,运用规律即可解决问题.16.(2022春•福清市期中)阅读材料:像=3=7这样,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.在进行二次根式计算时,利用有理化因式,可以化去分母中的根号,即为分母有理化.==3+解答下列问题:(1(2(3)应用:当n ―思路引领:(1)根据有理化因式的定义求解;(2)把分子分母都乘以(3―,然后利用平方差公式和完全平方公式计算;(3)利用分母有理化得1,1,然后比较与1的大小即可.解:(1+(2)原式98﹣(31,=1,++0,总结提升:本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的乘法和除法法则是解决问题的关键.也考查了分母有理化.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) ,其中
(2) ,其中
3(本题满分8分)有一道题,先化简,再求值: ,其中 ,小明同学做题时把 错抄成 ,但他的计算结果也是正确的,请你解释这是怎么回事。
4(本题满分10分)先化简,再求值: ,其中 满足 。
一.化简求值(每题5分)
1.化简
2.化简,并代入你喜欢的数值求值
3.化简:
4.化简: .
5.化简 ,再将 , 代入求值.
6.化简求值: ,其中 .
7.化简,再对 取一个你喜欢的数,代入求值.
8.化简求值: ,其中x=2.
9.化简:
10.化简求值: ,其中 .
11.化简求值: ,其中
12.先化简,再求值: ,其中 .
8.化简求值: ,其中x=2.
9.化简:
10.化简求值: ,其中 .
11.化简求值: ,其中
12.先化简,再求值: ,其中 .
二.解分式方程(第1、4每题5分,其余每题6分)
1.解方程: .2.解方程: .
3.解方程: 4.解方程: .
5.解方程: 6.解方程:
7.解方程:
第二学期八年级数学化简求值方程专题训练
3-x-1=x-4
解这个方程,得x=3
检验:当x==3时,x-4=-1≠0∴x=3是原方程的解
5.解:
解这个整式方程得:
经检验: 是原方程的解.∴原方程的解为 .
6.解:去分母得:
经检验 是原方程的解。
7.解:去分母得3-2x=x-2
整理得3x=5
解得x= 经检验,x= 是原方程的解。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。】
1.解:原式 2.解: 3.解:原式===1.
4.解:原式) 5.解:
当 , 时,原式
6.解:原式=== .
将 代入上式得原式=
7.解:原式==
注:a取值时只要不取2,-2,3就可以.
8.解:原式= .当x=2时,原式 .
9.原式= = =
10.解:原式= = =
当 时,原式= =
11.解:原式= = =
1. 解方程(5分)
2.(本题12分,每小题6分)先化简,再求值:
(1) ,其中
(2) ,其中
3(本题满分8分)有一道题,先化简,再求值: ,其中 ,小明同学做题时把 错抄成 ,但他的计算结果也是正确的,请你解释这是怎么回事。
4(本题满分10分)先化简,再求值: ,其中 满足 。
参考答案
一.化简求值
将 + 代入 得:
12.解:
当 时,原式
二.解分式方程
1.解:去分母得:
化简得 ,解得 ,
经检验, 是原方程的根. 原方程的根是 .
2.解: .
.
.经检验, 是原方程的解.
3.解:方程两边同乘 ,得
解这个方程,得x=2
检验:当x=2时, =0,所以x=2是增根,原方程无解
4.解:方程两边同乘以x-4,
二.解分式方程(第1、4每题5分,其余每题6分)
1.解方程: .2.解方程: .
3.解方程: 4.解方程: .
5.解方程: 6.解方程:
7.解方程:
一.化简求值(每题5分)
1.化简
2.化简,并代入你喜欢的数值求值
3.化简:
4.化简: .
5.化简 ,再将 , 代入求值.
6.化简求值: ,其中 .
7.化简,再对 取一个你喜欢的数,代入求值.