数列专题训练包括通项公式求法和前n项和求法 的方法和习题

数列专题训练包括通项公式求法和前n项和求法 的方法和习题
数列专题训练包括通项公式求法和前n项和求法 的方法和习题

数列专题

1、数列的通项公式与前n 项的和的关系

11,

1,2

n n n s n a s s n -=?=?-≥?( 数列{}n a 的前n 项的和为12n n s a a a =+++L ).

2、等差数列的通项公式

*11(1)()

n a a n d dn a d n N =+-=+-∈;

3、等差数列其前n 项和公式为

1()2n n n a a s +=

1(1)2n n na d -=+211

()22

d n a d n =+-. 4、等比数列的通项公式

1*11()n n

n a a a q q n N q

-==

?∈; 5、等比数列前n 项的和公式为

11

(1),11,1n n a q q s q na q ?-≠?=-??=? 或 11,11,1

n n a a q

q q s na q -?≠?

-=??=?.

常用数列不等式证明中的裂项形式:

(1)(

1111n n =-+n(n+1)1111

()1

k n k =-+n(n+k);

(2) 211111()1211

k k k <=---+2k (3)211111111(1)(1)1k

k k k k k k k k

-

=<<=-++-- (4)

1111

(1)(2)2(1)(1)(2)n n n n n n n ??=-

??+++++??

; (5)

()()11

1!!1!

n n n n =-

++

(6)

=

<

<=1(1)n n >+)

一.数列的通项公式的求法

1.定义法:①等差数列通项公式;②等比数列通项公式。

例.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,

2

55a S =.求数列{}n a 的通项公式.

解:设数列{}n a 公差为)0(>d d

∵931,,a a a 成等比数列,∴9123a a a =,

即)8()2(1121d a a d a +=+d a d 12=?

∵0≠d , ∴d a =1………………………………①

∵255a S = ∴211)4(2

4

55d a d a +=??+

…………② 由①②得:531=a ,5

3=d

∴n n a n 5

353)1(53=?-+=

2.公式法:已知n S (即12()n a a a f n +++=L )求n a ,用作差法:{

11,(1),(2)

n n n S n a S S n -==-≥。 例.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式。

解:由1121111=?-==a a S a

当2≥n 时,有

,)1(2)(211n

n n n n n a a S S a -?+-=-=-- ,)1(22221----?+=n n n a a ……,.2212-=a a

经验证11=a 也满足上式,所以])1(2[3

2

12---+=n n n a

3.作商法:已知12()n a a a f n =L 求n a ,用作商法:(1),(1)()

,(2)

(1)

n f n f n a n f n =??=?≥?-?。

如数列}{n a 中,,11=a 对所有的2≥n 都有2321n a a a a n =Λ,则=+53a a ______ ;

4.累加法:

若1()n n a a f n +-=求n a :11221()()()n n n n n a a a a a a a ---=-+-++-L 1a +(2)n ≥。

例. 已知数列{}n a 满足211=a ,n

n a a n n ++

=+211

,求n a 。

解:由条件知:11

1)1(112

1+-=+=+=

-+n n n n n

n a a n n 分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累加之,即

)()()()(1342312--+??????+-+-+-n n a a a a a a a a

所以n

a a n 1

11-=-

211=

a Θ,n

n a n 1231121-=-+=∴ 例:已知数列,且a 1=2,a n +1=a n +n ,求a n.

解:n a a n n +=+1Θ

∴11-=--n a a n n ,221-=---n a a n n ,332-=---n a a n n ,···,112=-a a

将以上各式相加得13211-+???+++=-n a a n

又因为当n =1,22

)

11(121=-?+

=a 成立, ∴2

)

1(2-+

=n n a n )(*N n ∈

5.累乘法:已知

1()n n a f n a +=求n a ,用累乘法:121121

n n n n n a a a

a a a a a ---=????L (2)n ≥。 例. 已知数列{}n a 满足32

1=a ,n n a n n

a 1

1+=

+,求n a 。 解:由条件知

1

1+=+n n

a a n n ,分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累乘之,即

又321=a Θ,n

a n 32=

∴ 例:已知n n n a a a 3,311==+,求通项a n .

解:∵n n n a a 31=+

113--=n n n a a ,2213---=n n n a a ,… ,31

2=a a

把以上各项式子相乘得

∴12

)1(3

+-=n

n n a

又当n=1时,33

12

1

)11(1==+?-a 成立

∴12

)1(3

+-=n

n n a

6.已知递推关系求n a ,用构造法(构造等差、等比数列)。

(1)形如()n f pa a n n +=+1只需构造数列{}n b ,消去()n f 带来的差异.其中()n f 有多种不同形式

①()n f 为常数,即递推公式为q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 解法:转化为:)(1t a p t a n n -=-+,其中p

q

t -=

1,再利用换元法转化为等比数列求解。 例. 已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .

解:设递推公式321+=+n n a a 可以转化为)(21t a t a n n -=-+即321-=?-=+t t a a n n .故递推公式为)3(231+=++n n a a ,令3+=n n a b ,则4311=+=a b ,且

23

3

11=++=++n n n n a a b b .所以{}n b 是以41=b 为首项,2为公比的等比数列,则11224+-=?=n n n b , 所以

321-=+n n a .

②()n f 为一次多项式,即递推公式为s rn pa a n n ++=+1 例.设数列{}n a :)2(,123,411≥-+==-n n a a a n n ,求n a .

解:设B An b a B ,An a b n n n n --=++=则,将1,-n n a a 代入递推式,得

1++=∴n a b n n 取…(1)则13-=n n b b ,又61=b ,故n n n b 32361?=?=-代入

(1)得132--?=n a n n

备注:本题也可由1231-+=-n a a n n ,1)1(2321--+=--n a a n n (3≥n )两式相减得2)(3211+-=----n n n n a a a a 转化为q pb b n n +=-1求之.

③ )(n f 为n 的二次式,则可设C Bn An a b n n +++=2;

(2)递推公式为n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (或

1n n n a pa rq +=+,其中p ,q, r 均为常数)

解法:该类型复杂一些。一般地,要先在原递推公式两边同除以1+n q ,得:

q q a q p q

a n n n n 1

1

1+?=++ 引入辅助数列{}n b (其中n n n q a b =

),得:q

b q p b n

n 1

1+=+再应用类型(1)的方法解决。 例. 已知数列{}n a 中,651=a ,11)2

1(31+++=n n n a a ,求n a 。

解:在11)21(31+++=n n n a a 两边乘以12+n 得:1)2(3

2211+?=?++n n n n a a

令n n n a b ?=2,则1321+=+n n b b ,应用例7解法得:n n b )3

2(23-=

所以n

n n

n n b a )31(2)21(32-==

(3)递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。

解法:先把原递推公式转化为)(112n n n n sa a t sa a -=-+++其中s ,t 满足???-==+q

st p

t s ,再应

用前面类型(2)的方法求解。

例. 已知数列{}n a 中,11=a ,22=a ,n n n a a a 3

13212+=++,求n a 。

解:由n n n a a a 3

13212+=++可转化为)(112n n n n sa a t sa a -=-+++

即n n n sta a t s a -+=++12

)(???

????

-==+?313

2st t s ?????-==?311t s 或????

?=-=131t s 这里不妨选用???

??-==311

t s (当然也可选用

????

?

=-

=1

31t s ,大家可以试一试),则)(3

1112n n n n a a a a --=-+++{}n n a a -?+1是以首项为112=-a a ,公比为31

-的等比数列,所

以11)3

1(-+-=-n n n a a ,应用类型1的方法,分别令)1(,,3,2,1-??????=n n ,代入上式得)

1(-n 个等式累加之,即2

101)3

1()31()31(--+??????+-+-=-n n a a 3

11)31

(11

+--=

-n 又11=a Θ,所以1)3

1(4347---=n n a 。

7. 形如1

1n n n a a ka b

--=

+或11n n n n a ba ka a ---=的递推数列都可以用倒数法求通项。

例:1,1

3111

=+?=

--a a a a n n n

解:取倒数:

1

1113131---+=+?=n n n n a a a a

?

?????∴n a 1是等差数列,

3)1(111?-+=n a a n 3)1(1?-+=n 231

-=?n a n 8、r

n n a p a ?=+1型

该类型是等式两边取对数后转化为前边的类型,然后再用递推法或待定系法构造等比数列求出通项。

两边取对数得

设n n a b lg =

∴原等式变为p rb b n n lg 1+=+即变为基本型。

例.已知3

,22

1

1n n a a a ==+,求其通项公式。 解:由3

,221

1n n a a a ==+知0>n a 且3≠n a , 将等式两边取对数得3lg lg 2lg 1-=+n n a a ,

即)3lg (lg 23lg lg 1-=-+n n a a ,

∴{}3lg lg -n a 为等比数列,其首项为3

2lg 3lg lg 1=-a ,公比为2

∴3

2lg 23lg lg 1?=--n n a ,

∴3lg 3

2lg 2lg 1+?=-n n a 。

通项公式为1

2)3

2(3-?=n n a

二.数列的前n 项求和的求法

1.公式法:①等差数列求和公式;②等比数列求和公式,

特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时需分类讨论.;③常用公式:1123(1)2

n n n ++++=+L ,222112(1)(21)6

n n n n +++=++L ,

33332

(1)123[

]2

n n n +++++=L . 例、已知3

log 1

log 23-=

x ,求???++???+++n x x x x 32的前n 项和. 解:由2

1

2log log 3log 1log 3323=?-=?-=

x x x

由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式)

=x x x n

--1)1(=2

11)

21

1(2

1--n =1-n 21 2.分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.

例2、 求数列的前n 项和:231,,71,

41,1112-+???+++-n a

a a n ,… 解:设)231()71(

)41

()11(12-++???++++++=-n a

a a S n n 将其每一项拆开再重新组合得

)23741()1

111(12-+???+++++???+++

=-n a

a a S n n (分组) 当a =1时,2)13(n n n S n -+

==2

)13(n

n + (分组求和) 当1≠a 时,2)13(1111n n a

a S n n -+--

==2)13(11n n a a a n -+--- 3.倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法).

例3、求οοοοο89sin 88sin 3sin 2sin 1sin 22222++???+++的值

解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++???+++=S …………. ①

将①式右边反序得

οοοοο1sin 2sin 3sin 88sin 89sin 22222+++???++=S …………..② (反序)

又因为 1cos sin ),90cos(sin 22=+-=x x x x ο

①+②得 (反序相

加)

)89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222οοοοοο++???++++=S =89

∴ S =44.5

4.错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法). 例4、 求和:132)12(7531--+???++++=n n x n x x x S ………………………①

解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积

设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位)

①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减)

再利用等比数列的求和公式得:n n n x n x

x x S x )12(1121)1(1

----?

+=-- ∴ 2

1)1()

1()12()12(x x x n x n S n n n -+++--=+

例5、求数列??????,2

2,,26,24,

2232n

n

前n 项的和. 解:由题可知,{

n n 22}的通项是等差数列{2n}的通项与等比数列{n 2

1

}的通项之积

设n n n

S 2

226242232+???+++=

…………………………………① 14322

226242221++???+++=n n n

S ………………………………② (设制错位)

①-②得14322

22222222222)2

1

1(+-+???++++=

-n n n n

S (错位相减)

∴ 1

2

2

4-+-

=n n n S 5.裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有: ①

111(1)1n n n n =-++;②1111()()n n k k n n k

=-++; ③

2211111

()

1211

k k k k <=---+,211111111(1)(1)1k k k k k k k k k -=<<=-++--; ④

1111

[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ;⑤11(1)!!(1)!

n n n n =-++;

=

<<=.

例6、 求数列

???++???++,1

1,

,3

21,

2

11

n n 的前n 项和.

解:设n n n n a n -+=++=

11

1 (裂

项)

则 1

13

212

11+++

???+++

+=

n n S n (裂项求和)

=)1()23()12(n n -++???+-+-

=11-+n

例7、 在数列{a n }中,1

1211++

???++++=n n

n n a n ,又12+?=n n n a a b ,求数列{b n }的前n 项的和.

解: ∵ 2

11211n

n n n n a n =++???++++=

∴ )11

1(82

122+-=+?=

n n n n b n (裂项)

∴ 数列{b n }的前n 项和

)]1

1

1()4131()3121()211[(8+-+???+-+-+-=n n S n (裂项求和)

=)111(8+-

n =

1

8+n n

6.通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和。 例8 、求3

211

1111111111个n ???+???+++之和. 解:由于)110(9

1

99999111111

1

-=????=???k k k 43421321个个 (找通项及特

征)

∴ 3

211

1111111111个n ???+???+++ =)110(9

1)110(91)110(91)110(91321-+???+-+-+-n (分组求和)

=)1111

(91

)10101010(911

321443

4421个n n +???+++-+???+++ =9

110)110(1091n

n ---?

)91010(81

1

1n n --+ 7、合并法求和

针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .

例 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值. 例 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.

数列通项课后练习

1已知数列{}n a 中,满足a 1=6,a 1+n +1=2(a n +1) (n ∈N +)求数列{}n a 的通项公式。

2已知数列{}n a 中,a n >0,且a 1=3,1+n a =n a +1 (n ∈N +)

3已知数列{}n a 中,a 1=3,a 1+n =2

1a n +1(n ∈N +)求数列{}n a 的通项公式

4已知数列{}n a 中,a 1=1,a 1+n =3a n +2,求数列{}n a 的通项公式

5已知数列{}n a 中,a n ≠0,a 1=2

1,a 1+n =

n

n

a a 21+ (n ∈N +) 求a n

6设数列{}n a 满足a 1=4,a 2=2,a 3=1 若数列{}n n a a -+1成等差数列,求a n 7设数列{}n a 中,a 1=2,a 1+n =2a n +1 求通项公式a n 8已知数列{}n a 中,a 1=1,2a 1+n = a n + a 2+n 求a n

9已知n n n a a a )2

1(,211+==+,求a n.

10已知n n n a a a 2,211==+,求通项a n .

11已知n n a n

n a a 1

,211+=

=+,求通项a n . (1)求和:

1111447(32)(31)

n n +++=??-?+L ; (2)在数列{}n a 中,1

1++=

n n a n ,且S n=9,则n =_____ ;

②求和:111

112123123n

+

+++=+++++++L L ; ①求数列1×4,2×5,3×6,…,(3)n n ?+,…前n 项和n S = ;

数列求和课后练习

[例1] 已知3

log 1

log 23-=

x ,求???++???+++n x x x x 32的前n 项和. [例2] 设S n =1+2+3+…+n,n ∈N *,求1

)32()(++=

n n

S n S n f 的最大值.

二、错位相减法求和

这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{}n a 、{}n b 分别是等差数列和等比数列. [例3] 求和:132)12(7531--+???++++=n n x n x x x S ………………………①

[例4] 求数列??????,22,,26,24,

2232n

n

前n 项的和. 三、倒序相加法求和

这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求οοοοο89sin 88sin 3sin 2sin 1sin 22222++???+++的值

四、分组法求和

有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231,,71,

41

,1112-+???+++-n a

a a

n ,…

[例7] 求数列{n(n+1)(2n+1)}的前n 项和.

五、裂项法求和

这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:

(1))()1(n f n f a n -+= (2)ο

οο

οοn n n n tan )1tan()

1cos(cos 1sin -+=+ (3)1

1

1)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=

n n n n n a n (5)])

2)(1(1

)1(1[21)2)(1(1++-+=+-=

n n n n n n n a n

(6) n

n

n n n n n n S n n n n n n n n n a 2)1(1

1,2)1(12121)1()1(221)1(21+-=+-?=?+-+=?++=

-则 [例9] 求数列

???++???++,1

1,

,3

21,

2

11n n 的前n 项和.

[例10] 在数列{a n }中,1

1211++

???++++=n n

n n a n ,又12+?=n n n a a b ,求数列{b n }的前n 项的和.

[例11] 求证:ο

ο

οοοοοο1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+???++

一、选择题:

1、等差数列{n a }中,若45076543=++++a a a a a ,则=+82a a

A 、45

B 、75

C 、180

D 、320

2、已知{n a }是等比数列,且n a >0,252645342=++a a a a a a ,则=+53a a

A 、5

B 、10

C 、15

D 、20

3、等差数列{a n }中,a 1=3,a 100=36,则a 3+a 98等于 ( )

(A)36 (B)38 (C)39 (D)42

4、含2n+1个项的等差数列,其奇数项的和与偶数项的和之比为 ( )

(A)

n n 12+ (B)n n 1+ (C)n n 1- (D)n

n 21

+ 5、在项数为2n+1的等差数列中,若所有奇数项的和为165,所有偶数项的和为150,则n 等于 ( )

(A)9 (B)10 (C)11 (D)12

6、等差数列{a n } 的前m 项和为30,前2m 项和为100,则它的前3m 项和为( )

(A)130 (B)170 (C)210 (D)160

二、填空题:

7、已知数列

ΛΛ)

2)(1(1

,,201,121,61++n n 则其前n 项和S n =________.

8、数列前n 项和为S n =n 2

+3n,则其通项a n 等于____________.

9、已知数列1,

Λ,3

,2,1n

n n n n n --- , 前n 项的和为____________. 三、解答题:

10、已知数列{n a }的前n 项和3

1

=n S n(n +1)(n +2),试求数列{

n

a 1

}的前n 项和. 11、在数列{n a }中,已知121n

n n

a a a +=+, 1n a =,求数列的通项公式。

12、设正值数列{n a }的前n 项和为n s ,满足2

)2

1(

+=n n a s (1)求1a ,2a ,3a

(2)求出数列{n a }的通项公式(写出推导过程)

(3)设n 1

1

n n b a a +=

求数列{n b }的前n 项和n T 13、设等比数列{}n a 的公比为q ,前n 项和),2,1( 0Λ=>n S n 。

(Ⅰ)求q 的取值范围;

(Ⅱ)设122

3++-=n n n a a b ,记{}n b 的前n 项和为n T ,试比较n S 与n T 的大小。

14、已知数列{n a }中,121n n a a +=+,12a =,试求数列的通项公式。

数列通项公式的求法集锦

数列通项公式的求法集锦 非等比、等差数列的通项公式的求法,题型繁杂,方法琐碎,笔者结合近几年的高考情况,对数列求通项公式的方法给以归纳总结。 一、累加法 形如1()n n a a f n --= (n=2、3、4…...) 且(1)(2)...(1)f f f n +++-可求,则用累加法求n a 。有时若不能直接用,可变形成这种形式,然后用这种方法求解。 例1. 在数列{n a }中,1a =1,11n n a a n --=- (n=2、3、4……) ,求{n a }的通项公式。 解:∵111n a ==时, 213243121 23.......1n n n a a a a a a a a n -≥-=??-=??-=???-=-?? 时, 这n-1个等式累加得:112...n a a -=+++(n-1)=(1)2n n - 故21(1)222n n n n n a a --+=+= 且11a =也满足该式 ∴222 n n n a -+= (n N *∈). 例2.在数列{n a }中,1a =1,12n n n a a +-= (n N *∈),求n a 。 解:n=1时, 1a =1212323431122 22.......2n n n n a a a a a a a a --≥-=??-=??-=????-=?时, 以上n-1个等式累加得 21122...2n n a a --=+++=12(12)12 n ---=22n -,故12221n n n a a =-+=- 且11a =也满足该式 ∴21n n a =- (n N *∈)。 二、累乘法 形如1 ()n n a f n a -= (n=2、3、4……),且(1)(2)...(1)f f f n +++-可求,则用累乘法求n a 。有时若不能直接用,可变形成这种形式,然后用这种方法求解。 例3.在数列{n a }中,1a =1,1n n a na +=,求n a 。

数列通项公式的求法(较全)

常见数列通项公式的求法 公式: 1、 定义法 若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或 11-=n n q a a 中即可. 例1、成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 的345,,b b b ,求数列{}n b 的的通项公式. 练习:数列{}n a 是等差数列,数列{}n b 是等比数列,数列{}n c 中对于任何* n N ∈都有 1234127 ,0,,,,6954 n n n c a b c c c c =-====分别求出此三个数列的通项公式.

2、 累加法 形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法. 方法如下:由()n f a a n n =-+1得 当2n ≥时,() 11n n a a f n --=-, () 122n n a a f n ---=-, ()322a a f -=, () 211a a f -=, 以上()1n -个等式累加得 ()()()()11+221n a a f n f n f f -=--+ ++ 1n a a ∴=+()()()()1+221f n f n f f --+ ++ (3)已知1a ,()n f a a n n =-+1,其中()f n 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项. ①若()f n 可以是关于n 的一次函数,累加后可转化为等差数列求和; ②若()f n 可以是关于n 的二次函数,累加后可分组求和; ③若()f n 可以是关于n 的指数函数,累加后可转化为等比数列求和; ④若()f n 可以是关于n 的分式函数,累加后可裂项求和求和. 例2、数列{}n a 中已知111,23n n a a a n +=-=-, 求{}n a 的通项公式.

数列通项公式方法大全很经典精品

【关键字】方法、关键、关系、满足 1,数列通项公式的十种求法: (1)公式法(构造公式法) 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222 n n n n a a ++-= ,故数列{}2n n a 是以122 2 a 1 1==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31 ()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。 (2)累加法 例2 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2 n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+,即得数列{}n a 的通项公式。 变式:已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (3)累乘法 例3已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。 解:因为112(1)53n n n a n a a +=+?=,,所以0n a ≠,则 1 2(1)5n n n a n a +=+,故

几种常见的数列的通项公式的求法

几种常见的数列的通项公式的求法 一. 观察法 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,1716 4,1093,542,211 (3) ,5 2 ,21,32 ,1(4) ,5 4 ,43,32,21-- 解:(1)变形为:101-1,102―1,103―1,104―1,…… ∴通项公式为:110-=n n a (2);1 2 2 ++=n n n a n (3);12 += n a n (4)1 )1(1+? -=+n n a n n .点评:关键是找出各项与项数n 的关系。 二、公式法 例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),(1)求数列{ a n }和{ b n }的通项公式; 解:(1)∵a 1=f (d -1) = (d -2)2,a 3 = f (d +1)= d 2,∴a 3-a 1=d 2-(d -2)2=2d , ∴d =2,∴a n =a 1+(n -1)d = 2(n -1);又b 1= f (q +1)= q 2,b 3 =f (q -1)=(q -2)2, ∴2 213)2(q q b b -==q 2 ,由q ∈R ,且q ≠1,得q =-2,∴b n =b ·q n -1=4·(-2)n -1 例 3. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是 ( ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 解析:设等差数列的公差位d ,由已知???==+??+12348)()(3 333a d a a d a , 解得 ?? ?±==2 4 3d a ,又 {} n a 是递减数列, ∴ 2 -=d , 8 1=a ,∴ =--+=)2)(1(8n a n 102+-n ,故选(D)。 例 4. 已知等比数列 {}n a 的首项11=a ,公比10<

数列通项公式方法大全很经典

1,数列通项公式的十种求法: (1)公式法(构造公式法) 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222 n n n n a a ++-= ,故数列{}2n n a 是以1 2 22a 11==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31 ()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1) 22 n n a n =+-,进而求出数列{}n a 的通项公式。 (2)累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出 11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+,即得数列{}n a 的通项公式。 变式:已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (3)累乘法 例3已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。

数列通项公式方法大全

数列通项公式的十种求法: (1)公式法(构造公式法) 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是 以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 (2)累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2 n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。 变式:已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (3)累乘法

高中数学数列通项公式的求法(方法总结)

(1)主题:求数列通项n a 的常用方法总结 一、 形如:特殊情况:当n+11,n n A B C A a a A =*+*+≠,常用累加法。 (n n a a +-,z 构建等比数列()1y n z *++z ; 的通项公式,进而求得n a 。 二、 形n a a * ;

三、 形 ()x f x =) 情形1:1n n A B a a +=*+型。设λ是不动点方程的根,得数列 {}n a λ-是 以公比为A 的等比数列。 情形2:1*n n n A B C D a a a +*+=+型。 设1λ和2λ 是不动点方程 *A x B x C x D *+=+的两个根; (1)当12λλ≠时,数列n 12n a a λλ??-?? ??-????是以12 A C A C λλ -*-*为公比的等比数列; (2)当12 =λλλ =时,数列1n a λ???? ??-???? 是以2*C A D +为公差的等差数列。 【推导过程:递推式为a n+1= d ca b aa n n ++(c ≠0,a,b,c,d 为常数)型的数列 a n+1-λ= d ca b aa n n ++-λ= d ca c a d b a c a n n +--+ -) )((λλλ,令λ=-λ λc a d b --,可得λ=d c b a ++λλ ……(1)。(1)是a n+1=d ca b aa n n ++中的a n ,a n+1都换成λ后的不动点方程。 ○ 1当方程(1)有两个不同根λ1,λ2时,有 a n+1-λ1= d ca a c a n n +--))((11λλ,a n+1-λ2=d ca a c a n n +--) )((22λλ ∴ 2111λλ--++n n a a =21λλc a c a --?21λλ--n n a a ,令b n =21λλ--n n a a 有b n +1= 2 1 λλc a c a --?b n ○ 2当方程(1)出现重根同为λ时, 由a n+1-λ= d ca a c a n n +--))((λλ得λ-+11n a =))((λλ--+n n a c a d ca =λ c a c -+))((λλλ--+n a c a c d ( “分离常数”)。设c n =λ-n a 1 得c n +1= λ λc a c d -+?c n + λ c a c -】

几种常见的数列的通项公式的求法

几种常见的数列的通项公式的求法 一、观察法 1、根据数列的前4项,写出它的一个通项公式: (1) ,5 4,43,32,21-- (2) ,5 2,21,32,1 (3)9,99,999,9999,… 二、叠加法:对于型如)(1n f a a n n +=+类的通项公式 2、已知数列6,9,14,21,30,…求此数列的一个通项。 3、若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a 。 三、叠乘法:对于型如1+n a =f (n)·n a 类的通项公式 4、在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。 5、已知数列{}n a 中,3 11= a ,前n 项和n S 与n a 的关系是 n n a n n S )12(-= ,试求通项公式n a 。 四、S n 法利用1--=n n n S S a (n ≥2) 6、已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)13-+=n n S n 。 (2)12-=n s n 五、辅助数列法 7、已知数}{n a 的递推关系为121+=+n n a a ,且11=a 求通项n a 。 六、倒数法 8、已知数列{n a }中11=a 且11+=+n n n a a a (N n ∈),,求数列的通项公式。 1. 已知数列{}n a 的首项11a =,且13(2)n n a a n -=+≥,则n a = 3n-2 .

2.已知数列{}n a 的首项11a =,且123(2)n n a a n -=+≥,则n a 1433n -?-. 3.已知数列{}n a 的11a =,22a =且121()(3)2n n n a a a n --=+≥,则1lim n x n a a →∞+=

求数列通项公式方法大全

求数列通项公式的常用方法 类型1、()n n S f a = 解法:利用???≥???????-=????????????????=-)2() 1(11n S S n S a n n n 与)()(11---=-=n n n n n a f a f S S a 消去 n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例 1 已知无穷数列{}n a 的前n 项和为n S ,并且*1()n n a S n N +=∈,求{}n a 的通项公式? 1n n S a =-,∴ 111n n n n n a S S a a +++=-=-,∴ 112n n a a +=,又112a =,12n n a ??= ??? . 变式 1. 已知数列{}n a 中,3 1 1= a ,前n 项和n S 与n a 的关系是 n n a n n S )12(-= ,求n a 变式2. 已知数列}{n a 的前n 项和为n S ,且满足322-=+n a S n n )(*N n ∈. 求数列}{n a 的通项公式 变式3. 已知数列{}a n 的前n 项和S n b n n =+()1,其中{}b n 是首项为1,公差为2的等差数列. 求数列{}a n 的通项公式; 变式4. 数列{}n a 的前n 项和为n S ,11a =,*12()n n a S n +=∈N .求数列{}n a 的通项n a 变式5. 已知数列}{n a 的前n 项和为n S ,且满足322-=+n a S n n )(*N n ∈. 求数列}{n a 的通项公式; 变式6. 已知在正整数数列}{n a 中,前n 项和n S 满足2 )2(81+=n n a S (1)求证:}{n a 是等差数列 (2)若n b 3021 -=n a ,求}{n b 的前n 项 和的最小值

常见数列通项公式的求法(超好)

常见数列通项公式的求 法(超好) -CAL-FENGHAI.-(YICAI)-Company One1

常见数列通项公式的求法 1.定义法:①等差数列通项公式;②等比数列通项公式。 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列, 2 55a S =.求数列{}n a 的通项公式.n a n 53= 2.公式法:已知n S (即12()n a a a f n ++ +=)求n a ,用作差法:{ 11,(1) ,(2) n n n S n a S S n -== -≥。 例2:已知数列}{n a 的前n 项和s n ,12-=n s n 求}{n a 的通项公式。 解:(1)当n=1时,011 ==s a ,当2≥n 时 12]1)1[()1(221-=----=-=-n n n s s a n n n 由于1a 不适合于此等式 。 ∴? ??≥-==)2(12)1(0 n n n a n 练习:数列{a n }满足a n =5S n -3,求a n 。 答案:a n =34 (-14 )n-1 3.累加法: 若1()n n a a f n +-=求n a :11221()()()n n n n n a a a a a a a ---=-+-+ +-1a +(2)n ≥。 例3:(1)数列{a n }满足a 1=1且a n =a n -1+3n -2(n ≥2),求a n 。 (2)数列{a n }满足a 1=1且a n =a n -1+1 2n (n ≥2),求a n 。 解:(1)由a n =a n -1+3n -2知a n -a n -1=3n -2,记f (n )=3n -2= a n -a n -1 则a n = (a n -a n -1)+(a n -1-a n -2)+(a n -2-a n -3)+…(a 2-a 1)+a 1 =f (n )+ f (n -1)+ f (n -2)+…f (2)+ a 1 =(3n -2)+[3(n -1)-2]+ [3(n -2)-2]+ …+(3×2-2)+1 =3[n+(n -1)+(n -2)+…+2]-2(n -1)+1 =3×(n+2)(n -1)2 -2n+3=3n 2-n 2 (2)由a n =a n -1+12n 知a n -a n -1=12n ,记f (n )=1 2n = a n -a n -1 则a n =(a n -a n -1)+(a n -1-a n -2)+(a n -2-a n -3)+…(a 2-a 1)+a 1 =f (n )+ f (n -1)+ f (n -2)+…f (2)+ a 1 =12n +12n -1 +12 n -2 +…+122 +1=12 -12n 练习:已知数列{}n a 满足211=a ,n n a a n n ++=+211 ,求n a 。答案:n a n 1-23= 4.累乘法:已知1()n n a f n a +=求n a ,用累乘法:121121 n n n n n a a a a a a a a ---=????(2)n ≥。 例4:在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。 解:由(n+1)·1+n a =n ·n a 得 1 1+=+n n a a n n ,

高中数学数列通项公式的求法详解

数列通项公式的求法及数列求和方法详解 专题一:数列通项公式的求法 关键是找出各项与项数n 的关系.) 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,17 16 4,1093,542,211(3) ,5 2 ,21,32 , 1(4) ,5 4 ,43,3 2 ,21-- 答案:(1)110-=n n a (2);122++=n n n a n (3);12+=n a n (4)1 )1(1+?-=+n n a n n . 公式法1:特殊数列 例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),(1)求数列{ a n }和 { b n }的通项公式; 答案:a n =a 1+(n -1)d = 2(n -1); b n =b ·q n -1=4·(-2)n -1 例3. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是( ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n (D) 例4. 已知等比数列{}n a 的首项11=a ,公比10<

史上最全的数列通项公式的求法13种

最全的数列通项公式的求法 数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。 一、直接法 根据数列的特征,使用作差法等直接写出通项公式。 二、公式法 ①利用等差数列或等比数列的定义求通项 ②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式 ?? ?≥???????-=????????????????=-2 1 11n S S n S a n n n 求解. (注意:求完后一定要考虑合并通项) 例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式. ②已知数列{}n a 的前n 项和n S 满足2 1n S n n =+-,求数列{}n a 的通项公式. ③ 已知等比数列{}n a 的首项11=a ,公比10<

数列通项公式求法大全(配练习及答案)

数列通项公式的几种求法 注:一道题中往往会同时用到几种方法求解,要学会灵活运用。 一、公式法 二、累加法 三、累乘法 四、构造法 五、倒数法 六、递推公式为n S 与n a 的关系式(或()n n S f a = (七)、对数变换法 (当通项公式中含幂指数时适用) (八)、迭代法 (九)、数学归纳法 已知数列的类型 一、公式法 *11(1)()n a a n d dn a d n N =+-=+-∈ 1 *11()n n n a a a q q n N q -== ?∈ 已知递推公式 二、累加法 )(1n f a a n n +=+ (1)()f n d = (2)()f n n = (3)()2n f n =

例 1 已知数列{} n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 2n a n = 例 2 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。(3 1.n n a n =+-) 三、累乘法 n n a n f a )(1=+ (1)()f n d = (2)()f n n =, 1 n n +,2n 例3 已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。 ((1)1 2 32 5 !.n n n n a n --=???) 评注:本题解题的关键是把递推关系12(1)5n n n a n a +=+?转化为 1 2(1)5n n n a n a +=+,进而求出 13211221 n n n n a a a a a a a a a ---?????L ,即得数列{}n a 的通项公式。 例4 (20XX 年全国I 第15题,原题是填空题) 已知数列{}n a 满足112311 23(1)(2)n n a a a a a n a n -==++++-≥L ,,求{}n a 的通项公式。(! .2 n n a = ) 评注:本题解题的关键是把递推关系式1(1)(2)n n a n a n +=+≥转化为 1 1(2)n n a n n a +=+≥,进而求出 132122 n n n n a a a a a a a ---????L ,从而可得当2n n a ≥时,的表达式,最后再求出数列{}n a 的通项公式。

数列通项公式方法大全很经典 - 副本

1,数列通项公式的几种求法: (1)公式法(构造公式法) 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是 以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 (2)累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2 n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。 变式:已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (3)累乘法

数列通项公式、前n项和求法总结全

一.数列通项公式求法总结: 1.定义法 —— 直接利用等差或等比数列的定义求通项。 特征:适应于已知数列类型(等差或者等比). 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,2 55a S =.求数列{}n a 的通项公式. 变式练习: 1.等差数列{}n a 中,71994,2,a a a ==求{}n a 的通项公式 2. 在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比及前n 项和. 2.公式法 求数列{}n a 的通项n a 可用公式???≥???????-=????????????????=-21 11n S S n S a n n n 求解。 特征:已知数列的前n 项和n S 与n a 的关系 例2.已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)13-+=n n S n 。 (2)12 -=n s n

变式练习: 1. 已知数列{}n a 的前n 项和为n S ,且n S =2n 2 +n ,n ∈N ﹡,数列{b }n 满足n a =4log 2n b +3,n ∈N ﹡.求n a ,n b 。 2. 已知数列{}n a 的前n 项和2 12 n S n kn =-+(*k N ∈),且S n 的最大值为8,试确定常数k 并求n a 。 3. 已知数列{}n a 的前n 项和*∈+=N n n n S n ,2 2.求数列{}n a 的通项公式。 3.由递推式求数列通项法 类型1 特征:递推公式为 ) (1n f a a n n +=+ 对策:把原递推公式转化为)(1n f a a n n =-+,利用累加法求解。 例3. 已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。

常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- =

(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得: 1-=k a A ,2)1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1 121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ∴ 1211231+= +? =n n a a n [例4] 11 --+?? =n n n a m a m k a 型。

数列通项公式的几种求法

数列通项公式的几种求法 数列通项公式直接表述了数列的本质,是给出数列的一种重要方法。数列通项公式具备两大功能,第一,可以通过数列通项公式求出数列中任意一项;第二,可以通过数列通项公式判断一个数是否为数列的项以及是第几项等问题;因此,求数列通项公式是高中数学中最为常见的题型之一,它既考察等价转换与化归的数学思想,又能反映学生对数列的理解深度,具有一定的技巧性,是衡量考生数学素质的要素之一,因而经常渗透在高考和数学竞赛中。本文分别介绍几种常见的数列通项的求法,以期能给读者一些启示。 一、常规数列的通项 例1:求下列数列的通项公式 (1)22—12 ,32—13 ,42—14 ,52—15 ,… (2)-11×2 ,12×3 ,-13×4 ,14×5 ,… (3)23 ,1,107 ,179 ,2611 ,… 解:(1)a n =n 2—1n (2)a n = (-1)n n (n+1) (3) a n =n 2+12n +1 评注:认真观察所给数据的结构特征,找出a n 与n 的对应关系,正确写出对应的表达式。 二、等差、等比数列的通项 直接利用通项公式a n =a 1+(n -1)d 和a n =a 1q n -1写通项,但先要根据条件寻求首项、 公差和公比。 三、摆动数列的通项 例2:写出数列1,-1,1,-1,…的一个通项公式。 解:a n =(-1)n -1 变式1:求数列0,2,0,2,0,2,…的一个通项公式。 分析与解答:若每一项均减去1,数列相应变为-1,1,-1,1,… 故数列的通项公式为a n =1+(-1)n 变式2:求数列3,0,3,0,3,0,…的一个通项公式。 分析与解答:若每一项均乘以23 ,数列相应变为2,0,2,0,… 故数列的通项公式为a n =32 [1+(-1)n -1 ] 变式3:求数列5,1,5,1,5,1,…的一个通项公式。 分析与解答1:若每一项均减去1,数列相应变为4,0,4,0,… 故数列的通项公式为a n =1++2×23 [1+(-1)n -1 ]=1+43 [1+(-1)n -1 ] 分析与解答2:若每一项均减去3,数列相应变为2,-2,2,-2,… 故数列的通项公式为a n =3+2(-1)n -1 四、循环数列的通项 例3:写出数列0.1,0.01,0.001,0.0001,…的一个通项公式。

数列通项公式求法大全配练习及答案

数列通项公式的十种求法 一、公式法 * 11(1)()n a a n d dn a d n N =+-=+-∈ 1 *11()n n n a a a q q n N q -== ?∈ 二、累加法 )(1n f a a n n +=+ 例 1 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 2n a n = 例 2 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (3 1.n n a n =+-) 三、累乘法 n n a n f a )(1=+ 例3 已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。 ((1)1 2 32 5 !.n n n n a n --=???) 评注:本题解题的关键是把递推关系12(1)5n n n a n a +=+?转化为 1 2(1)5n n n a n a +=+,进而求出 1 32 112 21 n n n n a a a a a a a a a ---??? ??,即得数列{}n a 的通项公式。 例4已知数列{}n a 满足112311 23(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项 公式。(! .2 n n a =)

评注:本题解题的关键是把递推关系式1(1)(2)n n a n a n +=+≥转化为 1 1(2)n n a n n a +=+≥,进而求出 1 3 212 2 n n n n a a a a a a a ---??? ?,从而可得当2n n a ≥时,的表达式,最后再求出数列{}n a 的通项公式。 四、待定系数法 q pa a n n +=+1 ()n f pa a n n +=+1 n n n qa pa a +=++12(其中p ,q 均为常数)。 例5 已知数列{}n a 满足112356n n n a a a +=+?=,,求数列{}n a 的通项公式。 (125n n n a -=+) 评注:本题解题的关键是把递推关系式1235n n n a a +=+?转化为1152(5)n n n n a a ++-=-,从而可知数列{5}n n a -是等比数列,进而求出数列{5}n n a -的通项公式,最后再求出数列 {}n a 的通项公式。 例6 已知数列{}n a 满足1135241n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (1133522n n n a -=?-?-) 评注:本题解题的关键是把递推关系式13524n n n a a +=+?+转化为 1 15223(522)n n n n a a +++?+=+ ?+,从而可知数列{522}n n a +?+是等比数列,进而求出数列{522}n n a +?+的通项公式,最后再求数列{}n a 的通项公式。 例7 已知数列{}n a 满足2 1123451n n a a n n a +=+++=,,求数列{}n a 的通项公式。 (42 231018n n a n n +=---) 评注:本题解题的关键是把递推关系式2 12345n n a a n n +=+++转化为 2213(1)10(1)182(31018)n n a n n a n n ++++++=+++,从而可知数列

相关文档
最新文档