电磁感应与电路知识的综合
高三物理第二轮专题复习 专题四电磁感应与电路教案 人教版

专题四 电磁感应与电路一、考点回顾“电磁感应”是电磁学的核心内容之一,同时又是与电学、力学知识紧密联系的知识点,是高考试题考查综合运用知识能力的很好落脚点,所以它向来高考关注的一个重点和热点,本专题涉及三个方面的知识:一、电磁感应,电磁感应研究是其它形式有能量转化为电能的特点和规律,其核心内容是法拉第电磁感应定律和楞次定律;二、与电路知识的综合,主要讨论电能在电路中传输、分配,并通过用电器转化为其它形式的能量的特点及规律;三、与力学知识的综合,主要讨论产生电磁感应的导体受力、运动特点规律以及电磁感应过程中的能量关系。
由于本专题所涉及的知识较为综合,能力要求较高,所以往往会在高考中现身。
从近三年的高考试题来看,无论哪一套试卷,都有这一部分内容的考题,题量稳定在1~2道,题型可能为选择、实验和计算题三种,并且以计算题形式出现的较多。
考查的知识:以本部分内容为主线与力和运动、动量、能量、电场、磁场、电路等知识的综合,感应电流(电动势)图象问题也经常出现。
二、典例题剖析根据本专题所涉及内容的特点及高考试题中出的特点,本专题的复习我们分这样几个小专题来进行:1.感应电流的产生及方向判断。
2.电磁感应与电路知识的综合。
3.电磁感应中的动力学问题。
4.电磁感应中动量定理、动能定理的应用。
5.电磁感应中的单金属棒的运动及能量分析。
6.电磁感应中的双金属棒运动及能量分析。
7.多种原因引起的电磁感应现象。
(一)感应电流的产生及方向判断1.(2007理综II 卷)如图所示,在PQ 、QR 区域是在在着磁感应强度大小相等、方向相反的匀强磁场,磁场方向均垂直于纸面,bc 边与磁场的边界P 重合。
导线框与磁场区域的尺寸如图所示。
从t =0时刻开始线框匀速横穿两个磁场区域。
以a →b →c →d →e →f 为线框中有电动势的正方向。
以下四个ε-t 关系示意图中正确的是【 】解析:楞次定律或左手定则可判定线框刚开始进入磁场时,电流方向,即感应电动势的方向为顺时针方向,故D 选项错误;1-2s 内,磁通量不变化,感应电动势为0,A 选项错误;2-3s 内,产生感应电动势E =2Blv +Blv =3Blv ,感应电动势的方向为逆时针方向(正方向),故C 选项正确。
高考物理知识点释义 电磁感应与电路结合问题

电磁感应与电路结合问题一、等效法处理电磁感应与电路结合问题解决电磁感应电路问题的关键就是借鉴或利用相似原型来启发理解和变换物理模型,即把电磁感应的问题等效转换成稳恒直流电路,把产生感应电动势的那部分导体等效为内电路.感应电动势的大小相当于电源电动势.其余部分相当于外电路,并画出等效电路图.此时,处理问题的方法与闭合电路求解基本一致,惟一要注意的是电磁感应现象中,有时导体两端有电压,但没有电流流过,这类似电源两端有电势差但没有接入电路时,电流为零. 二、电磁感应中的动力学问题这类问题覆盖面广,题型也多种多样;但解决这类问题的关键在于通过运动状态的分析来寻找过程中的临界状态,如速度、加速度取最大值或最小值的条件等,基本思路是:三、电磁感应中的能量、动量问题无论是使闭合回路的磁通量发生变化,还是使闭合回路的部分导体切割磁感线,都要消耗其它形式的能量,转化为回路中的电能。
这个过程不仅体现了能量的转化,而且保持守恒,使我们进一步认识包含电和磁在内的能量的转化和守恒定律的普遍性。
分析问题时,应当牢牢抓住能量守恒这一基本规律,分析清楚有哪些力做功,就可知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功,就可能有机械能参与转化;安培力做负功就将其它形式能转化为电能,做正功将电能转化为其它形式的能;然后利用能量守恒列出方程求解。
(一)电磁感应中的“双杆问题”电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。
要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。
1、“双杆”向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。
2.“双杆”同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向串联。
F=BIL临界状态v 与a 方向关系运动状态的分析a 变化情况 F=ma 合外力 运动导体所受的安培力感应电流确定电源(E ,r ) rR E I +=3. “双杆”中两杆都做同方向上的加速运动。
初中物理电磁感应知识点总结

初中物理电磁感应知识点总结一、电磁感应现象1、定义:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就会产生电流,这种现象叫做电磁感应,产生的电流叫做感应电流。
2、产生条件:(1)闭合电路;(2)一部分导体;(3)做切割磁感线运动。
需要注意的是,这三个条件缺一不可。
如果电路不闭合,只会产生感应电压,而不会有感应电流。
3、能的转化:在电磁感应现象中,机械能转化为电能。
例如,当我们手摇发电机时,通过转动把手,使导体在磁场中做切割磁感线运动,从而产生电能,此时就是将机械能转化为电能。
二、感应电流的方向1、影响因素:感应电流的方向与导体切割磁感线的运动方向和磁场方向有关。
2、右手定则:伸开右手,使大拇指与其余四指垂直,并且都跟手掌在同一个平面内,让磁感线垂直穿过手心,大拇指指向导体运动的方向,那么其余四指所指的方向就是感应电流的方向。
这个定则可以帮助我们快速判断感应电流的方向。
例如,当导体向右运动,磁场方向向上时,根据右手定则,我们可以判断出感应电流的方向是向前的。
三、发电机1、原理:发电机是根据电磁感应原理制成的。
2、构造:主要由定子(固定不动的部分)和转子(能够转动的部分)组成。
定子一般是磁极,转子一般是线圈。
当转子在磁场中转动时,就会产生感应电流。
3、能量转化:发电机工作时,将机械能转化为电能。
大型的发电机通常采用线圈不动、磁极旋转的方式来发电,这样可以产生更强、更稳定的电流。
四、电动机1、原理:电动机是利用通电导体在磁场中受到力的作用而运动的原理制成的。
2、构造:主要由定子、转子和换向器组成。
定子一般是磁极,转子一般是线圈。
换向器的作用是当线圈转过平衡位置时,自动改变线圈中的电流方向,使线圈能够持续转动。
3、能量转化:电动机工作时,将电能转化为机械能。
在日常生活中,我们使用的电风扇、洗衣机等电器,其内部都有电动机。
五、电磁感应的应用1、动圈式话筒:它是把声音的振动转化为电流的变化。
当声音使膜片振动时,与膜片相连的线圈在磁场中做切割磁感线运动,从而产生随声音变化的电流。
电磁感应定律及其应用知识点总结

电磁感应定律及其应用知识点总结电磁感应现象是物理学中非常重要的一个概念,它不仅为我们理解自然界中的许多现象提供了理论基础,还在实际生活和科技领域有着广泛的应用。
下面我们就来详细总结一下电磁感应定律及其应用的相关知识点。
一、电磁感应定律1、法拉第电磁感应定律法拉第电磁感应定律指出:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
如果用 E 表示感应电动势,ΔΦ 表示磁通量的变化量,Δt 表示时间的变化量,那么法拉第电磁感应定律可以表示为:E =nΔΦ/Δt,其中 n 是线圈的匝数。
这个定律告诉我们,只要磁通量发生变化,就会产生感应电动势。
而磁通量的变化可以由多种方式引起,比如磁场的变化、线圈面积的变化、线圈与磁场的夹角变化等。
2、楞次定律楞次定律是用来确定感应电流方向的定律。
它指出:感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
简单来说,如果磁通量增加,感应电流产生的磁场方向就与原磁场方向相反,以阻碍磁通量的增加;如果磁通量减少,感应电流产生的磁场方向就与原磁场方向相同,以阻碍磁通量的减少。
楞次定律的本质是能量守恒定律在电磁感应现象中的体现。
因为如果感应电流的方向不是这样,就会导致能量的无端产生或消失,这与能量守恒定律相违背。
二、电磁感应现象的产生条件要产生电磁感应现象,必须满足以下两个条件之一:1、穿过闭合电路的磁通量发生变化。
这可以是由于磁场的强弱变化、磁场方向的变化、闭合电路的面积变化或者闭合电路在磁场中的位置变化等原因引起的。
2、导体在磁场中做切割磁感线运动。
需要注意的是,如果导体整体都在匀强磁场中运动,而磁通量没有发生变化,是不会产生感应电流的。
三、电磁感应的应用1、发电机发电机是利用电磁感应原理将机械能转化为电能的装置。
在发电机中,通过转动线圈或者磁场,使线圈中的磁通量发生变化,从而产生感应电动势,向外输出电能。
常见的有交流发电机和直流发电机。
交流发电机产生的是交流电,其输出的电流方向和大小会周期性地变化;直流发电机则通过换向器等装置将交流电转化为直流电。
第15课时 电磁感应的综合分析

专题四 电路与电磁感应
第15课时 电磁感应的综合分析
CONTEN TS
提炼必备知识 ///////
突破高考题型 ///////
目
链接高考真题 ///////
录
课时跟踪训练 ///////
1
提炼必备知识
目录
提炼必备知识
创新设计
内容
创新设计
解析 由右手定则可知,D 点的电势低于 A 点的电势,选项 A 错误;角速度 ω =2πn,金属棒产生的感应电动势大小为 E=Brωr+22r=3πBnr2,选项 B 正确; 电容器极板间的电压 U=RE+RR=32πBnr2,电容器的电荷量为 Q=23πCBnr2,选项 C 错误;一质子在电容器中从 S 板附近运动到 T 板附近时,静电力所做的功为 W =Ue=3πe2Bnr2,选项 D 正确。
E=Blv
绕一端转动的一段导体棒
E=12Bl2ω
绕与 B 垂直的轴转动的导 从图示时刻计时 E=
线框
NBSωcos ωt
目录
突破高考题型
创新设计
3.感应电荷量的计算 磁通量变化迁移的电荷量:q=IΔt=ERΔt=nRΔΔΦt Δt=nΔRΦ,q 仅由回路电阻 R 和 磁通量的变化量 ΔΦ 决定。
目录
B.当图甲中匀强磁场增强,a中产生沿顺时针方向的电流,且有扩张的趋势
C.当图乙中的导体棒向右减速运动,环b中产生顺时针方向的电流,且有收缩
的趋势
D.当图乙中的导体棒向右匀速运动,环b中产生逆时针方向的电流,且有扩张
的趋势
目录
突破高考题型
创新设计
解析 当图甲中的匀强磁场减弱时,根据楞次定律可知,金属环a中产生沿顺 时针方向的感应电流,根据左手定则可知,金属环a所受的安培力指向环外, 有扩张的趋势,A错误;同理,当题图甲中的匀强磁场增强时,金属环a中产 生沿逆时针方向的感应电流,且有收缩的趋势,B错误;当题图乙中导体棒向 右减速运动时,根据右手定则可知,导线c中有顺时针方向且减小的感应电流, 根据楞次定律可知,金属环b产生顺时针方向的感应电流,再根据同向电流相 互吸引,导线c对金属环b的安培力指向圆心,金属环b有收缩的趋势,C正确; 当题图乙中的导体棒向右匀速运动时,根据右手定则可知,导线c中产生顺时 针方向的感应电流,且导线c中的感应电流恒定,产生的磁场也恒定,金属环 b中不会产生感应电流,D错误。
初中物理电与磁知识点总结

初中物理电与磁知识点总结
初中物理电与磁知识点总结如下:
1. 电流和电路:电流是电荷流动的现象,电路是导体和电源连接成闭合路径的装置。
电流的单位是安培(A),符号是I。
2. 电阻和电阻率:电阻是导体阻碍电流通过的程度,电阻的单位是欧姆(Ω),符号是R。
电阻率是物质本身的电阻程度,是一个材料的特性。
3. 电压和电动势:电压是电流在电路中的推动力,单位是伏特(V),符号是U。
电动势是电源提供给电路的电能,单位也是伏特(V),符号是E。
4. 串联和并联:串联是将电器依次连接在一起,电流相等,电压相加;并联是将电器同时连接在一起,电压相等,电流相加。
5. 电功和功率:电功是电流通过电路产生的功,单位是焦耳(J),符号是W。
功率是单位时间内产生的电功,单位是瓦特(W),符号是P。
6. 磁场和磁力线:磁场是磁体周围的力场,磁力线是表示磁场的线条。
磁力线从南极指向北极,不会相交。
7. 磁力和电流:安培定则说明电流会产生磁场,电流越大磁场越强;洛伦兹力定律说明磁场会对电流产生力,力的方向由左手定则确定。
8. 电磁感应和发电机:电磁感应是通过磁场的变化产生电压和电流的现象,法拉第定律说明感应电压和磁场变化率成正比;发电机是利用电磁感应原理将机械能转化为电能的装置。
9. 电磁铁和电动机:电磁铁是利用电流在导线中产生磁场的原理,使铁芯具有磁性;电动机是利用电磁感应原理将电能转化为机械能的装置。
10. 右手定则:右手螺旋定则用于确定磁场、电流和力的方向;右手法则用于确定电流在磁场中受力的方向。
(完整版)电与磁知识点总结

引言概述:电与磁是物理学的基本知识,广泛应用于科学、工程和日常生活中。
本文将对电与磁的知识点进行总结,包括电荷、电场、电流、磁场和电磁感应等主要内容。
通过深入理解这些知识点,我们能够更好地理解电子设备的工作原理,以及电和磁在各种应用中的作用。
正文内容:1.电荷:1.1原子结构中的电子与质子1.2电子的带电性质和电荷的量子化1.3电荷守恒定律和库仑定律1.4电磁力和静电场2.电场:2.1电场的概念和性质2.2电场强度和电场线2.3电势和电势差2.4高斯定律和电场能2.5电容和电场中的电介质3.电流:3.1电流的概念和电流密度3.2电阻和欧姆定律3.3环路定律和基尔霍夫定律3.4电源和电动势3.5电功和功率4.磁场:4.1磁场的概念和性质4.2磁感应强度和磁场线4.3洛伦兹力和磁场能4.4磁场中的电流和安培定律4.5磁介质和磁感应强度的量子化5.电磁感应:5.1法拉第电磁感应定律和互感器5.2感生电动势和感应电流5.3洛伦兹力和电磁铁5.4电磁感应中的自感和互感5.5麦克斯韦方程组和电磁波总结:电与磁是物理学中非常重要的知识点,本文总结了电荷、电场、电流、磁场和电磁感应等方面的内容。
通过深入了解这些知识,我们能够更好地理解电子设备的工作原理,如电路中的电流流动和元器件中的电荷分布;同时,我们还能够理解电和磁在医学成像、通信技术和能源转换等领域中的应用。
电与磁的研究也为我们提供了深刻的物理现象和规律,推动了科学技术的发展。
因此,对于电与磁的研究和理解是非常有价值的。
希望通过本文的总结,读者能够加深对电与磁的认识,提高对这一领域的兴趣,并将这些知识应用于实际生活和工作中。
高考物理中电磁感应的考点和解题技巧有哪些

高考物理中电磁感应的考点和解题技巧有哪些在高考物理中,电磁感应是一个重要且具有一定难度的考点。
理解和掌握电磁感应的相关知识,以及熟练运用解题技巧,对于在高考中取得优异成绩至关重要。
一、电磁感应的考点1、法拉第电磁感应定律法拉第电磁感应定律是电磁感应的核心内容之一。
其表达式为:$E = n\frac{\Delta \Phi}{\Delta t}$,其中$E$ 表示感应电动势,$n$ 为线圈匝数,$\Delta \Phi$ 表示磁通量的变化量,$\Delta t$ 表示变化所用的时间。
这个考点通常会要求我们计算感应电动势的大小,或者根据给定的条件判断感应电动势的变化情况。
2、楞次定律楞次定律用于判断感应电流的方向。
其核心思想是:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
这一定律在解决电磁感应中的电流方向问题时经常用到,需要我们能够准确理解并运用“阻碍”这一概念。
3、电磁感应中的电路问题当导体在磁场中做切割磁感线运动或者磁通量发生变化时,会产生感应电动势,从而形成闭合回路中的电流。
在这类问题中,我们需要根据电路的基本规律,如欧姆定律、串并联电路的特点等,来计算电路中的电流、电压、电阻等物理量。
4、电磁感应中的能量转化问题电磁感应现象中,机械能与电能相互转化。
例如,导体棒在磁场中运动时,克服安培力做功,将机械能转化为电能;而电流通过电阻时,电能又转化为内能。
在解题时,需要运用能量守恒定律来分析能量的转化和守恒关系。
5、电磁感应与力学的综合问题这类问题通常将电磁感应现象与力学中的牛顿运动定律、功和能等知识结合起来。
例如,导体棒在磁场中受到安培力的作用,其运动情况会受到影响,我们需要综合运用电磁学和力学的知识来求解。
6、电磁感应中的图像问题包括磁感应强度$B$、磁通量$\Phi$、感应电动势$E$、感应电流$I$ 等随时间或位移变化的图像。
要求我们能够根据给定的物理过程,准确地画出相应的图像,或者从给定的图像中获取有用的信息,分析物理过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)用法拉第电磁感应定律和楞次定律(右手定则)确定感应
电动势的大小和方向; (2)画等效电路; (3)运用闭合电路欧姆定律、串并联电路的性质、电功率等 公式求解.
3.与上述问题相关的几个知识点 ΔΦ (1)电源电动势 E=Blv 或 E=n . Δt E (2)闭合电路欧姆定律 I= ; R+ r U 部分电路欧姆定律 I=R ; 电源的内电压 Ur=Ir; 电源的路端电压 U=IR=E-Ir. ΔΦ (3)通过导体的电荷量 q=IΔt=n R .
• 例2. 如图(a)所示,一个电阻值为R,匝数为n的圆形金属线圈与 阻值为2R的电阻R1连接成闭合回路.线圈的半径为r1.在线圈中半径为 r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t变化的关系图线如图(b)所示.图线与横、纵轴的截距分别 为t0和B0.导线的电阻不计.求0至t1时间内 • (1)通过电阻R1上的电流大小和方向; • (2)通过电阻R1上的电量q及电阻R1上产生的热量.
的焦耳热为Q.求:
(1)ab运动速度v的大小; (2)电容器所带的电荷量q.
• 例4.如图两个电阻器的阻值分别为R与2R,其余电阻不计,电容 器电容为C.匀强磁场磁感应强度为B,方向垂直纸面向里.金属棒 ab,cd的长度均为L.当棒以速度v向左切割磁感线运动,金属棒cd以 速度2v向右切割磁感线运动时,电容C的电量为多大?哪一个极板带 正电? a e c 2R C R
程中,线圈平面始终保持在竖直平面内且下边缘平行于磁场上边
界.设线圈Ⅰ、Ⅱ落地时的速度大小分别为v1、v2,在磁场中运动 时产生的热量分别为Q1、Q2,不计空气阻力,则 (
A.v1<v2,Q1<Q2
C.v1<v2,Q1>Q2 )
B.v1=v2,Q1=Q2
D.v1=v2,Q1<Q2
• 训练2.如图所示,磁感应强度B=0.2T的匀强磁场中有一折成30°角 的金属导轨aob,导轨平面垂直于磁场方向.一条直线MN垂直ob方向放 置在轨道上并接触良好.当MN以v=4m/s从导轨O点开始向右平动时,若 所有导线单位长度的电阻r=0.1Ω /m. • 求(1)经过时间t=1S后,闭合回路的感应电动势的 • 瞬时值和平均值. • (2)闭合回路中的电流大小和方向.
b
f
d
总结
• • • • 1、明确电源的电动势 2、明确电源的正负 3、明确电源的内阻 4、明确电路关系
训练1.(2010·安徽高考向里的匀强磁 场,两个边长相等的单匝闭合
正方形线圈Ⅰ和Ⅱ,分别用相
同材料、不同粗细的导线绕制(Ⅰ为细导线).两线圈在距磁场上界 面h高处由静止开始自由下落,再进入磁场,最后落到地面.运动过
例3.两根光滑的长直金属导轨
MN、M′N′平行置于同一水平面内,
导轨间距为l,电阻不计,M、M′处
接有如图9-3-7所示的电路,电路中 各电阻的阻值均为R,电容器的电容为
C.长度也为l、阻值同为R的金属棒ab垂直于导轨放置,导轨处于磁感应
强度为B、方向竖直向下的匀强磁场中.ab在外力作用下向右匀速运动 且与导轨保持良好接触,在ab运动距离为x的过程中,整个回路中产生
•
例1.如图所示,闭合矩形铜框的两条边与一闭合铜环相切,环可 沿矩形框的长边滑动,整个装置处于匀强磁场中,磁场方向垂直它们所 在的平面向里,当环向右运动时,下列说法中正确的是 • A.因铜环内磁通量不变,铜环中无电流 • B.矩形铜框中有顺时针方向的电流 C.矩形铜框中有逆时针方向的电流 D.铜环中一定有电流