c++数据结构实验链表排序

合集下载

C语言链表实现冒泡法排序

C语言链表实现冒泡法排序

C语⾔链表实现冒泡法排序功能是:从键盘输⼊字符以空格隔开当输⼊q或者Q时按回车表⽰输⼊结束先放出main函数int main(){MyNode *myNode = (MyNode *)malloc(sizeof(MyNode));if (NULL == myNode) {return 0;}getNum(myNode);sortList(myNode);printStr(myNode);freeStr(myNode);return 0;}然后就结构体#include <stdio.h>#include <stdlib.h>#include <string.h>typedef struct mynode{long value;struct mynode *next;}MyNode;最后是⼏个⽅法void getNum(MyNode *myNode){char s[20];printf("please input num and end with q/Q\n");scanf("%s", s);while ((strcmp(s, "q") != 0) && (strcmp(s , "Q") != 0)) {MyNode *temp = (MyNode *)malloc(sizeof(MyNode));if (NULL == temp) {return;}temp->value = strtol(s , 0, 0);temp->next = NULL;myNode->next = temp;myNode = myNode->next;scanf("%s", s);}}void printStr(MyNode *node){if (node == NULL) {return;}MyNode *temp = node;while (temp->next != NULL) {printf("%ld ", temp->next->value);temp = temp->next;}}void sortList(MyNode *node){if (NULL == node) {return;}MyNode *startP = node->next;MyNode *nextP = node->next;while (startP->next != NULL) {nextP = startP->next;while (nextP->next != NULL) {if (startP->next->value > nextP->next->value) { long temp = startP->next->value;startP->next->value = nextP->next->value; nextP->next->value = temp;}nextP = nextP->next;}startP = startP->next;}}void freeStr(MyNode *node){if (NULL == node) {return;}MyNode *old = NULL;while (node != NULL) {printf("d\n");old = node;node = node->next;free(old);}}。

数据结构排序实验报告

数据结构排序实验报告

数据结构排序实验报告数据结构排序实验报告引言:数据结构是计算机科学中的重要概念之一,它涉及到数据的组织、存储和操作方式。

排序是数据结构中的基本操作之一,它可以将一组无序的数据按照特定的规则进行排列,从而方便后续的查找和处理。

本实验旨在通过对不同排序算法的实验比较,探讨它们的性能差异和适用场景。

一、实验目的本实验的主要目的是通过实际操作,深入理解不同排序算法的原理和实现方式,并通过对比它们的性能差异,选取合适的排序算法用于不同场景中。

二、实验环境和工具实验环境:Windows 10 操作系统开发工具:Visual Studio 2019编程语言:C++三、实验过程1. 实验准备在开始实验之前,我们需要先准备一组待排序的数据。

为了保证实验的公正性,我们选择了一组包含10000个随机整数的数据集。

这些数据将被用于对比各种排序算法的性能。

2. 实验步骤我们选择了常见的五种排序算法进行实验比较,分别是冒泡排序、选择排序、插入排序、快速排序和归并排序。

- 冒泡排序:该算法通过不断比较相邻元素的大小,将较大的元素逐渐“冒泡”到数组的末尾。

实现时,我们使用了双重循环来遍历整个数组,并通过交换元素的方式进行排序。

- 选择排序:该算法通过不断选择数组中的最小元素,并将其放置在已排序部分的末尾。

实现时,我们使用了双重循环来遍历整个数组,并通过交换元素的方式进行排序。

- 插入排序:该算法将数组分为已排序和未排序两部分,然后逐个将未排序部分的元素插入到已排序部分的合适位置。

实现时,我们使用了循环和条件判断来找到插入位置,并通过移动元素的方式进行排序。

- 快速排序:该算法通过选取一个基准元素,将数组分为两个子数组,并对子数组进行递归排序。

实现时,我们使用了递归和分治的思想,将数组不断划分为更小的子数组进行排序。

- 归并排序:该算法通过将数组递归地划分为更小的子数组,并将子数组进行合并排序。

实现时,我们使用了递归和分治的思想,将数组不断划分为更小的子数组进行排序,然后再将子数组合并起来。

数据结构实验报告-排序

数据结构实验报告-排序

数据结构实验报告-排序一、实验目的本实验旨在探究不同的排序算法在处理大数据量时的效率和性能表现,并对比它们的优缺点。

二、实验内容本次实验共选择了三种常见的排序算法:冒泡排序、快速排序和归并排序。

三个算法将在同一组随机生成的数据集上进行排序,并记录其性能指标,包括排序时间和所占用的内存空间。

三、实验步骤1. 数据的生成在实验开始前,首先生成一组随机数据作为排序的输入。

定义一个具有大数据量的数组,并随机生成一组在指定范围内的整数,用于后续排序算法的比较。

2. 冒泡排序冒泡排序是一种简单直观的排序算法。

其基本思想是从待排序的数据序列中逐个比较相邻元素的大小,并依次交换,从而将最大(或最小)的元素冒泡到序列的末尾。

重复该过程直到所有数据排序完成。

3. 快速排序快速排序是一种分治策略的排序算法,效率较高。

它将待排序的序列划分成两个子序列,其中一个子序列的所有元素都小于等于另一个子序列的所有元素。

然后对两个子序列分别递归地进行快速排序。

4. 归并排序归并排序是一种稳定的排序算法,使用分治策略将序列拆分成较小的子序列,然后递归地对子序列进行排序,最后再将子序列合并成有序的输出序列。

归并排序相对于其他算法的优势在于其稳定性和对大数据量的高效处理。

四、实验结果经过多次实验,我们得到了以下结果:1. 冒泡排序在数据量较小时,冒泡排序表现良好,但随着数据规模的增大,其性能明显下降。

排序时间随数据量的增长呈平方级别增加。

2. 快速排序相比冒泡排序,快速排序在大数据量下的表现更佳。

它的排序时间线性增长,且具有较低的内存占用。

3. 归并排序归并排序在各种数据规模下都有较好的表现。

它的排序时间与数据量呈对数级别增长,且对内存的使用相对较高。

五、实验分析根据实验结果,我们可以得出以下结论:1. 冒泡排序适用于数据较小的排序任务,但面对大数据量时表现较差,不推荐用于处理大规模数据。

2. 快速排序是一种高效的排序算法,适用于各种数据规模。

C语言数据结构线性表的基本操作实验报告

C语言数据结构线性表的基本操作实验报告

实验一线性表的基本操作一、实验目的与基本要求1.掌握数据结构中的一些基本概念。

数据、数据项、数据元素、数据类型和数据结构,以及它们之间的关系。

2.了解数据的逻辑结构和数据的存储结构之间的区别与联系;数据的运算与数据的逻辑结构的关系。

3.掌握顺序表和链表的基本操作:插入、删除、查找以及表的合并等运算。

4.掌握运用C语言上机调试线性表的基本方法。

二、实验条件1.硬件:一台微机2.软件:操作系统和C语言系统三、实验方法确定存储结构后,上机调试实现线性表的基本运算。

四、实验内容1.建立顺序表,基本操作包括:初始化,建立一个顺序存储的链表,输出顺序表,判断是否为空,取表中第i个元素,定位函数(返回第一个与x相等的元素位置),插入,删除。

2.建立单链表,基本操作包括:初始化,建立一个链式存储的链表,输出顺序表,判断是否为空,取表中第i个元素,定位函数(返回第一个与x相等的元素位置),插入,删除。

3.假设有两个按数据元素值非递减有序排列的线性表A和B,均以顺序表作为存储结构。

编写算法将A表和B表归并成一个按元素值非递增有序(允许值相同)排列的线性表C。

(可以利用将B中元素插入A中,或新建C表)4.假设有两个按数据元素值非递减有序排列的线性表A和B,均以单链表作为存储结构。

编写算法将A表和B表归并成一个按元素值递减有序(即非递增有序,允许值相同)排列的线性表C。

五、附源程序及算法程序流程图1.源程序(1)源程序(实验要求1和3)#include<stdio.h>#include<malloc.h>#include<stdlib.h>#define LIST_INIT_SIZE 100#define LISTINCREMENT 10typedef struct arr{int * elem;int length;int listsize;}Sqlist;void menu(); //菜单void InitList(Sqlist *p); // 创建线性表void ShowList(Sqlist *p); // 输出顺序线性表void ListDelete(Sqlist *p,int i,int &e); // 在顺序线性表中删除第i个元素,并用e返回其值void ListInsert(Sqlist *p); // 在顺序线性表中第i个元素前插入新元素evoid ListEmpty(Sqlist *p); // 判断L是否为空表void GetList(Sqlist *p,int i,int &e); // 用e返回L中第i个数据元素的值void ListInsert(Sqlist *p,int i,int e);bool compare(int a,int b);void LocateElem(Sqlist *L,int e); // 在顺序线性表L中查找第1个值与e满足compare()d元素的位序void MergeList_L(Sqlist *La,Sqlist *Lb); // 归并void main(){Sqlist La;Sqlist Lb;int n,m,x;menu();scanf("%d",&n);while(n){switch(n){case 0: ; break;case 1:InitList(&La);break;case 2:ListEmpty(&La);break;case 3:printf("请输入插入的位序:\n");scanf("%d",&m);printf("请出入要插入的数:\n");scanf("%d",&x);ListInsert(&La,m,x);break;case 4:printf("请输入删除元素的位序:\n");scanf("%d",&m);ListDelete(&La,m,x);printf("删除的元素为:%d\n",x);break;case 5:printf("请输入要找的与线性表中相等的数:\n");scanf("%d",&m);LocateElem(&La,m);break;case 6:printf("请输入查找的位序:\n");scanf("%d",&m);GetList(&La,m,x);printf("La中第%d个元素的值为%d\n",m,x);break;case 7:ShowList(&La);break;case 8:InitList(&Lb);break;case 9:MergeList_L(&La,&Lb);printf("归并成功!");break;}menu();scanf("%d",&n);}}/*菜单*/void menu(){printf("********************\n\n");printf(" 0.退出\n\n");printf(" 1.创建线性表La\n\n");printf(" 2.判断La是否为空表\n\n");printf(" 3.插入元素(La)\n\n");printf(" 4.删除元素(La)\n\n");printf(" 5.定位元素(La)\n\n");printf(" 6.取元素(La)\n\n");printf(" 7.输出线性表\n\n");printf(" 8.创建线性表Lb\n\n");printf(" 9.归并为一个线性表La\n\n");printf("********************\n\n");}/*创建顺序线性表L*/void InitList(Sqlist *L){int n;int i=0;L->elem=(int *)malloc(LIST_INIT_SIZE*sizeof(int));if(NULL==L->elem)printf("储存分配失败!\n");else{L->length=0;L->listsize=LIST_INIT_SIZE;printf("输入顺序表a:\n");scanf("%d",&n);while(n){L->elem[i]=n;i++;L->length++;L->listsize=L->listsize-4;scanf("%d",&n);}}}/*输出顺序线性表*/void ShowList(Sqlist *p){int i;if(0==p->length)printf("数组为空!\n");elsefor(i=0;i<p->length;i++)printf("%d ",p->elem[i]);printf("\n");}/*判断L是否为空表*/void ListEmpty(Sqlist *p)if(0==p->length)printf("L是空表!\n");elseprintf("L不是空表!\n");}/*在顺序线性表中第i个元素前插入新元素e */void ListInsert(Sqlist *p,int i,int e){int *newbase;int *q1;int *q2;while(i<1||i>p->length+1){printf("您输入的i超出范围!\n请重新输入要插入的位置\n:");scanf("%d",&i);}if(p->length>=p->listsize){newbase=(int *)realloc(p->elem,(p->listsize+LISTINCREMENT)*sizeof(int));if(!newbase)exit(0);else{p->elem=newbase;p->listsize+=LISTINCREMENT;}}q1=&(p->elem[i-1]);for(q2=&(p->elem[p->length-1]);q2>=q1;--q2)*(q2+1)=*q2;*q1=e;++p->length;}/*/在顺序线性表中删除第i个元素,并用e返回其值*/void ListDelete(Sqlist *p,int i,int &e){int *q1,*q2;while(i<1||i>p->length){printf("您输入的i超出范围!请重新输入:");scanf("%d",&i);}q1=&(p->elem[i-1]);e=*q1;q2=p->elem+p->length-1;for(++q1;q1<=q2;++q1)*(q1-1)=*q1;--p->length;}/*对比a与b相等*/bool compare(int a,int b){if(a==b)return 1;elsereturn 0;}/*在顺序线性表L中查找第1个值与e满足compare()d元素的位序*/ void LocateElem(Sqlist *L,int e){int i=1;int *p;p=L->elem;while(i<=L->length && !compare(*p++,e))++i;if(i<=L->length)printf("第1个与e相等的元素的位序为%d\n",i);elseprintf("没有该元素!\n");}/*用e返回L中第i个数据元素的值*/void GetList(Sqlist *p,int i,int &e){Sqlist *p1;p1=p;e=p1->elem[i-1];}/* 已知顺序线性表La和Lb是元素按值非递减排列*//* 把La和Lb归并到La上,La的元素也是按值非递减*/void MergeList_L(Sqlist *La,Sqlist *Lb){int i=0,j=0,k,t;int *newbase;Sqlist *pa,*pb;pa=La;pb=Lb;while(i<pa->length && j<pb->length){if(pa->elem[i] >= pb->elem[j]){if(pa->listsize==0){newbase=(int*)realloc(pa->elem,(pa->listsize+LISTINCREMENT)*sizeof(int));if(!newbase)exit(0);}for(k=pa->length-1; k>=i; k--)pa->elem[k+1]=pa->elem[k];pa->length++;pa->elem[i]=pb->elem[j];i++;j++;}elsei++;}while(j<pb->length){if( pa->listsize < pb->length-j ){newbase=(int*)realloc(pa->elem,(pa->listsize+LISTINCREMENT)*sizeof(int));if(!newbase)exit(0);}for(j;j<pb->length;j++,i++){pa->elem[i]=pb->elem[j];pa->length++;}}for(i=0;i<pa->length/2;i++){t=pa->elem[i];pa->elem[i]=pa->elem[pa->length-i-1];pa->elem[pa->length-i-1]=t;}}(2)源程序(实验要求2和4)#include<stdio.h>#include<malloc.h>#include<stdlib.h>typedef struct LNode{int data;struct LNode *next;}LNode, *LinkList;void menu();LinkList InitList();void ShowList(LinkList L);void ListDelete(LinkList L,int i,int &e);void ListEmpty(LinkList L);void GetList(LinkList L,int i,int &e);void ListInsert(LinkList L,int i,int e);bool compare(int a,int b);void LocateElem(LinkList L,int e);LinkList MergeList_L(LinkList La,LinkList Lb);int total=0;void main(){LinkList La;LinkList Lb;La=(LinkList)malloc(sizeof(struct LNode));La->next=NULL;Lb=(LinkList)malloc(sizeof(struct LNode));Lb->next=NULL;int n;int m;int x;menu();scanf("%d",&n);while(n){switch(n){case 0: ; break;case 1:La->next=InitList();break;case 2:ListEmpty(La);break;case 3:printf("请输入要插入到第几个节点前:\n");scanf("%d",&m);printf("请输入插入的数据:\n");scanf("%d",&x);ListInsert(La,m,x);break;case 4:printf("请输入删除元素的位序:\n");scanf("%d",&m);ListDelete(La,m,x);printf("删除的元素为:%d\n",x);break;case 5:printf("请输入要找的与线性表中相等的数:\n");scanf("%d",&m);LocateElem(La,m);break;case 6:printf("请输入查找的位序:\n");scanf("%d",&m);GetList(La,m,x);printf("La中第%d个元素的值为%d\n",m,x);break;case 7:ShowList(La);break;case 8:Lb->next=InitList();break;case 9:La=MergeList_L(La,Lb);printf("归并成功\n");break;}menu();scanf("%d",&n);}}void menu(){printf("********************\n\n");printf(" 0.退出\n\n");printf(" 1.创建线性表La\n\n");printf(" 2.判断是否为空表\n\n");printf(" 3.插入元素\n\n");printf(" 4.删除元素\n\n");printf(" 5.定位元素\n\n");printf(" 6.取元素\n\n");printf(" 7.输出线性表\n\n");printf(" 8.创建线性表Lb\n\n");printf(" 9.归并两线性表\n\n");printf("********************\n\n");}// 创建链式线性表LLinkList InitList(){int count=0;LinkList pHead=NULL;LinkList pEnd,pNew;pEnd=pNew=(LinkList)malloc(sizeof(struct LNode));printf("请输入数据:\n");scanf("%d",&pNew->data);while(pNew->data){count++;if(count==1){pNew->next=pHead;pEnd=pNew;pHead=pNew;}else{pNew->next=NULL;pEnd->next=pNew;pEnd=pNew;}pNew=(LinkList)malloc(sizeof(struct LNode));printf("请输入数据:\n");scanf("%d",&pNew->data);}free(pNew);total=total+count;return pHead;}// 判断L是否为空表void ListEmpty(LinkList L){if(NULL==L->next)printf("此表为空表!\n");elseprintf("此表不为空表!\n");}// 在链式线性表中第i个元素前插入新元素e void ListInsert(LinkList L,int i,int e){LinkList p;LinkList s;p=L;int j=0;while(p&&j<i-1){p=p->next;++j;}if(!p||j>i-1)printf("不存在您要找的节点!\n");else{s=(LinkList)malloc(sizeof(int));s->data=e;s->next=p->next;p->next=s;printf("插入节点成功!\n");}}// 输出链式线性表void ShowList(LinkList L){LinkList p;p=L->next;if(p==NULL)printf("此表为空表!\n");elsewhile(p){printf("%d ",p->data);p=p->next;}printf("\n");}// 在链式线性表中删除第i个元素,并用e返回其值void ListDelete(LinkList L,int i,int &e){LinkList p;LinkList q;p=L;int j=0;while(p->next && j<i-1){p=p->next;++j;}if(!(p->next)||j>i-1)printf("没有找到要删除的位置!");else{q=p->next;p->next=q->next;e=q->data;free(q);}}// 用e返回L中第i个数据元素的值void GetList(LinkList L,int i,int &e){LinkList p;p=L->next;int j=0;while(p->next && j<i-1){p=p->next;++j;}if(!(p)||j>i-1)printf("没有找到要查找的位置!");elsee=p->data;}// 对比a与b相等bool compare(int a,int b){if(a==b)return 1;elsereturn 0;}// 在链式线性表L中查找第1个值与e满足compare()d元素的位序void LocateElem(LinkList L,int e){int i=0;LinkList p;p=L;while(p->next && !compare(p->data,e)){p=p->next;i++;}if(NULL==p->next){if(0==compare(p->data,e))printf("没有该元素!\n");elseprintf("第1个与e相等的元素的位序为%d\n",i);}elseif(compare(p->data,e))printf("没有该元素!\n");}LinkList MergeList_L(LinkList La,LinkList Lb){int i,j,k;LinkList pa_1,pb_1,pa_2,pb_2,pc,pd;pa_1=La->next;pc=pa_2=La;pb_1=pb_2=Lb->next;if(pa_1->data > pb_1->data){pc=pa_2=Lb;pa_1=Lb->next;pb_1=pb_2=La->next;}while(pa_1 && pb_1){if(pa_1->data >= pb_1->data){pa_2->next=pb_1;pb_2=pb_1->next;pb_1->next=pa_1;pb_1=pb_2;pa_2=pa_2->next;}else{pa_1=pa_1->next;pa_2=pa_2->next;}}if(pb_1)pa_2->next=pb_1;pd=(LinkList)malloc(sizeof(struct LNode));pd->next=NULL;pa_2=pd;k=total;for(i=0;i<total;i++){pa_1=pc->next;for(j=1;j<k;j++)pa_1=pa_1->next;pb_1=(LinkList)malloc(sizeof(struct LNode));pa_2->next=pb_1;pa_2=pa_2->next;pa_2->data=pa_1->data;k--;}pa_2->next=NULL;return pd;}2.流程图(实验要求1和3)图1 主函数流程图图2创建线性表La流程图图3判断La是否为空表流程图图4 插入元素(La)流程图图5删除元素(La)流程图图6定位元素(La)流程图图7取元素(La)流程图图8输出线性表流程图图9输出线性表流程图流程图(实验要求2和4)图10主函数流程图图11创建线性表La流程图图12判断是否为空表流程图图13插入元素流程图图14删除元素流程图图15定位元素流程图图图16取元素流程图图17创建Lb流程图图18归并两表流程图六、运行结果1. (实验要求1和3)点击运行,首先出现的是菜单界面,选择菜单选项进行操作,如图所示。

数据结构 实验报告

数据结构 实验报告

数据结构实验报告一、实验目的数据结构是计算机科学中非常重要的一门课程,通过本次实验,旨在加深对常见数据结构(如链表、栈、队列、树、图等)的理解和应用,提高编程能力和解决实际问题的能力。

二、实验环境本次实验使用的编程语言为C++,开发工具为Visual Studio 2019。

操作系统为 Windows 10。

三、实验内容1、链表的实现与操作创建一个单向链表,并实现插入、删除和遍历节点的功能。

对链表进行排序,如冒泡排序或插入排序。

2、栈和队列的应用用栈实现表达式求值,能够处理加、减、乘、除和括号。

利用队列实现银行排队系统的模拟,包括顾客的到达、服务和离开。

3、二叉树的遍历与操作构建一棵二叉树,并实现前序、中序和后序遍历。

进行二叉树的插入、删除节点操作。

4、图的表示与遍历用邻接矩阵和邻接表两种方式表示图。

实现图的深度优先遍历和广度优先遍历。

四、实验步骤及结果1、链表的实现与操作首先,定义了链表节点的结构体:```cppstruct ListNode {int data;ListNode next;ListNode(int x) : data(x), next(NULL) {}};```插入节点的函数:```cppvoid insertNode(ListNode& head, int val) {ListNode newNode = new ListNode(val);head = newNode;} else {ListNode curr = head;while (curr>next!= NULL) {curr = curr>next;}curr>next = newNode;}}```删除节点的函数:```cppvoid deleteNode(ListNode& head, int val) {if (head == NULL) {return;}ListNode temp = head;head = head>next;delete temp;return;}ListNode curr = head;while (curr>next!= NULL && curr>next>data!= val) {curr = curr>next;}if (curr>next!= NULL) {ListNode temp = curr>next;curr>next = curr>next>next;delete temp;}}```遍历链表的函数:```cppvoid traverseList(ListNode head) {ListNode curr = head;while (curr!= NULL) {std::cout << curr>data <<"";curr = curr>next;}std::cout << std::endl;}```对链表进行冒泡排序的函数:```cppvoid bubbleSortList(ListNode& head) {if (head == NULL || head>next == NULL) {return;}bool swapped;ListNode ptr1;ListNode lptr = NULL;do {swapped = false;ptr1 = head;while (ptr1->next!= lptr) {if (ptr1->data > ptr1->next>data) {int temp = ptr1->data;ptr1->data = ptr1->next>data;ptr1->next>data = temp;swapped = true;}ptr1 = ptr1->next;}lptr = ptr1;} while (swapped);}```测试结果:创建了一个包含 5、3、8、1、4 的链表,经过排序后,输出为 1 3 4 5 8 。

链表排序(冒泡、选择、插入、快排、归并、希尔、堆排序)

链表排序(冒泡、选择、插入、快排、归并、希尔、堆排序)

链表排序(冒泡、选择、插⼊、快排、归并、希尔、堆排序)这篇⽂章分析⼀下链表的各种排序⽅法。

以下排序算法的正确性都可以在LeetCode的这⼀题检测。

本⽂⽤到的链表结构如下(排序算法都是传⼊链表头指针作为参数,返回排序后的头指针)struct ListNode {int val;ListNode *next;ListNode(int x) : val(x), next(NULL) {}};插⼊排序(算法中是直接交换节点,时间复杂度O(n^2),空间复杂度O(1))class Solution {public:ListNode *insertionSortList(ListNode *head) {// IMPORTANT: Please reset any member data you declared, as// the same Solution instance will be reused for each test case.if(head == NULL || head->next == NULL)return head;ListNode *p = head->next, *pstart = new ListNode(0), *pend = head;pstart->next = head; //为了操作⽅便,添加⼀个头结点while(p != NULL){ListNode *tmp = pstart->next, *pre = pstart;while(tmp != p && p->val >= tmp->val) //找到插⼊位置{tmp = tmp->next; pre = pre->next;}if(tmp == p)pend = p;else{pend->next = p->next;p->next = tmp;pre->next = p;}p = pend->next;}head = pstart->next;delete pstart;return head;}};选择排序(算法中只是交换节点的val值,时间复杂度O(n^2),空间复杂度O(1))class Solution {public:ListNode *selectSortList(ListNode *head) {// IMPORTANT: Please reset any member data you declared, as// the same Solution instance will be reused for each test case.//选择排序if(head == NULL || head->next == NULL)return head;ListNode *pstart = new ListNode(0);pstart->next = head; //为了操作⽅便,添加⼀个头结点ListNode*sortedTail = pstart;//指向已排好序的部分的尾部while(sortedTail->next != NULL){ListNode*minNode = sortedTail->next, *p = sortedTail->next->next;//寻找未排序部分的最⼩节点while(p != NULL){if(p->val < minNode->val)minNode = p;p = p->next;}swap(minNode->val, sortedTail->next->val);sortedTail = sortedTail->next;}head = pstart->next;delete pstart;return head;}};快速排序1(算法只交换节点的val值,平均时间复杂度O(nlogn),不考虑递归栈空间的话空间复杂度是O(1))这⾥的partition我们参考(选取第⼀个元素作为枢纽元的版本,因为链表选择最后⼀元素需要遍历⼀遍),具体可以参考这⾥我们还需要注意的⼀点是数组的partition两个参数分别代表数组的起始位置,两边都是闭区间,这样在排序的主函数中:void quicksort(vector<int>&arr, int low, int high){if(low < high){int middle = mypartition(arr, low, high);quicksort(arr, low, middle-1);quicksort(arr, middle+1, high);}}对左边⼦数组排序时,⼦数组右边界是middle-1,如果链表也按这种两边都是闭区间的话,找到分割后枢纽元middle,找到middle-1还得再次遍历数组,因此链表的partition采⽤前闭后开的区间(这样排序主函数也需要前闭后开区间),这样就可以避免上述问题class Solution {public:ListNode *quickSortList(ListNode *head) {// IMPORTANT: Please reset any member data you declared, as// the same Solution instance will be reused for each test case.//链表快速排序if(head == NULL || head->next == NULL)return head;qsortList(head, NULL);return head;}void qsortList(ListNode*head, ListNode*tail){//链表范围是[low, high)if(head != tail && head->next != tail){ListNode* mid = partitionList(head, tail);qsortList(head, mid);qsortList(mid->next, tail);}}ListNode* partitionList(ListNode*low, ListNode*high){//链表范围是[low, high)int key = low->val;ListNode* loc = low;for(ListNode*i = low->next; i != high; i = i->next)if(i->val < key){loc = loc->next;swap(i->val, loc->val);}swap(loc->val, low->val);return loc;}};快速排序2(算法交换链表节点,平均时间复杂度O(nlogn),不考虑递归栈空间的话空间复杂度是O(1))这⾥的partition,我们选取第⼀个节点作为枢纽元,然后把⼩于枢纽的节点放到⼀个链中,把不⼩于枢纽的及节点放到另⼀个链中,最后把两条链以及枢纽连接成⼀条链。

数据结构(C语言版)实验报告 (内部排序算法比较)

数据结构(C语言版)实验报告 (内部排序算法比较)

《数据结构与算法》实验报告一、需求分析问题描述:在教科书中,各种内部排序算法的时间复杂度分析结果只给出了算法执行时间的阶,或大概执行时间。

试通过随机数据比较各算法的关键字比较次数和关键字移动次数,以取得直观感受。

基本要求:(l)对以下6种常用的内部排序算法进行比较:起泡排序、直接插入排序、简单选择排序、快速排序、希尔排序、堆排序。

(2)待排序表的表长不小于100000;其中的数据要用伪随机数程序产生;至少要用5组不同的输入数据作比较;比较的指标为有关键字参加的比较次数和关键字的移动次数(关键字交换计为3次移动)。

(3)最后要对结果作简单分析,包括对各组数据得出结果波动大小的解释。

数据测试:二.概要设计1.程序所需的抽象数据类型的定义:typedef int BOOL; //说明BOOL是int的别名typedef struct StudentData { int num; //存放关键字}Data; typedef struct LinkList { int Length; //数组长度Data Record[MAXSIZE]; //用数组存放所有的随机数} LinkList int RandArray[MAXSIZE]; //定义长度为MAXSIZE的随机数组void RandomNum() //随机生成函数void InitLinkList(LinkList* L) //初始化链表BOOL LT(int i, int j,int* CmpNum) //比较i和j 的大小void Display(LinkList* L) //显示输出函数void ShellSort(LinkList* L, int dlta[], int t,int* CmpNum, int* ChgNum) //希尔排序void QuickSort (LinkList* L, int* CmpNum, int* ChgNum) //快速排序void HeapSort (LinkList* L, int* CmpNum, int* ChgNum) //堆排序void BubbleSort(LinkList* L, int* CmpNum, int* ChgNum) //冒泡排序void SelSort(LinkList* L, int* CmpNum, int* ChgNum) //选择排序void Compare(LinkList* L,int* CmpNum, int* ChgNum) //比较所有排序2 .各程序模块之间的层次(调用)关系:二、详细设计typedef int BOOL; //定义标识符关键字BOOL别名为int typedef struct StudentData //记录数据类型{int num; //定义关键字类型}Data; //排序的记录数据类型定义typedef struct LinkList //记录线性表{int Length; //定义表长Data Record[MAXSIZE]; //表长记录最大值}LinkList; //排序的记录线性表类型定义int RandArray[MAXSIZE]; //定义随机数组类型及最大值/******************随机生成函数********************/void RandomNum(){int i; srand((int)time(NULL)); //用伪随机数程序产生伪随机数for(i=0; i小于MAXSIZE; i++) RandArray[i]<=(int)rand(); 返回;}/*****************初始化链表**********************/void InitLinkList(LinkList* L) //初始化链表{int i;memset(L,0,sizeof(LinkList));RandomNum();for(i=0; i小于<MAXSIZE; i++)L->Record[i].num<=RandArray[i]; L->Length<=i;}BOOL LT(int i, int j,int* CmpNum){(*CmpNum)++; 若i<j) 则返回TRUE; 否则返回FALSE;}void Display(LinkList* L){FILE* f; //定义一个文件指针f int i;若打开文件的指令不为空则//通过文件指针f打开文件为条件判断{ //是否应该打开文件输出“can't open file”;exit(0); }for (i=0; i小于L->Length; i++)fprintf(f,"%d\n",L->Record[i].num);通过文件指针f关闭文件;三、调试分析1.调试过程中遇到的问题及经验体会:在本次程序的编写和调试过程中,我曾多次修改代码,并根据调试显示的界面一次次调整代码。

数据结构实验(使用版)

数据结构实验(使用版)

实验一顺序表的应用一.实验目的1、掌握线性表的顺序存储结构的基本操作的实现。

2、设计并实现顺序表的应用程序,提高编程能力。

二.实验内容编写程序实现:1、在原来的顺序表中将顺序表实现逆置。

2、要求顺序表的内容由用户输入,并分别显示出逆置前和逆置后的顺序表。

三.实验设备及实验环境实验设备:微机一台实验环境:C语言运行环境实验二单链表的应用三.实验目的1、掌握线性表的链式存储结构的基本操作的实现。

2、设计并实现单链表的应用程序,提高编程能力。

四.实验内容编写程序实现:1、在原有的单链表中,将单链表实现逆置。

(即不增加新的结点)2、程序要求单链表的内容由用户输入,并分别显示出逆置前和逆置后的单链表。

三.实验设备及实验环境实验设备:微机一台实验环境:C语言运行环境实验三栈和队列的应用一.实验目的1、掌握栈和队列的基本操作的实现。

2、利用栈和队列的特点解决实际问题,提高编程能力。

二.实验内容(1是必做题目,2和3可选其一)编写两个程序分别实现:1、进制之间的转换:如将10进制转换为2进制,10进制数n和要转换的进制d通过键盘输入。

2、利用栈解决火车调度问题,将本来杂乱无章的车厢排成软席(S)在前,硬席(H)在后。

车厢序列通过键盘输入,如HSHSHSSSH,输出SSSSSHHHH。

3、利用队列模拟医院排队系统。

三.实验设备及实验环境实验设备:微机一台实验环境:C语言运行环境实验四二叉树的操作(一)一、实验目的1、熟悉二叉树的概念和存储结构。

2、掌握二叉树的基本操作和实现方法。

二.实验内容1、利用栈并且采用非递归先序算法建立二叉树。

2、要求通过键盘输入二叉树的先序遍历顺序从而建立一棵二叉树。

三.实验设备及实验环境实验设备:微机一台实验环境:C语言运行环境实验五二叉树的基本操作(二)一、实验目的1.熟悉二叉树的遍历方法。

2.掌握非递归中序遍历、先序遍历和后序遍历算法的实现。

二.实验内容(中序非递归遍历必做、先序和后序可选其一)1、在前一实验的基础上,利用栈实现一棵二叉树的非递归遍历。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.实验要求i.实验目的:通过编程,学习、实现、对比各种排序算法,掌握各种排序算法的优劣,以及各种算法使用的情况。

理解算法的主要思想及流程。

ii.实验内容:使用链表实现下面各种排序算法,并进行比较。

排序算法:1、插入排序2、冒泡排序(改进型冒泡排序)3、快速排序4、简单选择排序5、堆排序(小根堆)要求:1、测试数据分成三类:正序、逆序、随机数据2、对于这三类数据,比较上述排序算法中关键字的比较次数和移动次数(其中关键字交换计为3次移动)。

3、对于这三类数据,比较上述排序算法中不同算法的执行时间,精确到微秒(选作)4、对2和3的结果进行分析,验证上述各种算法的时间复杂度编写测试main()函数测试线性表的正确性iii.代码要求:1、必须要有异常处理,比如删除空链表时需要抛出异常;2、保持良好的编程的风格:代码段与段之间要有空行和缩近标识符名称应该与其代表的意义一致函数名之前应该添加注释说明该函数的功能关键代码应说明其功能3、递归程序注意调用的过程,防止栈溢出2. 程序分析通过排序算法将单链表中的数据进行由小至大(正向排序)2.1 存储结构单链表存储数据: struct node {int data;node *next;};单链表定义如下:class LinkList {private :node * front; public :LinkList(int a[], int n);//构造~LinkList();void insert(node *p, node *s);//插入void turn(node *p, node *s);//交换数据void print();//输出void InsertSort();//插入排序void BubbleSort();//pos 冒泡void QSort();//快速排序void SelectSort();//简单选择排序node * Get(int i);//查找位置为i 的结点void sift(int k, int m); //一趟堆排序void LinkList ::QSZ(node * b, node *e); //快速排序的递归主体void heapsort(int n); //堆排序算法};2.2 关键算法分析:1.直接插入排序:首先将待排序数据建立一个带头结点的单链表。

将单链表划分为有序区和无序区,有序区只包含一个元素节点,依次取无序区中的每一个结点,在有序区中查找待插入结点的插入位置,然后把该结点从单链表中删除,再插入到相应位置。

分析上述排序过程,需设一个工作指针p->next 在无序区中指向待插入的结点,在找到插入位置后,将结点p->next 插在结点s 和p 之间。

void LinkList ::InsertSort()//将第一个元素定为初始有序区元素,由第二个元素开始依次比较{LARGE_INTEGER t1, t2, feq;QueryPerformanceFrequency(&feq); //每秒跳动次数QueryPerformanceCounter(&t1); //测前跳动次数node * p = front->next;//要插入的节点的前驱……{node * s = front;//充分利用带头结点的单链表while (1){comparef++;if (p->next->data <s->next->data)// [P后继]比[S后继]小则插入{insert(p, s); break;}s = s->next;if (s == p)//若一趟比较结束,且不需要插入{p = p->next; break;}}}QueryPerformanceCounter(&t2); //测后跳动次数double d = ((double)t2.QuadPart - (double)t1.QuadPart) / ((double)feq.QuadPart);//时间差秒cout << "操作时间为:" << d << endl;}2.快速排序:主要通过轴值将数据从两端向中间进行比较,交换以实现排序。

通过递归的调用来实现整个链表数据的排序。

代码中选用了第一个元素作为轴值。

一趟排序的代码:void LinkList::QSZ(node * b, node *e){if (b->next == e || b == e)//排序完成return;node * qianqu = b;//轴点前驱node * p = qianqu->next;while (p != e && p != e->next){comparef++;if (qianqu->next->data > p->next->data)//元素值小于轴点值,则将该元素插在轴点之前{if (p->next == e)//若该元素为e,则将其前驱设为ee = p;insert(p, qianqu);qianqu = qianqu->next;}else p = p->next;}QSZ(b, qianqu);//继续处理轴点左侧链表QSZ(qianqu->next, e);//继续处理轴点右侧链表整个快速排序的实现:void LinkList::QSort(){LARGE_INTEGER t1, t2, feq;QueryPerformanceFrequency(&feq); //每秒跳动次数QueryPerformanceCounter(&t1); //测前跳动次数node * e = front;while (e->next){e = e->next;}QSZ(front, e);QueryPerformanceCounter(&t2); //测后跳动次数double d = ((double)t2.QuadPart - (double)t1.QuadPart) / ((double)feq.QuadPart);//时间差秒cout << "操作时间为:" << d << endl;}3.改进版的冒泡排序:通过设置pos来记录无序边界的位置以减少比较次数。

将数据从前向后两两比较,遇到顺序不对是直接交换两数据的值。

每交换一次movef+3;void LinkList::BubbleSort(){LARGE_INTEGER t1, t2, feq;QueryPerformanceFrequency(&feq); //每秒跳动次数QueryPerformanceCounter(&t1); //测前跳动次数node * p = front->next;while (p->next) // 排序查找无序边界{comparef++;if (p->data > p->next->data)turn(p, p->next);p = p->next;}node * pos = p; p = front->next;while (pos != front->next){node * bound = pos;pos = front->next;while (p->next != bound){comparef++;if (p->data > p->next->data){turn(p, p->next); pos = p->next;}p = front->next;}QueryPerformanceCounter(&t2); //测后跳动次数double d = ((double)t2.QuadPart - (double)t1.QuadPart) / ((double)feq.QuadPart);//时间差秒cout << "操作时间为:" << d << endl;}4.选择排序:每趟排序再待排序的序列中选择关键码最小的元素,顺序添加至已排好的有序序列最后,知道全部记录排序完毕。

void LinkList::SelectSort(){LARGE_INTEGER t1, t2, feq;QueryPerformanceFrequency(&feq); //每秒跳动次数QueryPerformanceCounter(&t1); //测前跳动次数node * s = front;while (s->next->next){node * p = s;node * index = p;while (p->next){comparef++;if (p->next->data < index->next->data)index = p;p = p->next;}insert(index, s);s = s->next;}QueryPerformanceCounter(&t2); //测后跳动次数double d = ((double)t2.QuadPart - (double)t1.QuadPart) / ((double)feq.QuadPart);//时间差秒cout << "操作时间为:" << d << endl;}5.堆排序:利用前一趟比较的结果来减少比较次数,提高整体的效率。

其中通过链表储存了一棵树。

选择使用小根堆进行排序。

void LinkList::sift(int k, int m){int i = k, j = 2 * i;while (j <= m)if (j<m && (Get(j)->data>Get(j + 1)->data)) j++;if (Get(i)->data < Get(j)->data) break;else{turn(Get(i), Get(j));i = j;j = 2 * i;}}}void LinkList::heapsort(int n){LARGE_INTEGER t1, t2, feq;QueryPerformanceFrequency(&feq); //每秒跳动次数QueryPerformanceCounter(&t1); //测前跳动次数for (int i = n / 2; i >= 1; i--)sift(i, n);for (int i = 1; i < n; i++){turn(Get(1), Get(n - i + 1));sift(1, n - i);}QueryPerformanceCounter(&t2); //测后跳动次数double d = ((double)t2.QuadPart - (double)t1.QuadPart) / ((double)feq.QuadPart);//时间差秒cout << "操作时间为:" << d << endl;}其中堆排序中需要知道孩子节点和父亲节点处的值,故设置了函数获取i出的指针。

相关文档
最新文档