初中数学 24.4 弧长和扇形面积(2)精讲精练(含答案)
2020年人教版九年级数学上册24.4《弧长和扇形面积》随堂练习(含答案)

2020年人教版九年级数学上册 24.4《弧长和扇形面积》随堂练习第1课时 弧长和扇形面积基础题知识点1 弧长公式及应用1.(岳阳中考)已知扇形的圆心角为60°,半径为1,则扇形的弧长为( ) A.π2 B .π C.π6 D.π3 2.(衡阳中考)圆心角为120°,弧长为12π的扇形的半径为( )A .6B .9C .18D .36 3.一个扇形的半径为8 cm ,弧长为163π cm ,则扇形的圆心角为( )A .60°B .120°C .150°D .180° 4.如图,用一个半径为5 cm 的定滑轮带动重物上升,滑轮上一点P 旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了( )A .π cmB .2π cmC .3π cmD .5π cm5.如图,⊙O 是△ABC 的外接圆,BC=2,∠BAC=30°,则劣弧BC ︵的长等于( )A.2π3B.π3C.23π3D.3π3知识点2 扇形的面积公式及应用6.半径为6,圆心角为120°的扇形的面积是( ) A .3π B .6π C .9π D .12π7.一个扇形的圆心角是120°,面积是3π cm 2,那么这个扇形的半径是( ) A .1 cm B .3 cm C .6 cm D .9 cm8.已知扇形的半径为6 cm ,面积为10π cm 2,则该扇形的弧长等于 cm .9.一个扇形的半径为3 cm ,面积为π cm 2,则此扇形的圆心角为 度.10.如图,△ABC 是⊙O 内接正三角形,⊙O 的半径为3,则图中阴影部分面积是 .11.如图,AB 为⊙O 的直径,点C ,D 在⊙O 上,且BC=6 cm ,AC=8 cm ,∠ABD=45°. (1)求BD 的长;(2)求图中阴影部分的面积.易错点 忽视题中条件12.如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25 cm ,贴纸部分的宽BD 为15 cm.若纸扇两面贴纸,则贴纸的面积为 cm 2.中档题13.如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB=12,∠C=60°,则FE ︵的长为( )A.π3B.π2 C .Π D .2π14.如图是某公园的一角,∠AOB=90°,弧AB 的半径OA 长是6米,C 是OA 的中点,点D 在弧AB 上,CD ∥OB ,则图中休闲区(阴影部分)的面积是(C)A .(10π-923)米2B .(π-923)米2C .(6π-923)米2D .(6π-93)米15.如图,在△ABC 中,∠B=30°,∠C=45°,AD 是BC 边上的高,AB=4 cm ,分别以B ,C为圆心,以BD ,CD 为半径画弧,交边AB ,AC 于点E ,F ,则图中阴影部分面积是 cm 2.16.图1是以AB 为直径的半圆形纸片,AB=6 cm ,沿着垂直于AB 的半径OC 剪开,将扇形OAC 沿AB 方向平移至扇形O ′A ′C ′,如图2,其中O ′是OB 的中点,O ′C ′交BC ︵于点F ,则BF ︵的长为 cm.17.如图1,正方形ABCD 是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD 中点处的光点P 按图2的程序移动. (1)请在图1中画出光点P 经过的路径; (2)求光点P 经过的路径总长(结果保留π).18.如图,已知PA为⊙O的切线,A为切点,B为⊙O上一点,∠AOB=120°,过点B作BC ⊥PA于点C,BC交⊙O于点D,连接AB,AD.(1)求证:OD平分∠AOB;(2)若OA=2 cm,求阴影部分的面积.综合题19.“莱洛三角形”是一种等宽曲线,在游标卡尺上,它在任何方向上的宽度都相等,其构造方法是分别以等边三角形的三个顶点为圆心,以边长为半径画弧,得到的封闭图形就是莱洛三角形,如图1.莱洛三角形在日常生活中有广泛的应用,如汽车发动机就有莱洛三角形,如图2,若图1中等边三角形的边长是2,则该莱洛三角形的周长是2π.第2课时 圆锥的侧面积和全面积基础题知识点1 圆柱的侧面积与全面积1.圆柱形水桶底面周长为3.2π m ,高为0.6 m ,它的侧面积是( )A .1.536π m 2B .1.92π m 2C .0.96π m 2D .2.56π m 22.一个圆柱的底面直径为6 cm ,高为10 cm ,则这个圆柱全面积是 cm 2(结果保留π). 知识点2 圆锥的侧面积与全面积3.已知圆锥的底面半径为4 cm ,母线长为6 cm ,则它的侧面展开图的面积等于( )A .24 cm 2B .48 cm 2C .24π cm 2D .12π cm 24.已知一个圆锥的侧面积是底面积的2倍,圆锥母线长为2,则圆锥底面半径是( ) A.12 B .1 C. 2 D.325.一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为( ) A .1.5 B .2 C .2.5 D .36.如图,圆锥的底面半径r=3,高h=4,则圆锥的侧面积是( )A .12πB .15πC .24πD .30π7.一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形的圆心角是( ) A .120° B .180° C .240° D .300° 8.若一个圆锥的底面圆半径为3 cm ,其侧面展开图圆心角为120°,则圆锥母线长是 cm. 9.如图,把一个圆锥沿母线OA 剪开,展开后得到扇形AOC ,已知圆锥的高h 为12 cm ,OA=13 cm ,则扇形AOC 中AC ︵的长是 cm.(结果保留π)10.如图,已知圆锥的高为3,高所在直线与母线的夹角为30°,则圆锥侧面积为 .11.已知圆锥的侧面展开图是一个半径为12 cm,弧长为12π cm的扇形,求这个圆锥的侧面积及高.易错点考虑不全面导致漏解12.已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为.中档题13.如图,Rt△ABC中,∠B=90°,AB=2,BC=1,把△ABC分别绕直线AB和BC旋转一周,所得几何体的底面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则( )A.l1∶l2=1∶2,S1∶S2=1∶2B.l1∶l2=1∶4,S1∶S2=1∶2C.l1∶l2=1∶2,S1∶S2=1∶4D.l1∶l2=1∶4,S1∶S2=1∶414.“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8 cm,圆柱体部分的高BC=6 cm,圆锥体部分的高CD=3 cm,则这个陀螺的表面积是( )A.68π cm2 B.74π cm2 C.84π cm2 D.100π cm215.如图,从一张腰长为60 cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为( )A.10 cm B.15 cmC.10 3 cm D.20 2 cm16.一个圆锥形漏斗,某同学用三角板测得其高度的尺寸如图所示,则该圆锥形漏斗的侧面积为 cm2.17.如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC围成一个圆锥的侧面,则这个圆锥底面圆的半径是.18.如图,Rt△ABC中,∠ACB=90°,AC=BC=22,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为 (结果保留π).19.如图,有一直径是1米的圆形铁皮,圆心为O,要从中剪出一个圆心角是120°的扇形ABC,求:(1)被剪掉阴影部分的面积;(2)若用所留的扇形ABC铁皮围成一个圆锥,该圆锥底面圆的半径是多少?综合题20.如图1,等腰三角形ABC 中,当顶角∠A 的大小确定时,它的邻边(即腰AB 或AC)与对边(即底边BC)的比值也就确定了,我们把这个比值记作T(A),即T(A)=∠A 的对边(底边)∠A 的邻边(腰)=BCAC,当∠A=60°时,如T(60°)=1. (1)理解巩固:T(90°)= ,T(120°)= ,T(A)的取值范围是 ;(2)学以致用:如图2,圆锥的母线长为18,底面直径PQ=14,一只蚂蚁从点P 沿着圆锥的侧面爬行到点Q ,求蚂蚁爬行的最短路径长.(精确到0.1,参考数据:T(140°)≈0.53,T(70°)≈0.87,T(35°)≈1.66)参考答案基础题知识点1 弧长公式及应用1.(岳阳中考)已知扇形的圆心角为60°,半径为1,则扇形的弧长为(D) A.π2 B .π C.π6 D.π3 2.(衡阳中考)圆心角为120°,弧长为12π的扇形的半径为(C)A .6B .9C .18D .36 3.(自贡中考)一个扇形的半径为8 cm ,弧长为163π cm ,则扇形的圆心角为(B)A .60°B .120°C .150°D .180° 4.(兰州中考)如图,用一个半径为5 cm 的定滑轮带动重物上升,滑轮上一点P 旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了(C) A .π cm B .2π cm C .3π cm D .5π cm5.(南宁中考)如图,⊙O 是△ABC 的外接圆,BC=2,∠BAC=30°,则劣弧BC ︵的长等于(A) A.2π3 B.π3 C.23π3 D.3π3知识点2 扇形的面积公式及应用6.(宜宾中考)半径为6,圆心角为120°的扇形的面积是(D) A .3π B .6π C .9π D .12π7.(维吾尔中考)一个扇形的圆心角是120°,面积是3π cm 2,那么这个扇形的半径是(B) A .1 cm B .3 cm C .6 cm D .9 cm8.(怀化中考)已知扇形的半径为6 cm ,面积为10π cm 2,则该扇形的弧长等于10π3__cm . 9.(广西中考)一个扇形的半径为3 cm ,面积为π cm 2,则此扇形的圆心角为40度.10.(常德中考)如图,△ABC 是⊙O 的内接正三角形,⊙O 的半径为3,则图中阴影部分的面积是3π. 11.(无锡中考)如图,AB 为⊙O 的直径,点C ,D 在⊙O 上,且BC=6 cm ,AC=8 cm ,∠ABD=45°. (1)求BD 的长;(2)求图中阴影部分的面积.解:(1)∵AB 是⊙O 的直径, ∴∠C=90°,∠BDA=90°. ∵BC=6 cm ,AC=8 cm , ∴AB=62+82=10(cm). ∵∠ABD=45°.∴△ABD 是等腰直角三角形. ∴BD=AD=22AB=5 2 cm. (2)连接DO ,∵△ABD 是等腰直角三角形,OB=OA , ∴∠BOD=90°. ∵AB=10 cm , ∴OB=OD=5 cm.∴S 阴影=S 扇形OBD -S △BOD =90π×52360-12×52=(25π4-252)cm 2.易错点 忽视题中条件12.(教材P116习题T8变式)如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25 cm ,贴纸部分的宽BD 为15 cm.若纸扇两面贴纸,则贴纸的面积为350πcm 2. 02 中档题13.(山西中考)如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB=12,∠C=60°,则FE ︵的长为(C)A.π3B.π2C .ΠD .2π14.(山西中考)如图是某公园的一角,∠AOB=90°,弧AB 的半径OA 长是6米,C 是OA 的中点,点D 在弧AB 上,CD ∥OB ,则图中休闲区(阴影部分)的面积是(C)A .(10π-923)米2B .(π-923)米2 C .(6π-923)米2 D .(6π-93)米15.(盘锦中考)如图,在△ABC 中,∠B=30°,∠C=45°,AD 是BC 边上的高,AB=4 cm ,分别以B ,C 为圆心,以BD ,CD 为半径画弧,交边AB ,AC 于点E ,F ,则图中阴影部分的面积是(23+2-32π) cm 2.16.(山西中考)图1是以AB 为直径的半圆形纸片,AB=6 cm ,沿着垂直于AB 的半径OC 剪开,将扇形OAC 沿AB 方向平移至扇形O ′A ′C ′,如图2,其中O ′是OB 的中点,O ′C ′交BC ︵于点F ,则BF ︵的长为π cm.17.如图1,正方形ABCD 是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD 中点处的光点P 按图2的程序移动.(1)请在图1中画出光点P 经过的路径;(2)求光点P 经过的路径总长(结果保留π).解:(1)如图.(2)光点P 经过的路径总长为4×90π×3180=6π.18.(山西中考适应性考试)如图,已知PA 为⊙O 的切线,A 为切点,B 为⊙O 上一点,∠AOB=120°,过点B 作BC ⊥PA 于点C ,BC 交⊙O 于点D ,连接AB ,AD.(1)求证:OD 平分∠AOB ;(2)若OA=2 cm ,求阴影部分的面积.解:(1)证明:∵PA 为⊙O 的切线,∴OA ⊥PA.∵BC ⊥PA ,∴∠OAP=∠BCA=90°.∴OA ∥BC.∴∠AOB +OBC=180°.∵∠AOB=120°,∴∠OBC=60°.∵OB=OD ,∴△OBD 是等边三角形.∴∠BOD=60°.∴∠AOD=∠BOD=60°.∴OD 平分∠AOB.(2)∵OA ∥BC ,∴点O 和点A 到BD 的距离相等.∴S △ABD =S △OBD .∴S 阴影=S 扇形OBD .∴S 阴影=60π×4360=23π(cm 2).03 综合题19.(山西中考命题专家原创)“莱洛三角形”是一种等宽曲线,在游标卡尺上,它在任何方向上的宽度都相等,其构造方法是分别以等边三角形的三个顶点为圆心,以边长为半径画弧,得到的封闭图形就是莱洛三角形,如图1.莱洛三角形在日常生活中有广泛的应用,如汽车发动机就有莱洛三角形,如图2,若图1中等边三角形的边长是2,则该莱洛三角形的周长是2π.第2课时 圆锥的侧面积和全面积01 基础题知识点1 圆柱的侧面积与全面积1.圆柱形水桶底面周长为3.2π m ,高为0.6 m ,它的侧面积是(B)A .1.536π m 2B .1.92π m 2C .0.96π m 2D .2.56π m 22.(来宾中考)一个圆柱的底面直径为6 cm ,高为10 cm ,则这个圆柱的全面积是78πcm 2(结果保留π).知识点2 圆锥的侧面积与全面积3.(无锡中考)已知圆锥的底面半径为4 cm ,母线长为6 cm ,则它的侧面展开图的面积等于(C)A .24 cm 2B .48 cm 2C .24π cm 2D .12π cm 24.(德阳中考)已知一个圆锥的侧面积是底面积的2倍,圆锥母线长为2,则圆锥的底面半径是(B)A.12B .1 C. 2 D.325.(嘉兴中考)一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为(D)A .1.5B .2C .2.5D .36.(宁夏中考)如图,圆锥的底面半径r=3,高h=4,则圆锥的侧面积是(B)A .12πB .15πC .24πD .30π7.(齐齐哈尔中考)一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形的圆心角是(A) A .120° B .180°C .240°D .300°8.(孝感中考)若一个圆锥的底面圆半径为3 cm ,其侧面展开图的圆心角为120°,则圆锥的母线长是9cm.9.(广东中考)如图,把一个圆锥沿母线OA 剪开,展开后得到扇形AOC ,已知圆锥的高h 为12 cm ,OA=13 cm ,则扇形AOC 中AC ︵的长是10πcm.(结果保留π)10.(聊城中考)如图,已知圆锥的高为3,高所在直线与母线的夹角为30°,则圆锥的侧面积为2π.11.已知圆锥的侧面展开图是一个半径为12 cm ,弧长为12π cm 的扇形,求这个圆锥的侧面积及高.解:侧面积为:12×12×12π=72π(cm 2). 设底面半径为r ,则有2πr=12π,∴r=6 cm.由于高、母线、底面半径恰好构成直角三角形,根据勾股定理可得,高为122-62=63(cm).易错点 考虑不全面导致漏解12.(黄冈中考)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为π或4π.02 中档题13.(杭州中考)如图,Rt △ABC 中,∠B=90°,AB=2,BC=1,把△ABC 分别绕直线AB 和BC 旋转一周,所得几何体的底面圆的周长分别记作l 1,l 2,侧面积分别记作S 1,S 2,则(A)A .l 1∶l 2=1∶2,S 1∶S 2=1∶2B .l 1∶l 2=1∶4,S 1∶S 2=1∶2C .l 1∶l 2=1∶2,S 1∶S 2=1∶4D .l 1∶l 2=1∶4,S 1∶S 2=1∶414.(绵阳中考)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8 cm ,圆柱体部分的高BC=6 cm ,圆锥体部分的高CD=3 cm ,则这个陀螺的表面积是(C)A .68π cm 2B .74π cm 2C .84π cm 2D .100π cm 215.(十堰中考)如图,从一张腰长为60 cm ,顶角为120°的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为(D)A .10 cmB .15 cmC .10 3 cmD .20 2 cm16.(恩施中考)一个圆锥形漏斗,某同学用三角板测得其高度的尺寸如图所示,则该圆锥形漏斗的侧面积为15πcm 2.17.(苏州中考)如图,AB 是⊙O 的直径,AC 是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC 围成一个圆锥的侧面,则这个圆锥底面圆的半径是12.18.如图,Rt △ABC 中,∠ACB=90°,AC=BC=22,若把Rt △ABC 绕边AB 所在直线旋转一周,则所得几何体的表面积为82π(结果保留π).19.如图,有一直径是1米的圆形铁皮,圆心为O ,要从中剪出一个圆心角是120°的扇形ABC ,求:(1)被剪掉阴影部分的面积;(2)若用所留的扇形ABC 铁皮围成一个圆锥,该圆锥底面圆的半径是多少?解:(1)连接OA ,OB.由∠BAC=120°,可知AB=12米,点O 在扇形ABC 的BC ︵上. ∴扇形ABC 的面积为120360π×(12)2=π12(平方米). ∴被剪掉阴影部分的面积为π×(12)2-π12=π6(平方米). (2)由2πr=120180π×12,得r=16. 即圆锥底面圆的半径是16米. 03 综合题20.如图1,等腰三角形ABC 中,当顶角∠A 的大小确定时,它的邻边(即腰AB 或AC)与对边(即底边BC)的比值也就确定了,我们把这个比值记作T(A),即T(A)=∠A 的对边(底边)∠A 的邻边(腰)=BC AC,当∠A=60°时,如T(60°)=1. (1)理解巩固:T(90°)=2,T(120°)=3,T(A)的取值范围是0<T(A)<2;(2)学以致用:如图2,圆锥的母线长为18,底面直径PQ=14,一只蚂蚁从点P 沿着圆锥的侧面爬行到点Q ,求蚂蚁爬行的最短路径长.(精确到0.1,参考数据:T(140°)≈0.53,T(70°)≈0.87,T(35°)≈1.66)解:∵圆锥的底面直径PQ=14,∴圆锥的底面周长为14π,即侧面展开图扇形的弧长为14π.设扇形的圆心角为n°,则n×π×18180=14π,解得n=140.∵T(70°)≈0.87,∴蚂蚁爬行的最短路径长为0.87×18≈15.7.。
人教版九年级数学上册《24.4 弧长和扇形面积》练习题-附参考答案

人教版九年级数学上册《24.4 弧长和扇形面积》练习题-附参考答案一、选择题1.已知圆心角为120°的扇形的弧长为6π,该扇形的面积为()A.12πB.21πC.27πD.36π2.如图,⊙O的半径为3,AB为弦,若∠ABC=30°,则AC⌢的长为()A.πB.1 C.1.5 D.1.5π3.如图,将边长为3的正方形铁丝框ABCD,变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ADB的面积为()A.3 B.6 C.9 D.3π4.如图,分别以等边三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若等边三角形边长为3cm,则该莱洛三角形的周长为()A.2πB.9 C.3πD.6π5.如图,四边形OABC为菱形,∠AOC=120°,点B、C在以点O为圆心的EF⌢上,若OA=1,∠1=∠2,则扇形OEF的面积为()A.π6B.π4C.π3D.2π36.如图,正方形ABCD的边长为2,O为对角线的交点,点E,F分别为BC,AD的中点.以C为圆心,BC为半径作圆弧BD,再分别以E,F为圆心,BE为半径作圆弧BO,OD,则图中阴影部分的面积为()A.π−1B.π−3C.π−2D.4−π7.如图,四边形ABCD是半径为2的⊙O的内接四边形,连接OA,OC.若∠AOC:∠ABC=4:3,则AC⌢的长为()A.35πB.45πC.65πD.85π8.如图,以矩形ABCD的顶点A为圆心,AD长为半径画弧交边BC于点E,E恰为边BC的中点,AD=4 √3则图中阴影部分的面积为()A.18√3−8πB.18√3−4πC.24√3−8πD.12√6−6π二、填空题9.一个扇形的半径是3cm,圆心角是60°,则此扇形的面积是cm2.10.如果一个扇形的弧长等于它所在圆的半径,那么此扇形叫做“完美扇形”.已知某个“完美扇形”的周长等于6,那么这个扇形的面积等于.11.如图,半径为2的⊙O与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD的长为.12.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,CD=2√3,则阴影部分的面积为.⌢围成的图13.已知:如图,半圆O的直径AB=12cm,点C,D是这个半圆的三等分点,则弦AC,AD和CD形(图中阴影部分)的面积S是.三、解答题14.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,BC=1,以B为圆心,BA为半径画弧交CB的延长线于点D,求弧AD的长15.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2 √3 ,BF=2,求阴影部分的面积(结果保留π).16.如图,内接于,交于点,交于点,交于点,连接,CF .(1)求证:;(2)若的半径为,求的长结果保留.17.如图,已知AB 是O 的直径,点C 在O 上,D 为O 外一点,且90ADC ∠=︒ 2180B DAB ∠+∠=︒.(1)试说明:直线CD 为O 的切线;(2)若30,2B AD ∠=︒=求阴影部分的面积.1.C2.A3.C4.C5.C6.C7.D8.Aπ9.3210.2π11.8512.2π313.6πcm214.解:∵在Rt△ABC中,∠C=90°,∠BAC=30°,BC=1 ∴AB=2BC=2,∠ABC=90°-∠BAC=60°∴∠ABD=180°-∠ABC=120°∴弧AD=故答案为.15.(1)解:BC与⊙O相切.理由如下:连接OD.∵AD是∠BAC的平分线∴∠BAD=∠CAD.∴∠OAD=∠ODA∴∠CAD=∠ODA∴OD ∥AC∴∠ODB=∠C=90°即OD ⊥BC .又∵BC 过半径OD 的外端点D∴BC 与⊙O 相切;(2)解:设OF=OD=x ,则OB=OF+BF=x+2. 根据勾股定理得: OB 2=OD 2+BD 2 即 (x +2)2=x 2+12 ,解得:x=2 即OD=OF=2∴OB=2+2=4.在Rt △ODB 中,∵OD= 12 OB∴∠B=30°∴∠DOB=60°∴S 扇形DOF = 60π×4360 = 2π3 ,则阴影部分的面积为S △ODB ﹣S 扇形DOF = 12×2×2√3−2π3 = 2√3−2π3 . 故阴影部分的面积为 2√3−2π3 . 16.(1)证明:四边形是平行四边形.(2)解:连接由得∴的长. 17.(1)解:如图,连接OC OB OC =OCB B ∴∠=∠2AOC OCB B B ∴∠=∠+∠=∠2180B DAB ∠+∠=︒180AOC DAB ∴∠+∠=︒.OC AD ∴∥90ADC ∠=︒18090OCD ADC ∴∠=︒-∠=︒即CD OC ⊥,又OC 是O 的半径 ∴直线CD 为O 的切线.(2)如图,连接AC ,作OE BC ⊥,垂足为E ,则2BC BE = 30B ∠=︒260AOC B ∴∠=∠=︒OA OC =OAC ∴是等边三角形60OCA ∴∠=︒906030ACD ∴∠=︒-︒=︒ 12AD AC ∴= 2AD =4AC ∴=,即O 的半径为4 OE BC ⊥BE CE ∴=30,4B OB ∠=︒=2OE ∴=22224223BE OB OE ∴=-=-= 43BC ∴=1432BOC S BC OE ∴=⋅⋅=△ 30,B OB OC ∠=︒=120BOC ∴∠=︒2OBC 12041643433603OBC S S S ππ⨯⨯∴=-=-=-阴影扇△.。
人教版九年级数学上册第24章 圆 弧长和扇形面积

第1课时 弧长和扇形面积
1.通过自主探究得出弧长的计算公式,体验从特殊到一般的学习
方法,发展学生的推理能力.
2.通过小组讨论推导出扇形面积公式,会推导弧长和扇形面积之
间的关系,学会利用类比的思想方法解决问题.
3.通过练习恰当熟练地运用公式计算弧长、扇形的面积,增强学
生的数学运用能力.
3
4.试着总结圆心角为 ᵒ的扇形面积公式.
扇形 =
=
教师讲评
知识点1.弧长(重点)
n°的圆心角所对的弧长为l= .
知识点2.扇形面积(重点)
1.扇形:由组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形.如
图,黄色部分是一个扇形,记作扇形OAB.
2.扇形面积:
旧知回顾
还记得小学学过的圆的周长和面积公式吗?
(C=πd=2πr,S=πr²)
“欲穷千里目,更上一层楼”是唐朝诗人王之涣在《登鹳雀楼》一诗中的诗句
,那么同学们想过没有,如果真的要看千里之遥,要“站”多高呢?
如图,地球上B、C两点间的距离指的是球面上两点间的距离,也就是什么的
长?(弧BC的长)
假设弧BC的长为500km,如果地球的半径是6400km,你能算出视线AC的
(2)由(1)易得 =
,
=
, ∠
= °.
∴阴影部分的面积=扇形OAB的面积 −△ 的面积
=
×
− × ×
×
= −
.
人教版 九年级数学上册 第24章 24.4弧长和扇形面积 专题练习(含答案)

人教版 九年级数学上册 第24章 24.4弧长和扇形面积 专题练习(含答案)基础巩固1.⊙的内接多边形周长为3 ,⊙的外切多边形周长为3.4, 则下列各数中与此圆的周长最接近的是( )AB. D2.如图已知扇形的半径为6cm ,圆心角的度数为,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为( )A .B .C .D .3.若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是A .40°B .80°C .120°D .150°4.艳军中学学术报告厅门的上沿是圆弧形,这条弧所在圆的半径为1.8 米,所对的圆心角为100°,则弧长是 米.(π≈3) 【参考答案】 1. C 2. D 3. C 4. 3O O 10AOB 120°24πcm 26πcm 29πcm 212πcm 120 BOA6cm能力提高 一、选择题1.如图,已知的半径,,则所对的弧的长为( ) A .B .C .D .2.将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为 ( )A .10cmB .30cmC .40cmD .300cm3.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是( ) A .1.5B .2C .3D .64.有30%圆周的一个扇形彩纸片,该扇形的半径为40cm ,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为( ).A.9°B.18°C.63°D.72°5.已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图所示),则sin θ的值为( )A.B. C. D. O ⊙6OA =90AOB ∠=°AOB ∠AB 2π3π6π12π125135131013126.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径高则这个圆锥漏斗的侧面积是( ) A . B . C . D .二、填空题1.,圆心角等于450的扇形AOB 内部作一个正方形CDEF ,使点C 在OA上,点D .E 在OB 上,点F 在上,则阴影部分的面积为(结果保留) .2.如图,方格纸中4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为 (结果保留).3.将一块含30°角的三角尺绕较长直角边旋转一周得一圆锥,这个圆锥的高是3,则圆锥的侧面积是____.4.如图,三角板中,,,.三角板绕直角顶点逆时针旋转,当点的对应点落在边的起始位置上时即停止转动,则点转过的路径长为 .6cm OB =,8cm OC =.230cm 230cm π260cm π2120cm AB ππABC ︒=∠90ACB ︒=∠30B 6=BC C A 'A AB B 第2题图5.已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留).6.矩形ABCD的边AB =8,AD =6,现将矩形ABCD 放在直线l 上且沿着l 向右作无滑动地翻滚,当它翻滚至类似开始的位置时(如图所示),则顶点A 所经过的路线长是_________.7.已知在△ABC 中,AB=6,AC=8,∠A=90°,把Rt△ABC 绕直线AC 旋转一周得到一个圆锥,其表面积为,把Rt△ABC 绕直线AB 旋转一周得到另一个圆锥,其表面积为,则:等于_________ 三、解答题1.如图,有一个圆O 和两个正六边形,.的6个顶点都在圆周上,的6条边都和圆O 相切(我们称,分别为圆O 的内接正六边形和外切正六边形).(1)设,的边长分别为,,圆O 的半径为,求及的值; (2)求正六边形,的面积比的值.π1111A B C D 1S 2S 1S 2S 1T 2T 1T 2T 1T 2T 1T 2T a b r a r :b r :1T 2T 21:S SB 'A CAB 第4题2.如图,圆心角都是90º的扇形OAB 与扇形OCD 叠放在一起,连结AC ,BD .(1)求证:AC=BD ; (2)若图中阴影部分的面积是,OA=2cm ,求OC 的长.3.如图,已知菱形的边长为,两点在扇形的上,求的长度及扇形的面积.2 43cm ABCD 1.5cm B C ,AEF ABCBCD AEF【参考答案】 选择题 1. B 2. A3. C4. B5. A6. C 填空题 1.2. 3. 18π 4. 5. 6. 7. 2∶3 解答题1.解:(1)连接圆心O 和T 的6个顶点可得6个全等的正三角形 .所以r∶a=1∶1;连接圆心O 和T 相邻的两个顶点,得以圆O 半径为高的正三角形, 所以r∶b=∶2;(2) T ∶T 的连长比是∶2,所以S ∶S = . 2. (1)证明:2385-π∏83π22ππ24123123124:3):(2=b a(2)根据题意得:;∴ 解得:OC =1cm .3. 解:四边形是菱形且边长为1.5,.又两点在扇形的上,,是等边三角形..的长(cm )BDAC BOD AOC DO CO BO AB BOD AOC AODBOD AOD AOC COD AOB =⇒∆≅∆⇒⎪⎭⎪⎬⎫==∠=∠⇒∠+∠=∠+∠⇒∠∠ 900==360)(9036090360902222OC OA OC OA S -=-=πππ阴影360)2(904322OC -=ππABCD 1.5AB BC ∴==B C 、AEF 1.5AB BC AC ∴===ABC ∴△60BAC ∴∠=°21805.160ππ=∙=ππ835.122121=∙∙==lR S ABC 扇形)(2cm。
24.4 弧长和扇形面积(共2课时)

24.4 弧长和扇形面积(共2课时)第一课时: 弧长和扇形面积教学内容1.n °的圆心角所对的弧长L=180n Rπ 2.扇形的概念;3.圆心角为n °的扇形面积是S 扇形=2360n R π;4.应用以上内容解决一些具体题目. 教学目标了解扇形的概念,理解n•°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.通过复习圆的周长、圆的面积公式,探索n °的圆心角所对的弧长L=2180n R π和扇形面积S 扇=2360n R π的计算公式,并应用这些公式解决一些题目.重点:n °的圆心角所对的弧长L=180n R π,扇形面积S 扇=2360n R π及其它们的应用.难点:两个公式的应用.关键:由圆的周长和面积迁移到弧长和扇形面积公式的过程. 教学过程一、复习引入老师口问,学生口答 1.圆的周长公式是什么? 2.圆的面积公式是什么? 3.什么叫弧长?(1)圆的周长C=2πR (2)圆的面积S 图=πR 2(3)弧长就是圆的一部分. 课件)请同学们独立完成下题:设圆的半径为R ,则: 1.圆的周长可以看作______度的圆心角所对的弧. 2.1°的圆心角所对的弧长是_______. 3.2°的圆心角所对的弧长是_______. 4.4°的圆心角所对的弧长是_______. ……5.n °的圆心角所对的弧长是_______.我们可得到:n °的圆心角所对的弧长为180Rn l π=例1、已知圆弧的半径为50厘米,圆心角为60°,求此圆弧的长度。
说明:没有特别要求,结果保留π。
例2、课本111页例题 课堂练习1、制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即 AB 的长(结果精确到0.1mm )(幻灯片7).c分析:要求 AB 的弧长,圆心角知,半径知,只要代入弧长公式即可. 解:R=40mm ,n=110∴ AB 的长=180n R π=11040180π⨯≈76.8(mm ) 因此,管道的展直长度约为76.8mm .扇形的定义:由组成圆心角的两条半径和圆心角所对的弧围成的图形是扇形。
弧长和扇形面积2

自学指导2
认真阅读p111的例1注意解题 格式
巩固练习
课本P112练习3.
尝试练习2
已知扇形的圆心角为120°,半径为2, 则这个扇形的面积为多少?
S扇形
S扇形
n R 120 2 4 360 3 360
2
2
n n 4 2 120 2 S圆 R ( 2 ) 360 360 360 3
3
例题回顾
1、如图,水平放置的圆柱形排水管道
的截面半径是0.6m,其中水面高0.3m. 求截面上有水部分的面积(精确到 0.01m2)
变式:如图、水平放置的圆柱形排水管 道的截面半径是0.6cm,其中水面高 0.9cm,求截面上有水部分的面积。 弓形的面积 = S 扇+ S △
A D E 0 B
当堂训练
l , R 3代入 3n nR l 180 180
2
已知扇形的半径为3cm,扇形的弧长为 πcm,则该扇形的面积是______cm2,
n 60
2
S扇形
nR 60 3 3 360 360 2
3、已知半径为2的扇形,面积4 4 3 为 ,则这个扇形的弧长=____.
(1)公式中n的意义.n表示1°圆心角的 倍数,它是不带单位的; (2)公式要理解记忆(即按照上面推导 过程记忆).
1.扇形的弧长和面积都由_______、_____决定 2.(当圆半径一定时)扇形的面积随着圆 增大 心角的增大而______。
0的扇形面积是多少? 3.圆心角是180
尝试练习2
圆心角是900的扇形面积是多少? 圆心角是2700的扇形面积是多少?
24.4.1 弧长和扇形面积 (二)
2019-2020学年人教版九年级上学期同步讲练专题24-4:弧长和扇形面积

专题24.4弧长和扇形面积(讲练)一、知识点1.正多边形与圆2.弧长和扇形面积的计算扇形的弧长l =180n r π;扇形的面积S =2360n r π=12lr3.圆锥与侧面展开图(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长. (2)计算公式:圆锥S 侧==πrl ,S=πr (l+r )注:易与勾股定理联系,先求母线长,再求面积二、标准例题:例1:如图,在矩形ABCD 中有对角线AC 与BD 相等,已知AB=4,BC=3,则有AB 2+BC 2=AC 2,矩形在直线MN 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转至图②位置……依次类推,则:(1)AC=__________.(2)这样连续旋转2019次后,顶点B 在整个旋转过程中所经过的路程之和是________.【答案】5 3028π【解析】(1)∵AB 2+BC 2=AC 2, AB=4,BC=3, ∴AC 2= 42+32=25, ∴AC=5;(2)转动一次B 的路线长是:0,转动第二次的路线长是:90331802π⨯=π,转动第三次的路线长是:90551802π⨯=π,转动第四次的路线长是:904180π⨯=2π,以此类推,每四次循环, 2019÷4=504余3,顶点B转动四次经过的路线长为:0+32π+52π+ 2π=6π,连续旋转2019次经过的路线长为:6π×504+0+32π+52π=3028π.故答案为:(1)5;(2)3028π.总结:本题考查弧长的计算、矩形的性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.例2:如图,在Rt△ABC中,∠ABC=90°,AB=BC=2,以AB的中点为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )A2π-B2π+C.πD.2π【答案】A【解析】连接OD,过点O作OH⊥AC,垂足为H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,∠ABC=90°,AB=BC=2,tan∠A=3BCAB==,∴∠A=30°,∴OH=12AH=AO•cos∠32=,∠BOC=2∠A=60°,∴AD=2AH=3,∴S阴影=S△ABC-S△AOD-S扇形BOD=2601123222360π⨯⨯-⨯⨯-=42π-,故选A.总结:本题考查了垂径定理,圆周角定理,扇形面积,解直角三角形等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.例3:如图,点C 为扇形OAB 的半径OB 上一点,将OAC ∆沿AC 折叠,点O 恰好落在»AB 上的点D 处,且¼¼:1:3BD AD ''=(¼BD'表示»BD 的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1:3B .1:πC .1:4D .2:9【答案】D【解析】解:连接OD 交AC 于M .由折叠的知识可得:12OM OA =,90OMA ∠=︒, 30OAM ∴∠=︒, 60AOM ∴∠=︒,Q 且¼¼:1:3BD AD ''=,80AOB ∴∠=︒设圆锥的底面半径为r ,母线长为l ,802180lr ππ=, :2:9r l ∴=.故选:D.总结:本题考查的是扇形,熟练掌握圆锥的弧长公式和圆的周长公式是解题的关键.三、练习1.1.如图,已知在⊙O中,AF=6,AC是直径,AC⊥BD于F,图中阴影部分的面积是()A.8233π-B.16233π-C.8433π-D.16433π-【答案】D【解析】解:∵AC是直径,AC⊥BD于F,∴BF=DF,¶·BC DC=,∴∠BAC=∠DAC,在RT△ABF中,2223BF AB AF=-=∴BD=2BF=43,连接OB、OD、BC,∵AC是直径,∴∠ABC=90°,∴BF2=AF•FC,即(2=6FC,∴FC=2,∴直径AC=AF+FC=6+2=8, ∴⊙O 的半径为4,∵AF=6,∴cosAF BAF AB ∠===∴∠BAF=30°, ∴∠BAD=60°, ∴∠BOD=120°, ∵OC=4,FC=2, ∴OF=2,∴=BOD S S S ∆-阴影扇形21204116236023ππ⨯=-⨯=-故选择:D.2.圆锥的底面半径是5cm ,侧面展开图的圆心角是180°,圆锥的高是( )A .B .10cmC .6cmD .5cm【答案】A【解析】设圆锥的母线长为R , 根据题意得2π•5180180Rπ=, 解得R =10.即圆锥的母线长为10cm ,=.3.如图,在△ABC 中,∠ACB =90°,分别以AC ,BC ,AB 为直径作半圆,记三个半圆的弧长分别为m ,n ,l ,则下列各式成立的是( )A .m +n <lB .m +n =lC .m 2+n 2>l 2D .m 2+n 2=l 2【解析】解:由勾股定理得,AC2+BC2=AB2,m=12×π×AC,n=12×π×BC,1=12×π×AB,∴m2=14×π2×AC2,n2=14×π2×BC2,12=14×π2×AB2,∴m2+n2=14×π2×(AC2+BC2)=14×π2×AB2=12,故选:D.4.一个扇形的半径为6,圆心角为120°,则该扇形的面积是( )A.2πB.4πC.12πD.24π【答案】C【解析】S=2120612360ππ⨯⨯=,故选C.5.如图,在△ABC中,AB=6,将△ABC绕点A通时针旋转40°后得到△ADE,点B经过的路径为»BD,则图中阴影部分的面积是()A.23πB.43πC.4πD.条件不足,无法计算【答案】C【解析】解:由旋转的性质可知,S△ADE=S△ABC,则阴影部分的面积=S△ADE+S扇形DAB﹣S△ABC=S扇形DAB=2 40π6 360⨯=4π,6.如图,在正方形ABCD 中,边长AB =1,将正方形ABCD 绕点A 按逆时针方向旋转180°至正方形AB 1C 1D 1,则线段CD 扫过的面积为( )A .4πB .2π C .πD .2π【答案】B 【解析】解:∵将正方形ABCD 绕点A 按逆时针方向旋转180°至正方形AB 1C 1D 1,∴CC 1∴线段CD 扫过的面积=12×2•π-12×π=12π, 故选:B .7.已知的扇形的圆心角为45︒,半径长为12,则该扇形的弧长为 A .12π B .3πC .2πD .34π【答案】B 【解析】 根据弧长公式:l=4512180πg g =3π,8.一个圆锥形的圣诞帽高为 10cm ,母线长为 15cm ,则圣诞帽的表面积为( )A . cm 2B . cm 2C . cm 2D .π cm 2【答案】A【解析】解:高为10cm ,母线长为15cm ,由勾股定理得,底面半径cm ,底面周长,侧面面积=122. 故选:A .9.如图,扇形OAB 的圆心角为90°,分别以OA ,OB 为直径在扇形内作半圆,P 和Q 分别表示两个阴影部分的面积,那么P 和Q 的大小关系是( )A .P >QB .P <QC .P =QD .无法确定【答案】C【解析】设OA =a ,扇形OAB 的面积=22903604a a ππ⨯=, 以OA ,OB 为直径在扇形内作的半圆的面积=221a a ()228ππ⨯⨯=P =扇形OAB 的面积﹣(以OA 为直径的半圆的面积+以OB 为直径的半圆的面积)+Q =2248a a ππ-×2+Q=Q 故选C .10.如图,圆锥的底面半径r =6,高h =8,则圆锥的侧面积是( )A .15πB .30πC .45πD .60π【答案】D【解析】解:圆锥的母线10l ===, ∴圆锥的侧面积10660ππ=⋅⋅=, 故选:D .11.如图,四边形ABCD 为矩形,以A 为圆心,AD 为半径的弧交AB 的延长线于点E ,连接BD ,若AD=2AB=4,则图中阴影部分的面积为______.【答案】434 【解析】解:BC 交弧DE 于F ,连接AF ,如图,AF=AD=4, ∵AD=2AB=4 ∴AB=2,在Rt △ABF 中,∵sin ∠AFB=24=12, ∴∠AFB=30°,∴∠BAF=60°,∠DAF=30°,∴图中阴影部分的面积=S扇形ADF+S△ABF-S△ABD=2304360π⋅⋅+1212×2×4=434.12.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为_____cm2.(结果保留π)【答案】1 4π【解析】解:∵∠BOC=60°,△B′OC′是△BOC绕圆心O逆时针旋转得到的,∴∠B′OC′=60°,△BCO≅△B′C′O,∴∠B′OC=60°,∠C′B′O=30°,∴∠B′OB=120°,∵AB=2cm,∴OB=1cm,OC′=12,∴S扇形B′OB=2120π1360⨯=13π,S扇形C′OC=1120π4360⨯=π12,∵阴影部分面积=S扇形B′OB+S△B′C′O﹣S△BCO﹣S扇形C′OC∴阴影部分面积=S扇形B′OB+S△B′C′O﹣S△BCO﹣S扇形C′OC=S扇形B′OB﹣S扇形C′OC=13π﹣π12=14π;故答案为:14π.13.如图,在扇形OAB中,半径OA与OB的夹角为120︒,点A与点B的距离为OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为______.【答案】43【解析】解:连接AB ,过O 作OM AB ⊥于M ,∵120AOB ∠=︒,OA OB =,∴30BAO ∠=︒,AM =∴2OA =, ∵24022180r ππ⨯=, ∴43r = 故答案是:43 14.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=o ,则该圆锥的母线长l 为___cm .【答案】6.【解析】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则:1204180R ππ⨯=, 解得6R =,故答案为:6.15.已知圆锥的底面半径是1_____度.【答案】90【解析】解:设圆锥的母线为a ,根据勾股定理得,a 4= ,设圆锥的侧面展开图的圆心角度数为n ︒ , 根据题意得n 421180ππ⨯⨯= ,解得90n = , 即圆锥的侧面展开图的圆心角度数为90︒.故答案为:90.16.如图,Rt ABC △中,90A ∠=︒,CD 平分ACB ∠交AB 于点D ,O 是BC 上一点,经过C 、D 两点的O e 分别交AC 、BC 于点E 、F ,AD =60ADC ∠=︒,则劣弧»CD的长为_______________【答案】43π 【解析】连接DF ,OD ,∵CF 是⊙O 的直径,∴∠CDF=90°,∵∠ADC=60°,∠A=90°,∴∠ACD=30°,∵CD 平分∠ACB 交AB 于点D ,∴∠DCF=30°,∵OC=OD ,∴∠OCD=∠ODC=30°,∴∠COD=120°,在Rt △CAD 中,在Rt △FCD 中,CF=cos CD DCF∠=4, ∴⊙O 的半径=2, ∴劣弧»CD的长=1202180π⨯=43π, 故答案为:43π. 17.将圆心角为216︒,半径为5cm 的扇形围成一个圆锥的侧面,那么围成的这个圆锥的高为_______cm .【答案】4【解析】解:设圆锥的底面圆的半径为r , 根据题意得21652180r ππ⨯=,解得3r =,所以圆锥的高()4cm ==.故答案为4.18.如图所示,当半径为30cm 的转动轮转过120°角时,传送带上的物体A 平移的距离为多少厘米?(保留π)【答案】20πcm 【解析】12038001π⨯ =20πcm . 故答案为:20πcm .19.如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC 的三个顶点的坐标分别为A (﹣3,4),B (﹣5,2),C (﹣2,1).(1)画出△ABC 关于y 轴的对称图形△A 1B 1C 1;(2)画出将△ABC 绕原点O 逆时针方向旋转90°得到的△A 2B 2C 2;(3)求(2)中点C 运动的路径长.【答案】(1)见解析;(2)见解析;(3【解析】(1)如图,△A 1B 1C 1即为所求;(2)如图,△A 2B 2C 2即为所求;(3)如图所示:=点C 运动的路径长为:14π⨯⨯=20.如图,阴影部分表示以直角三角形各边为直径的三个半圆所组成的两个新月形,已知S 1+S 2=5,且AC+BC =6,求AB 的长.【答案】4AB =.【解析】Rt ABC ∆,∵222AC BC AB +=, ∴222444AC BC AB πππ⋅+⋅=⋅, 即:AC BC AB S S S +=半圆半圆半圆,根据等式性质,两边都减去两个弓形面积,则12ABC S S S ∆+=,∵125S S +=, ∴152ABC S AC BC ∆=⋅=, ∴10AC BC ⋅=.∵6AC BC +=,∴()2222AC BC AC BC AC BC +-⋅=+2621016=-⨯=,即216AB =,∴4AB =.21.如图,AB 为O e 的直径,且AB =C 是¶AB 上的一动点(不与A ,B 重合),过点B 作O e 的切线交AC 的延长线于点D ,点E 是BD 的中点,连接EC .(1)求证:EC 是O e 的切线;(2)当30D ︒∠=时,求阴影部分面积.【答案】(1)证明见解析;(2)阴影部分面积为4π.【解析】(1)如图,连接BC ,OC ,OE ,Q AB 为O e 的直径,ACB 90∠︒∴=,在Rt ΔBDC 中,BE ED =Q ,DE EC BE ∴==,OC OB =Q ,OE OE =,()ΔOCE ΔOBE SSS ∴≅,OCE OBE ∠∠∴=,Q BD 是O e 的切线,ABD 90∠︒∴=,OCE ABD 90∠∠︒∴==,Q OC 为半径,∴EC 是O e 的切线;(2)OA OB =Q ,BE DE =,AD OE ∴P ,D OEB ∠∠∴=,D 30∠︒=Q ,OEB 30∠︒∴=,EOB 60∠︒=,BOC 120∠︒∴=,AB =QOB ∴=BE 6∴==.∴四边形OBEC的面积为ΔOBE 12S 262=⨯⨯⨯=, ∴阴影部分面积为(2OBEC BOC 120πS S 4π360⋅⨯-==四边形扇形.22.如图,等边三角形ABC 的边长为2,以A 为圆心,1为半径作圆分别交AB ,AC 边于D ,E ,再以点C 为圆心,CD 长为半径作圆交BC 边于F ,连接E ,F ,那么图中阴影部分的面积为________.【答案】31224π+- . 【解析】过A 作AM BC ⊥于M ,EN BC ⊥于N ,Q 等边三角形ABC 的边长为2,60BAC B ACB ∠=∠=∠=︒,222AM BC ∴===, 1AO AE ==Q ,,AD BD AE CE ∴==,12EN AM ∴==∴图中阴影部分的面积()ABC CEF BCD ADE DCF S S S S S ∆∆∆----扇形扇形=122=⨯601360π⨯•12-⨯11303222360π⨯⎛⎫-⨯⨯ ⎪⎝⎭•3124π=,故答案为:3124π.。
人教版九年级上册数学 第24章《圆》讲义 第讲 正多边形和圆弧长和扇形面积(有答案)

第17讲 正多边形和圆、弧长和扇形面积 第一部分 知识梳理 知识点一:圆与内正多边形的计算1、正三角形 在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::1:3:2OD BD OB =;2、正四边形 同理,四边形的有关计算在Rt OAE ∆中进行,::1:1:2OE AE OA =3、正六边形 同理,六边形的有关计算在Rt OAB ∆中进行,::1:3:2AB OB OA = 知识点二、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:180n R l π=; (2)扇形面积公式: 213602n R S lR π== n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积2、圆柱侧面展开图:3、圆锥侧面展开图第二部分 考点精讲精练考点1、正多边形和圆的求解例1、六边形的边长为10cm ,那么它的边心距等于( )A .10cmB .5cmC .cm D .cm 例2、已知正多边形的边心距与边长的比为21,则此正多边形为( ) A .正三角形 B .正方形 C .正六边形 D .正十二边形例3、如图,在⊙O 内,AB 是内接正六边形的一边,AC 是内接正十边形的一边,BC 是内接正n 边形的一边,那么n= .例4、圆的内接正六边形边长为a,这个圆的周长为.例5、如图,已知边长为2cm的正六边形ABCDEF,点A1,B1,C1,D1,E1,F1分别为所在各边的中点,求图中阴影部分的总面积S.举一反三:1、下列命题中的真命题是()A.三角形的内切圆半径和外接圆半径之比为2:1B.正六边形的边长等于其外接圆的半径C.圆外切正方形的边长等于其边A心距的倍D.各边相等的圆外切多边形是正方形2、已知正方形的边长为a,其内切圆的半径为r,外接圆的半径为R,则r:R:a=()A.1:1:B.1::2 C.1::1 D.:2:43、某工人师傅需要把一个半径为6cm的圆形铁片加工截出边长最大的正六边形的铁片,则此正六边形的边长为 cm.4、如图,正六边形与正十二边形内接于同一圆⊙O中,已知外接圆的半径为2,则阴影部分面积为.5、如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).(1)求证:四边形PEQB为平行四边形;(2)填空:①当t= s时,四边形PBQE为菱形;②当t= s时,四边形PBQE为矩形.考点2、弧长的计算例1、一条弧所对的圆心角是90°,半径是R,则这条弧长是()A.B.C.D.例2、一个滑轮起重装置如图所示,滑轮半径是10cm,当重物上升10cm时,滑轮的一条半径OA绕轴心O,绕逆时针方向旋转的角度约为(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1°)()A.115°B.160°C.57°D.29°例3、已知:如图,四边形ABCD内接于⊙O,若∠BOD=120°,OB=1,则∠BAD= 度,∠BCD= 度,弧BCD的长= .例4、如图,在Rt△ABC中,∠C=90°,∠A=60°,AC=cm,将△ABC绕点B旋转至△A′BC′的位置,且使点A、B、C′三点在一条直线上,则点A经过的最短路线的长度是.例5、如图,菱形ABCD的边长为6,∠BAD=60°,AC为对角线.将△ACD绕点A逆时针旋转60°得到△AC′D′,连接DC′.(1)求证:△ADC≌△ADC′;(2)求在旋转过程中点C扫过路径的长.(结果保留π)举一反三:1、弧长为6π的弧所对的圆心角为60°,则弧所在的圆的半径为()A.6 B.6C.12D.182、如图,一块边长为10cm的正方形木板ABCD,在水平桌面上绕点D按顺时针方向旋转到A′B′C′D′的位置时,顶点B从开始到结束所经过的路径长为()A.20cm B.20cm C.10πcm D.5πcm3、一段铁路弯道成圆弧形,圆弧的半径是2km.一列火车以每小时28km的速度经过10秒通过弯道.那么弯道所对的圆心角的度数为度.(π取3.14,结果精确到0.1度).4、已知矩形ABCD的长AB=4,宽AD=3,按如图放置在直线AP上,然后不滑动地转动,当它转动一周时(A→A′),顶点A所经过的路线长等于.5、如图,在一个横截面为Rt△ABC的物体中,∠CAB=30°,BC=1米.工人师傅把此物体搬到墙边,先将AB边放在地面(直线l)上,再按顺时针方向绕点B翻转到△A1B1C1的位置(BC1在l上),最后沿BC1的方向平移到△A2B2C2的位置,其平移的距离为线段AC的长度(此时A2C2恰好靠在墙边).(1)请直接写出AB、AC的长;(2)画出在搬动此物的整个过程A点所经过的路径,并求出该路径的长度(精确到0.1米).考点3、扇形面积的计算例1、已知五个半径为1的圆的位置如图所示,各圆心的连线构成一个五边形,那么阴影部分的面积是()A.B.2π C.D.3π例2、一个商标图案如图中阴影部分,在长方形ABCD中,AB=8cm,BC=4cm,以点A 为圆心,AD为半径作圆与BA的延长线相交于点F,则商标图案的面积是()A.(4π+8)cm2 B.(4π+16)cm2C.(3π+8)cm2 D.(3π+16)cm2例3、如图,E是正方形ABCD内一点,连接EA、EB并将△BAE以B为中心顺时针旋转90°得到△BFC,若BA=4,BE=3,在△BAE旋转到△BCF的过程中AE扫过区域面积.例4、如图,有一直径为1米的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形,则剩下部分的(阴影部分)的面积是.例5、如图,已知P为正方形ABCD内一点,△ABP经过旋转后到达△CBQ的位置.(1)请说出旋转中心及旋转角度;(2)若连接PQ,试判断△PBQ的形状;(3)若∠BPA=135°,试说明点A,P,Q三点在同一直线上;(4)若∠BPA=135°,AP=3,PB=,求正方形的对角线长;(5)在(4)的条件下,求线段AP在旋转过程中所扫过的面积.举一反三:1、若一个扇形的面积是相应圆的41,则它的圆心角为( ) A .150° B .120° C .90° D .60°2、如图所示的4个的半径均为1,那么图中的阴影部分的面积为( )A .π+1B .2πC .4D .63、如图,O 为圆心,半径OA=OB=r ,∠AOB=90°,点M 在OB 上,OM=2MB ,用r 的式子表示阴影部分的面积是 .4、如图,直角△ABC 的直角顶点为C ,且AC=5,BC=12,AB=13,将此三角形绕点A 顺时针旋转90°到直角△AB′C′的位置,在旋转过程中,直角△ABC 扫过的面积是 .(结果中可保留π)5、如图,四边形ABCD 是长方形,AB=a ,BC=b (a >b ),以A 为圆心AD 长为半径的圆与CD 交于D ,与AB 交于E ,若∠CAB=30°,请你用a 、b 表示图中阴影部分的面积.考点4、圆锥侧面积计算例1、如果圆锥的高为3cm ,母线长为5cm ,则圆锥的侧面积是( )A .16πcm 2B .20πcm 2C .28πcm 2D .36πcm 2例2、新疆哈萨克族是一个游牧民族,喜爱居住毡房,毡房的顶部是圆锥形,如图所示,为防雨需要在毡房顶部铺上防雨布.已知圆锥的底面直径是5.7m ,母线长是3.2m ,铺满毡房顶部至少需要防雨布(精确到1m 2)( )A .58 m 2B .29 m 2C .26 m 2D .28 m 2例3、扇形的圆心角为150°,半径为4cm ,用它做一个圆锥,那么这个圆锥的表面积为 cm 2.例4、在十年文革期间的“高帽子”.这种“高帽子”是用如图①所示的扇形硬纸板,做成如图②所示的无底圆锥体.已知接缝的重叠部分的圆心角为30°.(1)求重叠部分的面积.(结果保留π)(2)计算这顶“高帽子”有多高?(结果保留根号)例5、已知:一个圆锥的侧面展开图是半径为20cm,圆心角为120°的扇形,求这圆锥的底面圆的半径和高.举一反三:1、若圆锥的侧面积为12πcm2,它的底面半径为3cm,则此圆锥的母线长为()A.4πcm B.4 cm C.2πcm D.2 cm2、圆锥的轴截面是一个等腰三角形,它的面积是10cm2,底边上的高线是5cm,则圆锥的侧面展开图的弧长等于()A.87πcm B.47πcm C.8 cm D.4 cm3、如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的高为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、基础知识
1.了解母线的概念
连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线
注:①圆锥的母线都相等②圆锥的母线l,圆锥的高h,圆锥底面圆的半径r恰好构成一个直角三角形,满足r²+h²=l²
2.熟练掌握圆锥的侧面积和全面积,并会解决实际问题。
若圆锥的底面半径为r,母线长为l,则
1
=l r=rl S==
2
S S S
•+
侧侧
全底
2ππ,πrl+πr²
二、重难点分析
本课教学重点:有关圆锥的侧面积和全面积的计算及解决实际问题。
本课教学难点:用圆锥的侧面积和全面积解决实际问题。
三、典例精析:
例1:(2014•淮安)如图,圆锥的母线长为2,底面圆的周长为3,则该圆锥的侧面积为()
A.3πB.3 C.6πD.6
例2 (2014•襄阳)用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为()
A.1
2
B.1 C.
3
2
D.2
四、感悟中考
1、(2014•山东聊城)如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为.
故答案为:300π.
【点评】本题考查了圆锥的计算及扇形的面积的计算,解题的关键是牢记计算公式.
2、(2014•牡丹江)如图,如果从半径为3cm的圆形纸片上剪去1
3
圆周的一个扇
形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径是cm
五、专项训练。
(一)基础练习
1、(2014•泉州)如图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:
(1)AB的长为米;
(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为米.
【答案】(1)2(2)1 4
2、(2014•锦州)如图,在一张正方形纸片上剪下一个半径为r的圆形和一个半径为R的扇形,使之恰好围成图中所示的圆锥,则R与r之间的关系是.
【解答】
解:扇形的弧长是:90
180
πR
=
2
πR
3、(2013•佛山)如图,圆锥的侧面展开图是一个半圆,求母线AB与高AO的夹角.参考公式:圆锥的侧面积S=πrl,其中r为底面半径,l为母线长.
的三角函数值求得角的度数,所以熟记特殊角三角函数值是关键.
4、已知圆锥的侧面积为16πcm2.
(1)求圆锥的母线长L(cm)关于底面半径r(cm)之间的函数关系式;
(2)写出自变量r的取值范围;
(3)当圆锥的侧面展开图是圆心角为90°的扇形时,求圆锥的高.
(二)提升练习
1. 如图,已知在⊙O中,AB,AC是⊙O的直径,AC⊥BD于F,∠A=30°.(1)求图中阴影部分的面积;
(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.(3)试判断⊙O中其余部分能否给(2)中的圆锥做两个底面.
(3)∵OB=4>4 3
∴⊙O中其余部分能给(2)中的圆锥做两个底面.
【点评】本题考查了扇形面积的计算,以及圆周角定理、垂径定理和勾股定理,是基础知识要熟练掌握.
2、(2013•江东区模拟)【问题】如图1、2是底面半径为1cm,母线长为2cm的圆柱体和圆锥体模型.现要用长为2πcm,宽为4cm的长方形彩纸(如图3)装饰圆柱、圆锥模型表面.已知一个圆柱和一个圆锥模型为一套,长方形彩纸共有122张,用这些纸最多能装饰多少套模型呢?
学生甲:“可按图4方式裁剪出2张长方形.”
学生乙:“可按图5方式裁剪出6个小圆.”
学生丙:“可按图6方式裁剪出1个大圆和2个小圆.”
【解决】(1)计算:圆柱的侧面积是cm²,圆锥的侧面积是cm².
(2)1张长方形彩纸剪拼后最多能装饰个圆锥模型;5张长方形彩纸剪拼后最多能装饰个圆柱体模型.
(3)求用122张彩纸对多能装饰的圆锥、圆柱模型套数.
圆柱体模型.
【点评】考查了圆锥、圆柱的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.。