初三数学化简求值专项练习题

合集下载

初三数学中考专项化简求值练习题--资料

初三数学中考专项化简求值练习题--资料

m + 1 ), ⎛1- 1 ⎫ a 2-4a +4 - -2a +1 ( 1 • ÷ - a + 1) ÷ ⎩ 2x < 12初三数学中考化简求值专项练习题1,化简,求值:m 2 - 2m + 1 m - 1 ÷ (m - 1 - m 2 - 1 其中 m= 3 .2,先化简,再求代数式 x 2 - 2 x + 1 1 - x 2 -1 x -1的值,其中 x=tan600-tan4503,化简: ( x + 2 x - 1 x 2 - 16 - ) ÷ x 2 - 2 x x 2 - 4 x + 4 x 2 + 4 x , 其中 x = 2 + 21 x 3 - 6 x2 + 9 x 1 - x 4,先化简,再求值: · ,其中 x =-6. x -3 x 2 - 2x 2 - x5,先化简:再求值:⎝ a -1⎭÷ a 2-a ,其中 a =2+ 2 .a -1 a 2+2a 1 6,先化简,再求值:a +2· a 2 ÷a 2-1,其中 a 为整数且-3<a <2.7,先化简,再求值:x 2 - 2 x x 2 - 4 x + 4 x 2 - 2 x 1 2 - ) ÷ ,其中 x = 2 (tan45°-cos30°)a - 1 a 2 - 4 1 8,先化简再求值: ,其中 a 满足 a 2 - a = 0 . a + 2 a 2 - 2a + 1 a 2 - 13 a 2 - 4a +4 9,先化简: ( ,并从 0, - 1 ,2 中选一个合适的数作为 a 的 a + 1 a + 1值代入求值。

10,先化简 ( x x 2 x - ) ÷ x - 5 5 - x x 2 - 25 ⎧- x - 2 ≤ 3 ,然后从不等组 ⎨ 的解集中,选取一个你认11,先化简,再求值: ( 3x ,其中 x = . + , 再取恰的x 的值代入求值. -2x ) ⋅ ( + x) ,其中 ⎨ ⎪⎩ y = 2 + 1 ⎪ 为符合题意的 x 的值代入求值.x x - 2 3 - ) ÷ x + 1 x - 1 x 2 - 1 212,请你先化简分式 x + 3 x 2 + 6 x + 9 1 ÷ x 2 - 1 x 2 - 2 x + 1 x + 1x x 2-16 13,先化简,再求值:(x -2-2)÷x 2 ,其中 x = 3-4.14,先化简,再把 x 取一个你最喜欢的数代入求值: ( x 2 - 4 2 - x x + ) ÷ x 2 - 4 x + 4 x + 2 x - 215,先化简,再求值: ( x 2 +4 xy+ 4 y 2x- 2 yx 2 y - 4 y 3 4 x y ⎧ x = 2 - 1⎧ x - y = 3 x 2 + xy xy 16,已知 x 、 y 满足方程组 ⎨ ,先将 ÷ ⎩3x - 8 y = 14 x - y x - y化简,再求值。

完整word版)中考数学化简求值专项训练

完整word版)中考数学化简求值专项训练

完整word版)中考数学化简求值专项训练中考数学化简求值专项训练注意:此类题目的要求是化简之后再代入求值,直接代入求值不得分。

考点包括分式的加减乘除运算(注意去括号,添括号时要变号,分子相减时要看做整体)、因式分解(十字相乘法、完全平方式、平方差公式、提公因式)以及二次根式的简单计算(分母有理化,一定要是最简根式)。

类型一:化简之后直接带值,有两种基本形式:1.含根式,这类带值需要对分母进行有理化,一定要保证最后算出的值是最简根式。

例如,化简并求值:$\frac{m^2-2m+1}{m-1-\frac{1}{m+1}}$,其中$m=3$。

解:先化简分母,得到$\frac{m^2-1}{m^2-1}$,然后将分子分母同时化简,得到$\frac{(m-1)^2}{m}$。

代入$m=3$,得到$\frac{4}{3}$。

2.常规形,不含根式,化简之后直接带值。

例如,化简并求值:$\frac{x^3-6x^2+9x-1}{x^2-3x}$,其中$x=-6$。

解:先化简,得到$\frac{(x-3)^2}{x(x-3)}$。

代入$x=-6$,得到$\frac{1}{6}$。

3.化简并求值:$\frac{11+2x}{x-y}$,其中$x=1$,$y=-2$。

解:先化简,得到$\frac{11+2x}{x-y}=\frac{13}{3}$。

代入$x=1$,$y=-2$,得到$\frac{13}{3}$。

4.化简并求值:$\frac{x^2-2x}{2x-4}+\frac{2}{x+2}$,其中$x=0.5$。

解:先化简,得到$\frac{x(x-2)}{2(x-2)}+\frac{2}{x+2}=\frac{x}{2}+\frac{1}{x+2}$。

代入$x=0.5$,得到$\frac{5}{4}$。

5.化简并求值:$\frac{1-x}{2x}+\frac{2x}{x^2-4x+3}$,其中$x=2$。

解:先化简,得到$\frac{1}{2}-\frac{2x-3}{x-1}\cdot\frac{1}{x-3}=\frac{5}{6}$。

初三数学中考专项化简求值练习题

初三数学中考专项化简求值练习题

初三数学中考化简求值1.3a b -的有理化因式是 。

2.若最简二次根式21x +与1231y x +-是同类二次根式,则x y += 。

4.如果a ,b 是方程012=-+x x 的两个根,那么代数式3223b ab b a a +++的值是 .5.若1<x<4, 则化简22)1()4(-+-x x 的结果是 。

6.若0>a ,0<b ,则化简=--22)(b b a .1、化简,求值: 111(11222+---÷-+-m m m m m m ),其中m =3. 3.计算:332141222+-+÷⎪⎭⎫ ⎝⎛---+a a a a a a a . 4.先化简,再求值:13x -·32269122x x x x x x x-+----,其中x =-6. 5.⎝ ⎛⎭⎪⎫1-1a -1÷a 2-4a +4a 2-a ,其中a =2+ 2 . 6化简 1325182336210153+++-+--8、先化简再求值:422222221)1)(1(22yx xy xy y xy x y xy x ÷-+--+--+, 其中x =23+,y =23-。

9、先化简,再求值:2222(2)42x x x x x x -÷++-+,其中12x =. 13先化简,再求值,其中x 满足x 2﹣x ﹣1=0. 14、先化简,再求值:,其中a=. 15、(2011•包头)化简,其结果是.16、 先化简,再求值:x 2+4x +4x 2-16÷x +22x -8-2x x +4,其中x =2. 17.(本小题满分7分)先化简,再求值:232244()()442x y y xy x x xy y x y -⋅+++-,其中2121x y ⎧=⎪⎨=⎪⎩ 18、先化简,再求值:xx x x +++2212÷(2x — x x 21+)其中,x =2+119.(本题5分)已知x 、y 满足方程组33814x y x y -=⎧⎨-=⎩,先将2x xy xy x y x y +÷--化简,再求值。

初三中考数学先化简后求值计算题训练(含答案)

初三中考数学先化简后求值计算题训练(含答案)

先化简后求值计算题训练一、计算题(共23题;共125分)1.化简求值:;其中2.先化简,再求值:,其中a为不等式组的整数解.3.先化简,再求值:(m+ )÷(m﹣2+ ),其中m=3tan30°+(π﹣3)0.4.先化简,再求值:(﹣1),其中a=(π﹣)0+()﹣1.5. 先化简,再求值:÷(1- ),其中m=2.6.先化简,再求值:,其中,.7.先化简,再求值:,其中.8.先化简,再求代数式的值:,其中x=3cos60°.9.先化简,再求值:,其中.10.先化简,再求值:(﹣)÷ ,其中x=3+ .11.化简求值:,其中.12. 先化简,再求值:,其中.13.先化简(1- )÷ ,再将x=-1代入求值。

14.先化简,再求值:,其中.15.先化简,再求值:,其中.16.先化简,再求值,其中满足17.先化简:,再从1,2,3中选取一个适当的数代入求值.18.先化简,然后从中选出一个合适的整数作为的值代入求值.19.化简式子(1),并在﹣2,﹣1,0,1,2中选取一个合适的数作为a的值代入求值.20.先化简,再求值:,其中.21.先化简,再求值:,其中.22.先化简,再求值:,其中.23.先化简,再从中选一个适合的整数代入求值.答案解析部分一、计算题1.【答案】解:原式,当时,原式【考点】利用分式运算化简求值【解析】【分析】先将括号里的分式加减通分计算,再将分式的除法转化为乘法运算,约分化简,然后代入求值。

2.【答案】解:原式,解不等式得,∴不等式组的整数解为,当时,原式【考点】利用分式运算化简求值,一元一次不等式组的特殊解【解析】【分析】把整式看成分母为1的式子,通分计算括号内异分母分式的加法,然后将各个分式的分子、分母能分解因式的分别分解因式,将除式的分子、分母交换位置,将除法转变为乘法,然后约分化为最简形式;解出不等式组中每一个不等式的解集,根据大小小大取中间得出该不等式组的解集,求出其整数解得出a的值,将a的值代入分式化简的结果按有理数的混合运算法则即可算出答案.3.【答案】解:原式=÷=,m=3tan30°+(π﹣3)0=3× +1=,原式===【考点】实数的运算,利用分式运算化简求值,特殊角的三角函数值【解析】【分析】把整式看成分母为1的式子,通分计算异分母分式的加减法,然后将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置将除法转变为乘法,然后约分化为最简形式;根据特殊锐角三角函数值、0指数的意义分别化简,再根据实数的混合运算法则算出m的值,进而将m的值代入分式化简的结果,按实数的混合运算法则算出答案.4.【答案】解:,当时,原式【考点】实数的运算,利用分式运算化简求值【解析】【分析】先通分计算括号内异分母分式的减法,然后将各个分式的分子、分母能分解因式的分别分解因式,将除式的分子与分母交换位置,将除法转变为乘法,然后约分化为最简形式;接着利用0指数的意义、负指数的意义分别化简,再根据有理数加法法则算出a的值,最后将a的值代入分式运算化简的结果按有理数的加减法法则就可算出答案.5.【答案】解:原式= ÷( - )= •= ,当m=2时,原式= =【考点】实数的运算,利用分式运算化简求值,特殊角的三角函数值【解析】把整式看成分母为1的式子,通分计算括号内异分母分式的减法,然后将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置,将除法转变为乘法,约分化为最简形式,最后代入m的值按有理数的混合运算法则算出答案.6.【答案】解:原式,当,时,原式【考点】利用分式运算化简求值【解析】【分析】把整式看成分母为1的式子,然后通分计算括号内异分母分式的减法,然后将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置,将除法转变为乘法,约分化为最简形式,最后代入a,b的值,按实数的混合运算顺序算出答案.7.【答案】解:原式当时,原式【考点】利用分式运算化简求值【解析】【分析】先计算分式的除法,将各个分式的分子、分母能分解因式的分别分解因式,将除式的分子、分母交换位置,将除法转变为乘法,然后约分化为最简形式,然后将整式看成分母为1的式子,通分计算异分母分式的减法,最后代入x的值按实数的混合运算法则算出答案.8.【答案】解:原式===,当x=3cos60°=3× =时,原式==【考点】利用分式运算化简求值,特殊角的三角函数值【解析】【分析】将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置,将除法转变为乘法,然后先计算乘法,接着按同分母分式的减法法则算出结果;根据特殊锐角三角函数值化简x的值,再将x的值代入分式化简的结果,按有理数的混合运算法则即可算出答案.9.【答案】解:原式,当时,原式【考点】实数的运算,利用分式运算化简求值【解析】【分析】将各个分式的分子、分母能分解因式的分别分解因式,同时将除式的分子、分母交换位置,将除法转变为乘法,然后先计算乘法,接着按同分母分式的减法法则算出结果;根据绝对值及负指数的意义将a的值进行化简,再将a的值代入分式化简的结果,按有理数的混合运算法则即可算出答案. 10.【答案】解:原式=当x=3+ 时,原式=【考点】利用分式运算化简求值【解析】【分析】将各个分式的分子分母能分解因式的分别分解因式,然后通分计算括号内异分母分式的减法,同时将除式的分子、分母交换位置,将除法转变为乘法,约分化为最简形式,最后代入x的值按实数的混合运算顺序算出答案.11.【答案】解:原式,当时,原式.【考点】利用分式运算化简求值【解析】【分析】将括号内通分,进行同分母相减,然后将除法化为乘法进行约分,即化为最简,将x值代入计算即可.12.【答案】解:,当时,原式.【考点】实数的运算,利用分式运算化简求值,特殊角的三角函数值先将括号内第一个分式约分,接着进行同分母分式相减,然后将除法化为乘法,进行约分即化为最简,最后将a值代入计算即可.13.【答案】解:原式==x+2当x=-1时原式=-1+2=1【考点】利用分式运算化简求值【解析】【分析】将括号里通分,进行同分母加减,然后将除法化为乘法进行约分化为最简,最后将x值代入计算即可.14.【答案】解:原式== ,当时,原式【考点】利用分式运算化简求值【解析】【分析】先通分计算括号内异分母分式的加法,然后计算括号外分式的除法,将各个分子、分母能分解因式的分别分解因式,将除式的分子、分母交换位置,将除法转变为乘法,然后约分化为最简形式;再代入x的值按实数的运算方法即可算出答案。

九年级计算化简求值专题训练

九年级计算化简求值专题训练

九年级计算化简求值专题训练一.计算: 1. ()()130sin 5813121-︒--+-+--2. ()()2009111245cos 212314.314.3-+-+-⎪⎪⎭⎫⎝⎛+÷+π--︒二.先化简,再求值:3. (12x 1-+)4x 1x 2x 22-++÷ 其中x=160tan -︒4. )b 1a 1()ab ab 2a (aba ab 2222+•++÷-- 其中a=32+,b=32-.11解①不等式组⎪⎩⎪⎨⎧++≤+〈+13x 212x 13-x 1x 32(x-1)-5x <13 31(3-2x )>313先化简,再求值:(2252++-x x x +1)÷44422++-x x x ;其中x 满足不等式组 且为整数.14先化简,再求值 :)()(y x x yy x y x +-+,其中13+=x ,13-=y .15先化简2228224a a a a a a +-⎛⎫+÷ ⎪--⎝⎭,然后从33a -<<的范围内选取一个你认为合适的整数作为a 的值代入求值16先化简,再求值:22)11(y x yy x y x -÷++-,其中实数x ,y 满足09162=++-++y x x x .17先化简再求值)11(2)2(yx y x xy y x y y x x +÷+•+++, 其中23,23-=+=y x18、化简,求值: 111(11222+---÷-+-m m m m m m ), 其中m =3.19、先化简,再求值:a -1a +2·a 2+2a a 2-2a +1÷1a 2-1,其中a 为整数且-3<a <2.20、先化简,再求值:2222(2)42x x x x x x -÷++-+,其中12x =.21、先化简,再求值:222112()2442x x x x x x -÷--+-,其中2x =(tan45°-cos30°)22、先化简再求值:1112421222-÷+--•+-a a a a a a ,其中a 满足20a a -=.23、先化简:144)113(2++-÷+-+a a a a a ,并从0,1-,2中选一个合适的数作为a 的值代入求值。

初三数学中考化简求值专项练习题.pdf

初三数学中考化简求值专项练习题.pdf

考点:①分式的加减乘除运算②因式分解③二次根式的简单计算1、化简,求值:111(11222m m m m m m ),其中m =.2、先化简,再求代数式2221111x x x x 的值,其中x=tan600-tan4503、化简:x x xx x x x x x416)44122(2222, 其中22x 4、计算:332141222a a a a a a a .5.6、先化简,再求值:13x ·32269122x xx x x x x ,其中x =-6.7、先化简:再求值:1-1a -1÷a 2-4a +4a 2-a ,其中a =2+ 2 .8.先化简,再求值:a -1a +2·a 2+2a a 2-2a +1÷1a 2-1,其中a 为整数且-3<a <2.9、先化简,再求值:222211y xy x xy x y x ,其中1x,2y .10、先化简,再求值:2222(2)42x x xx x x ,其中12x .11、先化简,再求值:222112()2442x x x x x x ,其中2x 12、22221(1)121a a a a a a .13、先化简再求值:1112421222?a a a aa a,其中a 满足20a a .14、先化简:,并从0,,2中选一个合适的数作为的值代入求值。

15、先化简,再求值:)11(x ÷,其中x =216、化简:.17、先化简,再求值:,其中.18.当2x 时,求22111x x x x 的值.19..先化简,再把x 取一个你最喜欢的数代入求值:2)22444(22x xx x x x x20.先化简,再选择一个你喜欢的数代入求值。

2011aa2-2a+1÷(a+1a2-1+1)21、(2011?湘潭)先化简,再求值:,其中.22、(2011?娄底)先化简:()÷.再从1,2,3中选一个你认为合适的数作为a的值代入求值.23、(2011?衡阳)先化简,再求值.(x+1)2+x(x﹣2).其中.24、(2011?常德)先化简,再求值,(+)÷,其中x=2.。

(完整版)中考数学化简求值专项练习试题(较高难度)

(完整版)中考数学化简求值专项练习试题(较高难度)

中考数学化简求值专项练习(较高难度)一. 已知条件不化简,所给代数式化简 例1.先化简,再求值: ()a a a a a a a a -+--++÷-+221444222,其中a 满足:a a 2210+-=例2. 已知x y =+=-2222,,求()yxy y xxy x xy x y x yx y++-÷+⋅-+的值。

例3. 已知条件化简,所给代数式不化简 例 3. 已知a b c 、、为实数,且ab a b +=13,bc b c ac a c +=+=1415,,试求代数式abcab bc ac++的值。

例4. 已知条件和所给代数式都要化简例4.若x x+=13,则x x x 2421++的值是( ) A. 18 B. 110 C. 12D.14例5. 已知a b +<0,且满足a ab b a b 2222++--=,求a b ab3313+-的值。

中考数学化简求值专项练习解析卷一. 已知条件不化简,所给代数式化简 例1.先化简,再求值:()a a a a a a a a -+--++÷-+221444222,其中a 满足:a a 2210+-= 解:()a a a a a a a a -+--++÷-+221444222=-+--+÷-+=-+--+÷-+[()()][()()()]a a a a a a a a a a a a a a a a 2212424212422222=-++⨯+-=+4224122a a a a a a a ()()=+122a a由已知a a 2210+-= 可得a a 221+=,把它代入原式: 所以原式=+=1212a a 例2. 已知x y =+=-2222,,求()yxy y xxy xxy x y x yx y++-÷+⋅-+的值。

解:()yxy y xxy x xy x y x yx y++-÷+⋅-+=++-⨯+⋅-+()y x yxy x x y xy x yx y=-++-⋅-=-+y xy x xy y x x yxyy x xy当x y =+=-2222,时 原式=-++-+-=-222222222()()二. 已知条件化简,所给代数式不化简 例 3. 已知a b c 、、为实数,且ab a b +=13,bc b c ac a c +=+=1415,,试求代数式abcab bc ac++的值。

初三数学中考化简求值专项练习题

初三数学中考化简求值专项练习题

注意:此类要求的题目,如果没有化简,直接代入求值一分不得!考点:①分式的加减乘除运算 ②因式分解 ③二次根式的简单计算1、化简,求值: 111(11222+---÷-+-m m m m m m ), 其中m =3.2、先化简,再求代数式2221111x x x x -+---的值,其中x=tan600-tan4503、化简:xx x x x x x x x 416)44122(2222+-÷+----+, 其中22+=x4、计算:332141222+-+÷⎪⎭⎫ ⎝⎛---+a a a a a a a .5.6、先化简,再求值:13x -·32269122x x x x x x x-+----,其中x =-6.7、先化简:再求值:⎝⎛⎭⎫1-1a -1÷a 2-4a +4a 2-a ,其中a =2+ 2 .8.先化简,再求值:a -1a +2·a 2+2a a 2-2a +1÷1a 2-1,其中a 为整数且-3<a <2.9、先化简,再求值:222211y xy x x y x y x ++÷⎪⎪⎭⎫ ⎝⎛++-,其中1=x ,2-=y .10、先化简,再求值:2222(2)42x x x x x x -÷++-+,其中12x =.11、先化简,再求值:222112()2442x x x x x x-÷--+-,其中2x =12、22221(1)121a a a a a a +-÷+---+.13、先化简再求值:1112421222-÷+--•+-a a a a a a ,其中a 满足20a a -=.14、先化简:144)113(2++-÷+-+a a a a a ,并从0,1-,2中选一个合适的数作为a 的值代入求值。

15、先化简,再求值:)11(x -÷11222-+-x x x ,其中x =216、化简:22222369x y x y y x y x xy y x y--÷-++++.17、先化简,再求值:2224441x x x x x x x --+÷-+-,其中32x =.18.当2x =-时,求22111x x x x ++++的值.19..先化简,再把 x 取一个你最喜欢的数代入求值:2)22444(22-÷+-++--x x x x x x x20.先化简,再选择一个你喜欢的数代入求值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档