广州市2018-2019学年八年级数学上期末考试检测试题(含答案)

合集下载

【精选3份合集】2018-2019年广州市花都区初中名校八年级上学期数学期末教学质量检测试题

【精选3份合集】2018-2019年广州市花都区初中名校八年级上学期数学期末教学质量检测试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图是人字型金属屋架的示意图,该屋架由BC 、AC 、BA 、AD 四段金属材料焊接而成,其中A 、B 、C 、D 四点均为焊接点,且AB=AC ,D 为BC 的中点,假设焊接所需的四段金属材料已截好,并已标出BC 段的中点D ,那么,如果焊接工身边只有可检验直角的角尺,而又为了准确快速地焊接,他应该首先选取的两段金属材料及焊接点是( )A .AB 和AD ,点A B .AB 和AC ,点B C .AC 和BC, 点CD .AD 和BC ,点D【答案】D【分析】根据全等三角形的判定定理SSS 推知△ABD ≌△ACD ,则∠ADB=∠ADC=90°. 【详解】解:根据题意知,∵在△ABD 与△ACD 中,AB AC AD AD BD CD ⎧⎪⎨⎪⎩=== , ∴△ABD ≌△ACD (SSS ), ∴∠ADB=∠ADC=90°, ∴AD ⊥BC ,根据焊接工身边的工具,显然是AD 和BC 焊接点D . 故选:D . 【点睛】本题考查了全等三角形的应用.巧妙地借助两个三角形全等,寻找角与角间是数量关系. 2.若直线1y k x 1=+与2y k x 4=-的交点在x 轴上,那么12k k 等于( ) A .4 B .4-C .14 D .14-【答案】D【解析】分别求出两直线与x 轴的交点的横坐标,然后列出方程整理即可得解. 【详解】解:令y 0=,则1k x 10+=, 解得11x k =-, 2k x 40-=,解得24x k =, 两直线交点在x 轴上,1214k k ∴-=, 12k 1k 4∴=-. 故选:D . 【点睛】考查了两直线相交的问题,分别表示出两直线与x 轴的交点的横坐标是解题的关键. 3.若方程mx+ny =6的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩,则m ,n 的值为( ) A .4,2 B .2,4C .﹣4,﹣2D .﹣2,﹣4【答案】A【分析】根据方程解的定义,将x 与y 的两对值代入方程得到关于m 与n 的方程组,解方程组即可.【详解】解:将11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩分别代入mx+ny =6中,得:626m n m n +=⎧⎨-=⎩①②,①+②得:3m =12,即m =4, 将m =4代入①得:n =2, 故选:A . 【点睛】本题考查了二元一次方程解的定义和二元一次方程组的解法,根据二元一次方程解的定义得到关于m 、n 的方程组是解题关键.4.甲、乙、丙、丁四名设计运动员参加射击预选赛,他们射击成绩的平均数及方差如下表示:若要选出一个成绩较好状态稳定的运动员去参赛,那么应选运动员( )A .甲B .乙C .丙D .丁【答案】B【分析】根据平均数及方差的定义和性质进行选择即可. 【详解】由上图可知,甲、乙、丙、丁中 乙、丙的平均数最大,为9 ∵1 1.2<∴乙的方差比丙的方差小 ∴选择乙更为合适 故答案为:B . 【点睛】本题考查了平均数和方差的问题,掌握平均数及方差的定义和性质是解题的关键.5.如图,C 为线段AE 上任意一点(不与A 、E 重合),在AE 同侧分别是等边三角形ABC 和等边三角形CDE ,AD 与BE 交于点O ,与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下五个结论:①AD BE =;②PD QE =;③PQAE ;④60AOB ∠=︒;⑤QB AB =.正确的结论有( )A .5个B .4个C .3个D .2个【答案】B【解析】由已知条件可知根据SAS 可证得E ACD BC ∆∆≌,进而可以推导出AD BE =、PD QE =、PQAE 、60AOB ∠=︒等结论.【详解】∵ABC ∆和CDE ∆是等边三角形∴AC BC =,CD CE =,60ACB ECD ∠=∠=︒ ∴60PCQ ∠=︒∴ACB PCQ ECD PCQ ∠+∠=∠+∠即ACD BCE ∠=∠ ∴在ACD ∆和BCE ∆中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩∴()ACD BCE SAS ∆∆≌∴AD BE =,ADC BEC ∠∠=,DAC EBC ∠=∠ ∵60PCD QCE ∠=∠=∠︒,CD CE =∴在PCD QCE ∆∆≌中PCD QCE CD CEPDC QEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()PCD QCE ASA ∆∆≌ ∴PD QE =,PC QC = ∴PCQ ∆是等边三角形 ∴60CPQ ACB ∠=∠=︒ ∴//PQ AE∵60ACB BEC EBC ∠=∠+∠=︒ ∴60AOB BEC DAC ∠=∠+∠=︒∵在BQC ∆中,60BQC ECQ CEQ ∠=∠+∠>︒,60BCQ ∠=︒ ∴QB BC < ∵BC AB = ∴QB AB <∴正确的结论是:AD BE =,PD QE =、PQ AE 、60AOB ∠=︒故选:B 【点睛】本题考查了三角形、等边三角形、全等三角形的相关内容,其结论都是在E ACD BC ∆∆≌的基础上形成的结论,说明证三角形全等是解题的关键,既可以充分揭示数学问题的层次,又可以考查学生的思维层次. 6.下列交通标志中,轴对称图形的个数为( )A .4个B .3个C .2个D .1个【答案】B【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可. 【详解】解:第1个是轴对称图形,符合题意; 第2个是轴对称图形,符合题意; 第3个不是轴对称图形,不合题意;第4个是轴对称图形,符合题意; 故选:B . 【点睛】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合. 7.下列运算正确的是( ) A .2(2)-=-2 B .23(3)-=3C . 2.5=0.5D .3222=【答案】D【分析】根据二次根式的性质进行化简. 【详解】A 、2(2)=2-,故原计算错误; B 、233(3)=9-,故原计算错误; C 、5102.5==2,故原计算错误; D 、3222=,正确; 故选:D . 【点睛】本题考查二次根式的性质,熟练掌握相关知识是解题的关键,比较基础.8.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( ) A .方差 B .中位数C .众数D .平均数【答案】A【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可. 故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差9.如图所示,小琳总结了“解可化为一元一次方程的分式方程”的运算流程,那么A 和B 分别代表的是( )A .分式的基本性质,最简公分母=0B .分式的基本性质,最简公分母≠0C .等式的基本性质2,最简公分母=0D .等式的基本性质2,最简公分母≠0 【答案】C【解析】根据解分式方程的步骤,可得答案. 【详解】去分母得依据是等式基本性质2, 检验时最简公分母等于零,原分式方程无解. 故答案选:C. 【点睛】本题考查了解分式方程,解题的关键是熟练的掌握解分式方程的方法. 10.下列运算中错误的是( ) A .235+= B .236⨯=C .822÷=D .2 (3)3-=【答案】A【分析】根据合并同类二次根式的法则对A 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断;根据二次根式的性质对D 进行判断. 【详解】A. 2与3不是同类二次根式,不能合并,故此项错误,符合要求;B. 23236⨯=⨯=,故此项正确,不符合要求;C.828242÷÷===,故此项正确,不符合要求;D. 2 (3)3-=,故此项正确,不符合要求; 故选A . 【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式. 二、填空题11.如图,直线a ∥b ,∠1=45°,∠2=30°,则∠P=_______°.【答案】1.【详解】解:过P 作PM ∥直线a , ∵直线a ∥b , ∴直线a ∥b ∥PM , ∵∠1=45°,∠2=30°,∴∠EPM=∠2=30°,∠FPM=∠1=45°,∴∠EPF=∠EPM+∠FPM=30°+45°=1°,故答案为1.【点睛】本题考查平行线的性质,正确添加辅助线是解题关键.12.如图,在长方形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于12AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=3,CE=5,则AD的长为__________.【答案】1【分析】连接AE,如图,利用基本作图得到MN垂直平分AC,则EA=EC=3,然后利用勾股定理计算出AD 即可.【详解】连接AE,如图,由作法得MN垂直平分AC,∴EA=EC=5,在Rt△ADE中,22534-=,故答案为1.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).13.当x=______________时,分式||11xx--的值是0?【答案】-1【解析】由题意得10{10xx-=-≠,解之得1x=-.14.某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为_______________.【答案】9.5×10-1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.00000095米用科学记数法表示为9.5×10-1,故答案为:9.5×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15.如图,点A的坐标为(-1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为__.【答案】(-12,-12)【解析】试题解析:先过点A作AB′⊥OB,垂足为点B′,由垂线段最短可知,当B′与点B重合时AB最短,∵点B在直线y=x上运动,∴△AOB′是等腰直角三角形,过B′作B′C⊥x轴,垂足为C,∴△B′CO为等腰直角三角形,∵点A的坐标为(﹣1,0),∴OC=CB′=12OA=12×1=12,∴B′坐标为(﹣12,﹣12),即当线段AB最短时,点B的坐标为(﹣12,﹣12).考点:一次函数综合题.16.已知直角三角形的两边长分别为3、1.则第三边长为________.【答案】47【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论: ①长为3的边是直角边,长为3的边是斜边时:第三边的长为:22437-=; ②长为3、3的边都是直角边时:第三边的长为:22435;∴第三边的长为:7或4.考点:3.勾股定理;4.分类思想的应用.17.点P (3,﹣5)关于x 轴对称的点的坐标为______. 【答案】(3,5)【解析】试题解析:点()3,5P -关于x 轴对称的点的坐标为()3,5. 故答案为()3,5.点睛:关于x 轴对称的点的坐标特征:横坐标不变,纵坐标互为相反数. 三、解答题18.阅读与思考:整式乘法与因式分解是方向相反的变形,由(x+p )(x+q )=x 2+(p+q )x+pq 得,x 2+(p+q )x+pq=(x+p )(x+q );利用这个式子可以将某些二次项系数是1的二次三项式分解因式,例如:将式子x 2﹣x ﹣6分解因式.这个式子的常数项﹣6=2×(﹣3),一次项系数﹣1=2+(﹣3),这个过程可用十字相乘的形式形象地表示:先分解常数项,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数.如图所示.这种分解二次三项式的方法叫“十字相乘法”,请同学们认真观察,分析理解后,解答下列问题. (1)分解因式:x 2+7x ﹣1.(2)填空:若x 2+px ﹣8可分解为两个一次因式的积,则整数p 的所有可能值是 .【答案】(1)(x+9)(x ﹣2);(2)7,﹣7,2,﹣2【解析】试题分析:(1)仿照题中十字相乘法将原式分解即可; (2)把﹣8分为两个整数相乘,其和即为整数p 的值,写出即可. 解:(1)原式=(x+9)(x ﹣2);(2)若x 2+px ﹣8可分解为两个一次因式的积,则整数p 的所有可能值是﹣8+1=﹣7;﹣1+8=7;﹣2+4=2;﹣4+2=﹣2,故答案为7,﹣7,2,﹣2 考点:因式分解-十字相乘法等.19.如图,在ABC ∆中,AB AC =,在AB 上取一点D ,在AC 延长线上取一点E ,且BD EC =.证明:PD PE =.(1)根据图1及证法一,填写相应的理由;证法一:如图261-中,作DF BC ⊥于F ,EG BC ⊥交BC 的延长线于G .AB AC =12B ∴∠=∠=∠( )390G ∠=∠=︒,BD EC =DFB EGC ∴∆∆≌( )DF EG ∴=( )690G ∠=∠=︒,45∠=∠,DPF EPG ∴∆∆≌( )PD PE ∴=( )(2)利用图2探究证法二,并写出证明.【答案】(1)等边对等角,对项角相等,等量代换(写对其中两个理由即可);AAS ;全等三角形的对应边相等 ; AAS ;全等三角形的对应边相等.(2)见解析. 【分析】(1)根据证明过程填写相应理由即可;(2)过点D 作DF ∥AC 交BC 于P ,就可以得出∠DFB=∠ACB ,()DPF EPC AAS ≌,就可以得出DF=EC ,由BD=DF 就可以得出结论..【详解】(1)证法一:如图1中,作DF BC ⊥于F ,EG BC ⊥交BC 的延长线于G ,AB AC =,12B ∴∠=∠=∠(等边对等角,对项角相等,等量代换), 390G ∠=∠=︒,BD EC =,DFB EGC ∴∆∆≌( AAS ), DF EG ∴=(全等三角形的对应边相等), 690G ∠=∠=︒,45∠=∠,DPF EPG ∴∆∆≌(AAS ), PD PE ∴=(全等三角形的对应边相等), 故答案为:等边对等角,对项角相等,等量代换(写对其中两个理由即可);AAS ;全等三角形的对应边。

2018-2019学年广东省深圳外国语学校八年级(上)期末数学试卷

2018-2019学年广东省深圳外国语学校八年级(上)期末数学试卷

2018-2019学年广东省深圳外国语学校八年级(上)期末数学试卷一、选择题1.(3分)若直线y=3x+6与直线y=2x+4的交点坐标为(a,b),则解为的方程组是()A.B.C.D.2.(3分)解不等式组>的解集在数轴上表示正确的是()A.B.C.D.3.(3分)某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A.B.C.D.4.(3分)如果二元一次方程组的解是二元一次方程3x﹣5y﹣7=0的一个解,那么a值是()A.3B.5C.7D.95.(3分)等腰三角形的一个外角为110°,则它的顶角的度数是()A.40°B.70°C.40°或70°D.以上答案均不对6.(3分)如图,在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC =5,DE,则△BCE的面积等于()A.3B.C.4D.7.(3分)以下四个命题中:①等腰三角形的两个底角相等②直角三角形的两个锐角互余③对顶角相等④线段垂直平分线上的点到线段两端点的距离相等,原命题与逆命题同时成立的个数有()A.1B.2C.3D.48.(3分)如图,直线y x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(,0)D.(,0)<有解,则m的取值范围字数轴上可表示为()9.(3分)已知不等式组A.B.C.D.10.(3分)在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A.B.C.D.11.(3分)在平直角坐标系中,已知点A(﹣4,0),B(2,0),若点C在一次函数y x+2的图象,且△ABC为等腰三角形,则满足条件的点C有()A.2个B.3个C.4个D.5个12.(3分)在平面直角坐标系中,已知一次函数y x+6与x,y轴分别交于A,B两点,点C(0,n)是线段BO上一点,将△AOB沿直线AC折叠,点B刚好落在x轴负半轴上,则点C的坐标是()A.(0,3)B.(0,)C.(0,)D.(0,)二、填空题13.(3分)已知a,b满足方程组,则a+b的值为.14.(3分)如图,已知∠BDC=142°,∠B=34°,∠C=28°,则∠A=.>有且只有四个整数解,且一次函数y=(k+3)15.(3分)若关于x的不等式组x+k+5的图象不经过第三象限,则符合题意的整数k为.16.(3分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y x+4上,设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…依据图形所反映的规律,S2019=.。

2018—2019学年第一学期八年级数学期末试题(含答案)

2018—2019学年第一学期八年级数学期末试题(含答案)

2018—2019学年度第一学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列长度的四根木棒中,能与长5cm 、11cm 的两根木棒首尾相接,钉成一个三角形的是 A. 5cmB. 6cmC. 11cmD.16cm2.下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等.其中正确的说法为 A. ①②③④B. ①③④C. ①②④D.②③④3.在北大、清华、复旦和浙大的校标LOGO 中,是轴对称图形的是A.B.C. D .4.若一个三角形的三个内角的度数之比为1∶2∶3,那么相对应的三个外角的度数之比为 A. 3∶2∶1B. 1∶2∶3C. 3∶4∶5 D .5∶4∶35.下列运算正确的是 A.224a a a+= B.62322a a a-÷=-C.222233ab a b a b ⋅= D.224()a a -=6.已知分式242x x -+的值等于零,那么x 的值是A .2B .-2C .±2D .07.不改变分式的值,把0.0230.35x x -+的分子、分母中含x 项的系数化为整数为A.2335x x -+B.23305x x -++C. 230030500x x -+ D .230030500x x +-+ 8.与单项式23a b -的积是32222629a b a b a b -+的多项式是A.23ab --B.2233ab b -+-C.233b - D .2233ab b -+9.如图,已知AC =BD ,添加下列条件,不能使△ABC ≌△DCB 的是 A. ∠ACB =∠DBCB. AB =DCC.∠ABC =∠DCB D .∠A =∠D =90°10.如图,在△ABC 中,AB =AC ,∠A =36°,AB 垂直平分线交AC 于D ,交AB 于E ,给出下列结论:①∠C =72°;②BD 平分∠ABC ;③BC =AD ;④△BDC 是等腰三角形.其中正确结论的个数是 A.1 B.2C.3 D .4 11.若a -b =2,则a 2-b 2-4b 的值是 A.0 B.2C.4 D .6 12.若22(3)1t t --=,则t 可以取的值有 A. 4个B. 3个C. 2个D .1个第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.已知点A (3,b )与点(a ,-2)关于y 轴对称,则a +b = . 14.因式分解:2228mx my -= . 15.一个多边形的外角和是内角和的27,则这个多边形的边数为 . (第9题图)(第10题图)16.如图,在四边形ABCD 中,∠A =50°,直线l 与边AB 、AD 分别相交于点M 、N , 则∠1+∠2= .17.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,AB =10,AC =8,△ABC 的面积为45,则DE 的长为 .18.如图,已知AB ∥CF ,E 是DF 的中点,若AB =9cm ,CF =6cm ,则BD = cm .19.已知,如图△ABC 为等边三角形,高AH =10cm ,D 为AB 的中点,点P 为AH 上的一个动点,则PD +PB 的最小值为 cm . 20.计算:2222()()x y xy --= (结果不含负指数幂).21.轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同.已知水流的速度是3千米/时,则轮船在静水中的速度是 千米/时. 22.观察下列等式:1×3+1=22;2×4+1=32;3×5+1=42;4×6+1=52;…请利用你所发现的规律写出第n 个等式: . 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.计算:(1)234(1)(43)(2)2a a a a -++-÷; (2)2.BAC =α,∠B =β(α>β).(第16题图) (第17题图)(第18题图) (第19题图)(1)若α=70°,β=40°,求∠DCE 的度数;(2)用α、β的代数式表示∠DCE = (只写出结果,不用写演推过程); (3)如图②,若将条件中的CE 改为是△ABC 外角∠ACF 的平分线,交BA 延长线于点E ,且α-β=30°,则∠DCE = (只写出结果,不用写演推过程). 26.(1)解方程:21133x xx x =---; (2)列方程解应用题:某超市用2000元购进某种干果销售,由于销售状况良好,超市又拨6000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多200千克.求该种干果的第一次进价是每千克多少元? 27.如图,△ABC 是等边三角形,BD ⊥AC ,AE ⊥BC ,垂足分别为D 、E ,AE 、BD 相交于点O ,连接DE .(1)求证:△CDE 是等边三角形; (2)若AO =12,求OE 的长.28.如图,AB =AC ,AB ⊥AC ,AD =AE ,AE ⊥AD ,B ,C ,E 三点在同一条直线上. (1)求证:DC ⊥BE ;(2)探究∠CAE 与∠CDE 之间有怎样的数量关系?写出结论,并说明理由.(第28题图)(第27题图)2018—2019学年第一学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.-5 ; 14.2(2)(2)m x y x y +-; 15.9 ; 16.230°;17.5; 18.3; 19.10; 20. 261x y ;21.21; 22.2(2)1(1)n n n ++=+. 三、解答题:(共74分)23.解:(1)234(1)(43)(2)2a a a a -++-÷=4a 2﹣4a +3a ﹣3﹣4a 2 ………………………………………………4分 =﹣a ﹣3 ………………………………………………5分 (2)(2x ﹣y )2﹣4x (x ﹣y )=4x 2﹣4xy +y 2﹣4x 2+4xy ……………………………………………9分 =y 2 ……………………………………………10分24.(1)解:原式=[9(a +b )+5(a ﹣b )][9(a +b )﹣5(a ﹣b )] ……2分=(14a +4b )(4a +14b ) ………………………………3分 =4(7a +2b )(2a +7b ) ………………………………5分(2)解:÷(﹣x ﹣1)﹣=…………………………7分=………………………………9分=………………………………………………10分= ………………………………………………11分 =………………………………………………12分25. 解:(1)∵∠ACB =180°﹣(∠BAC +∠B )=180°﹣(70°+40°)=70°, ………………2分 又∵CE 是∠ACB 的平分线,∴1352ACE ACB ∠=∠=︒. ………………………………4分∵CD 是高线,∴∠ADC =90°, ………………………………6分 ∴∠ACD =90°﹣∠BAC =20°,……………………………7分 ∴∠DCE =∠ACE ﹣∠ACD=35°﹣20°=15°.………………………………8分(2)2DCE αβ-∠=; …………………………………………10分(3)∠DCE 的度数为75°.………………………………………12分26.(1)解:方程的两边同乘3(x ﹣1),得6x =3x ﹣3﹣x , ………………………2分解得34x =-. ………………………4分检验:把34x =-代入3(x ﹣1)≠0. ………………………5分故原方程的解为34x =-. ………………………6分(2)解:设第一次的进价为x 元,由题意得 200060002200(120%)x x ⨯+=+ ………………………9分 解得 x =5 ……………………11分经检验:x =5是原分式方程的解,且符合题意. …………12分 答:该种干果的第一次进价是每千克5元. ……………………13分27. 解:(1)∵△ABC 是等边三角形,且BD ⊥AC ,AE ⊥BC ,∴∠C =60°,BC =AC , CE =BC ,CD =AC ; ………………………………4分∴CD =CE , ……………5分 又∠C =60°,∴△CDE 是等边三角形.……………………………………6分 (2)∵△ABC 是等边三角形,且BD ⊥AC ,AE ⊥BC ,∴∠ABC =∠BAC =60°, …………………………………7分12D B C A B D A B C∠=∠=∠, 12B A E B AC ∠=∠, ……………………………………8分 ∴30ABD BAE ∠=∠=︒ ,30DBC ∠=︒, ……………………………………9分 ∴AO =BO , ……………………………………10分 ∵30DBC ∠=︒,AE ⊥BC ,∴BO =2OE , ……………………………………11分 ∴AO =2OE , ……………………………………12分 又AO =12,∴OE =6. ……………………………………13分28. (1)证明:∵AB ⊥AC ,AE ⊥AD ,AB =AC ,∴∠BAC =∠DAE =90°, ……………………………1分∠B =∠ACB =45°, ……………………………2分(第27题图)∴∠BAC +∠CAE =∠DAE +∠CAE ,∴∠BAE =∠CAD , ……………………………3分 在△BAE 与△CAD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△ABE (SAS ), ……………………………5分∴∠ACD =∠B =45°, ……………………………6分 ∴∠BCD =∠ACD +∠ACB =90°,……………………7分 ∴DC ⊥BE . ……………………………8分(2)∠CAE =∠CDE . ……………………………10分理由:∵AD =AE ,AE ⊥AD ,∴∠AED =∠ADE =45°,……………………………11分 ∵由(1)知DC ⊥BE ,∴∠CDE +∠AEC +∠AED =90°,∴∠CDE +∠AEC =45°,……………………………12分 又∠CAE +∠AEC =∠ACB =45°,…………………13分 ∴∠CAE =∠CDE . ……………………………14分(第28题图)。

广东省广州市2018-2019学年八年级数学下册期末考试试卷(含答案解析)

广东省广州市2018-2019学年八年级数学下册期末考试试卷(含答案解析)

广东省广州市2018-2019学年八年级数学下册期末考试试卷(含答案解析)2018-2019学年下学期期末考试八年级数学试卷一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)点()在函数y=2x﹣1的图象上.A.(1,3)B.(﹣2.5,4)C.(﹣1,0)D.(3,5)【专题】一次函数及其应用.【分析】将各点坐标代入函数y=2x-1,依据函数解析式是否成立即可得到结论.【解答】解:A、当x=1时,y=2-1=1≠3,故(1,3)不在函数y=2x-1的图象上.B、当x=-2.5时,y=-5-1=-6≠4,故(-2.5,4)不在函数y=2x-1的图象上.C、当x=-1时,y=-2-1=-3≠0,故(-1,0)不在函数y=2x-1的图象上.D、当x=3时,y=6-1=5,故(3,5)在函数y=2x-1的图象上.故选:D.【点评】本题主要考查了一次函数图象上点的坐标特征,直线上任意一点的坐标都满足函数关系式y=kx+b.2.(2分)当a满足条件()时,式子在实数范围内有意义()A.a<﹣3 B.a≤﹣3 C.a>﹣3 D.a≥﹣3【专题】常规题型;二次根式.【分析】根据二次根式的意义即可求得答案.【解答】解:根据题意知,要使在实数范围内有意义,则a+3≥0,解得:a≥-3,故选:D.【点评】本题主要考查二次根式的意义,掌握二次根式中被开方数为非负数是解题的关键.3.(2分)计算:÷=()(a>0,b>0)A. B. C.2a D.2a2【专题】计算题;二次根式.【分析】根据二次根式的除法法则计算可得.【解答】故选:C.【点评】本题主要考查二次根式的乘除法,解题的关键是掌握二次根式的除法运算法则.4.(2分)把一张长方形纸片ABCD按如图方式折一下,就一定可以裁出()纸片ABEF.A.平行四边形B.菱形 C.矩形 D.正方形【专题】矩形菱形正方形.【分析】根据折叠定理得:所得的四边形有三个直角,且一组邻边相等,所以可以裁出正方形纸片.【解答】解:由已知,根据折叠原理,对折后可得:∠FAB=∠B=∠AFE=90°,AB=AF,∴四边形ABEF是正方形,故选:D.【点评】此题考查了正方形的判定和折叠的性质,关键是由折叠原理得到四边形有三个直角,且一组邻边相等5.(2分)下列各图象中,()表示y是x的一次函数.A.B.C.D.【专题】函数思想.【分析】一次函数的图象是直线.【解答】解:表示y是x的一次函数的图象是一条直线,观察选项,只有A选项符合题意.故选:A.【点评】本题考查了函数的定义,一次函数和正比例函数的图象都是直线.6.(2分)如图,直线y=﹣x+2与x轴交于点A,则点A 的坐标是()A.(2,0)B.(0,2)C.(1,1)D.(2,2)【专题】函数及其图像.【分析】一次函数y=kx+b(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是【解答】解:直线y=-x+2中,令y=0,则0=-x+2,解得x=2,∴A(2,0),故选:A.【点评】本题主要考查了一次函数图象上点的坐标特征,一次函数y=kx+b(k≠0,且k,b为常数)与x轴的交点坐标是,与y轴的交点坐标是(0,b).7.(2分)某中学规定学生的学期体育成绩满分为100,其中大课间及体育课外活动占60%,期末考试成绩古40%.小云的两项成绩(百分制)依次为84,94.小云这学期的体育成绩是()A.86 B.88 C.90 D.92【专题】常规题型;统计的应用.【分析】根据加权平均数的计算公式,列出算式,再进行计算即可【解答】解:小云这学期的体育成绩是84×60%+94×40%=88(分),故选:B.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,是一道基础题.8.(2分)下列说法中,正确的是()A.对角线互相平分的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.对角线互相垂直的四边形一定是菱形D.对角线相等的四边形一定是正方形【专题】矩形菱形正方形.【分析】根据平行四边形、矩形、正方形、菱形的判定方法即可判定.【解答】解:A、对角线互相平分的四边形一定是平行四边形,正确,符合题意;B、对角线相等的四边形一定是矩形,错误,比如等腰梯形的对角线相等,表示平行四边形,不符合题意;C、对角线互相垂直的四边形一定是菱形,错误.不符合题意;D、对角线相等的四边形一定是正方形,错误,不符合题意;故选:A.。

2018-2019学年度八年级上数学期末试卷(解析版)

2018-2019学年度八年级上数学期末试卷(解析版)

2018-2019学年联考八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

广东省广州市番禺区2018-2019学年八年级上学期统考期末数学试题 (解析版)

广东省广州市番禺区2018-2019学年八年级上学期统考期末数学试题 (解析版)

广东省广州市番禺区2018-2019学年八年级上学期统考期末数学试题一、选择题(每小题2分,满分20分)1.如图,△ABO关于x轴对称,点A的坐标为(1,﹣2),则点B的坐标为()A.(2,1)B.(1,2)C.(﹣1,2)D.(﹣1,﹣2)2.下列运算正确的是()A.a2•a3=a6B.(a2)3=a6C.a6÷a2=a3D.23=63.下列长度的三条线段能组成三角形的是()A.2,3,5B.3,6,11C.6,8,10D.3,2,14.小时候我们用肥皂水吹泡泡,其泡沫的厚度约0.000326毫米,用科学记数法表示为()A.3.26×10﹣4毫米B.0.326×10﹣4毫米C.3.26×10﹣4厘米D.32.6×10﹣4厘米5.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形,若拿掉边长为2b的小正方形后,再将剩下的三块拼成一个矩形,则这个矩形的面积为()A.9a2﹣4b2B.3a+2b C.6a2+2b2D.9a2﹣6ab6.要使分式有意义,则x的取值范围是()A.x≠1B.x≠﹣1C.x≠±1D.任何数都可以7.若x2+2(m﹣3)x+16是完全平方式,则m的值等于()A.3B.﹣5C.7D.7或﹣18.一个n边形的内角和为540°,则n的值为()A.4B.5C.6D.79.如图,在△ABC中,点D在BC边上,BD=AD=AC,E为CD的中点,若∠CAE=16°,则∠B的大小为()A.32°B.36°C.37°D.74°10.已知=3,则代数式的值是()A.B.C.D.二、填空题(每小题2分,满分12分.)11.计算:(x+1)(x+2)=.12.分式方程=1的解是.13.因式分解:x2﹣9=.14.一个等腰三角形的一个角为50°,则它的顶角的度数是.15.等腰三角形的底角是15°,腰长为10,则其腰上的高为.16.如图,点D、E在△ABC边上,沿DE将△ADE翻折,点A的对应点为点A′,∠A′EC=,∠A′DB=,且<,则∠A等于(用含、的式子表示).三、解答题(本大题共9小题,满分68分,解答应写出文字说明、证明过程或演算步骤.)17.(6分)分解因式:(1)ax+ay(2)x4﹣b4(3)3ax2﹣6axy+3ay218.(6分)如图,已知△ABC,AC<BC,(1)尺规作图:作△ABC的边BC上的高AD(不写作法,保留作图痕迹).(2)试用尺规作图的方法在线段BC上确定一点P,使P A+PC=BC,并说明理由.19.(7分)(1)计算:(x﹣8y)(x﹣y);(2)解分式方程:.20.(7分)在如图所示的方格纸中,(1)作出△ABC关于MN对称的图形△A1B1C1.(2)说明△A2B2C2可以由△A1B1C1经过怎样的平移变换得到?(3)以MN所在直线为x轴,AA1的中点为坐标原点,建立直角坐标系xOy,试在x轴上找一点P,使得P A1+PB2最小,直接写出点P的坐标.21.(8分)如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠CDA.(1)求证:BE∥DF;(2)若∠ABC=56°,求∠ADF的大小.22.(8分)(1)计算:÷;(2)先化简,再求值:,其中x=﹣23.(8分)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连接CD,过点C作CE⊥CD,且CE=CD,连接DE交BC于点F,连接BE.(1)求证:AB⊥BE;(2)当AD=BF时,求∠BE F的度数.24.(8分)某校为创建“书香校园”,购置了一批图书,已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普类图书的数量与购买文学类图书的数量相等.求科普类图书平均每本的价格.25.(10分)阅读下面的学习材料(研学问题),尝试解决问题:(a)某学习小组在学习时遇到如下问题:如图①,在Rt△ABC中,∠C=90°,D为边BC上一点,DA=DB,E为AD延长线上一点,∠AEB=120°,猜想BC、EA、EB的数量关系,并证明结论.大家经探究发现:过点B作BF⊥AE交AE的延长线于F,如图②所示,构造全等三角形使问题容易求解,请写出解答过程.参考上述思考问题的方法,解答下列问题:(b)如图③,等腰△ABC中,AB=AC,H为AC上一点,在BC的延长线上顺次取点E、F,在CB的延长线上取点BD,使EF=DB,过点E作EG∥AC交DH的延长线于点G,连接AF,若∠HDF+∠F=∠BAC.(1)探究∠BAF与∠CHG的数量关系;(2)请在图中找出一条和线段AF相等的线段,并证明你的结论.参考答案一、选择题1.如图,△ABO关于x轴对称,点A的坐标为(1,﹣2),则点B的坐标为()A.(2,1)B.(1,2)C.(﹣1,2)D.(﹣1,﹣2)【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于x轴对称的点,横坐标相同,纵坐标互为相反数,即可得出结果.解:由题意,可知点B与点A关于x轴对称,又∵点A的坐标为(1,﹣2),∴点B的坐标为(1,2).故选:B.【点评】本题考查了平面直角坐标系中关于x轴成轴对称的两点的坐标之间的关系.能够根据题意得出点B与点A关于x轴对称是解题的关键.2.下列运算正确的是()A.a2•a3=a6B.(a2)3=a6C.a6÷a2=a3D.23=6【分析】结合选项分别进行同底数幂的乘法、同底数幂的除法、幂的乘方和积的乘方等运算,然后选择正确选项.解:A、a2•a3=a5,原式错误,故本选项错误;B、(a2)3=a6,计算正确,故本选项正确;C、a6÷a2=a4,原式错误,故本选项错误;D、23=8,原式错误,故本选项错误.故选:B.【点评】本题考查了同底数幂的乘法、同底数幂的除法、幂的乘方和积的乘方等知识,掌握运算法则是解答本题的关键.3.下列长度的三条线段能组成三角形的是()A.2,3,5B.3,6,11C.6,8,10D.3,2,1【分析】根据三角形的三边关系进行分析判断.解:根据三角形任意两边的和大于第三边,得A中,2+3=5,不能组成三角形;B中,3+6=9<11,不能组成三角形;C中,6+8=14>10,能够组成三角形;D中,1+2=3,不能组成三角形.故选:C.【点评】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.4.小时候我们用肥皂水吹泡泡,其泡沫的厚度约0.000326毫米,用科学记数法表示为()A.3.26×10﹣4毫米B.0.326×10﹣4毫米C.3.26×10﹣4厘米D.32.6×10﹣4厘米【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000326毫米,用科学记数法表示为3.26×10﹣4毫米.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形,若拿掉边长为2b的小正方形后,再将剩下的三块拼成一个矩形,则这个矩形的面积为()A.9a2﹣4b2B.3a+2b C.6a2+2b2D.9a2﹣6ab【分析】依据阴影部分的三块拼成一个矩形,求得阴影部分的面积即可得到这个矩形的面积.解:∵阴影部分面积=9a2﹣4b2,∴将阴影部分的三块拼成一个矩形,则这个矩形的面积为9a2﹣4b2,故选:A.【点评】本题主要考查了平方差公式的几何背景,解题时注意:阴影部分的面积等于大正方形的面积减去小正方形的面积.6.要使分式有意义,则x的取值范围是()A.x≠1B.x≠﹣1C.x≠±1D.任何数都可以【分析】本题主要考查分式有意义的条件:分母不等于0,即x﹣1≠0,解得x的取值范围.解:要使分式有意义,则x﹣1≠0,解得x≠1.故选:A.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.7.若x2+2(m﹣3)x+16是完全平方式,则m的值等于()A.3B.﹣5C.7D.7或﹣1【分析】利用完全平方公式的结构特征判断即可.解:∵x2+2(m﹣3)x+16是完全平方式,∴m﹣3=±4,解得:m=7或﹣1,故选:D.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.8.一个n边形的内角和为540°,则n的值为()A.4B.5C.6D.7【分析】本题可利用多边形的内角和为(n﹣2)•180°解决问题.解:根据题意,得(n﹣2)•180°=540°,解得:n=5.故选:B.【点评】考查了多边形内角与外角,本题需仔细分析题意,利用多边形的内角和公式结合方程即可解决问题.9.如图,在△ABC中,点D在BC边上,BD=AD=AC,E为CD的中点,若∠CAE=16°,则∠B的大小为()A.32°B.36°C.37°D.74°【分析】先判断出∠AEC=90°,进而求出∠ADC=∠C=74°,最后用等腰三角形的外角的性质即可得出结论.解:∵AD=AC,点E是CD中点,∴AE⊥CD,∴∠AEC=90°,∴∠C=90°﹣∠CAE=74°,∵AD=AC,∴∠ADC=∠C=74°,∵AD=BD,∴2∠B=∠ADC=74°,∴∠B=37°,故选:C.【点评】此题主要考查了等腰三角形的性质,三角形外角的性质的综合运用,解题时注意:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.10.已知=3,则代数式的值是()A.B.C.D.【分析】由=3得出=3,即x﹣y=﹣3xy,整体代入原式=,计算可得.解:∵=3,∴=3,∴x﹣y=﹣3xy,则原式====,故选:D.【点评】本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则和整体代入思想的运用.二、填空题(本大题共6小题,每小题2分,满分12分.)11.计算:(x+1)(x+2)=x2+3x+2.【分析】原式利用多项式乘多项式法则计算即可得到结果.解:原式=x2+2x+x+2=x2+3x+2,故答案为:x2+3x+2【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.12.分式方程=1的解是x=2.【分析】将分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:2x﹣1=3,解得:x=2,经检验x=2是分式方程的解.故答案为:x=2.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.因式分解:x2﹣9=(x+3)(x﹣3).【分析】原式利用平方差公式分解即可.解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.14.一个等腰三角形的一个角为50°,则它的顶角的度数是50°或80°.【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以有两种情况.解:(1)当50°角为顶角,顶角度数即为50°;(2)当50°为底角时,顶角=180°﹣2×50°=80°.故填50°或80°.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.15.等腰三角形的底角是15°,腰长为10,则其腰上的高为5.【分析】根据题意作出图形,利用等腰三角形的两底角相等求出三角形的顶角等于150°,所以顶角的邻补角等于30°,然后根据直角三角形中30°角所对的直角边等于斜边的一半即可求出.解:如图,△ABC中,∠B=∠ACB=15°,∴∠BAC=180°﹣15°×2=150°,∴∠CAD=180°﹣150°=30°,∵CD是腰AB边上的高,∴CD=AC=×10=5cm.故答案为:5.【点评】本题考查了等腰三角形的性质与30°所对的直角边等于斜边的一半的性质,根据题意作出图形是解题的关键,对学生来说也是难点.16.如图,点D、E在△ABC边上,沿DE将△ADE翻折,点A的对应点为点A′,∠A′EC=,∠A′DB=,且<,则∠A等于β﹣α(用含、的式子表示).【分析】根据翻转变换的性质得到ADE=∠A′DE,∠AED=∠A′ED,根据三角形的外角的性质计算,得到答案.解:由折叠的性质可知,∠ADE=∠A′DE=(180°﹣β)=90°﹣β,∠AED=∠A′ED,设∠DEC=x,则180°﹣x=α+x,解得,x=90°﹣α,∴∠A=∠DEC﹣∠ADE=β﹣α,故答案为:β﹣α.【点评】本题考查的是翻转变换的性质,三角形的外角的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题(本大题共9小题,满分68分,解答应写出文字说明、证明过程或演算步骤.)17.(6分)分解因式:(1)ax+ay(2)x4﹣b4(3)3ax2﹣6axy+3ay2【分析】(1)提取公因式a分解因式即可;(2)两次利用平方差公式分解因式得出答案;(3)首先提取公因式3a,再利用完全平方公式分解因式即可.解:(1)ax+ay=a(x+y);(2)x4﹣b4=(x2+b2)(x2﹣b2)=(x2+b2)(x+b)(x﹣b);(3)3ax2﹣6axy+3ay2=3a(x2﹣2xy+y2)=3a(x﹣y)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.18.(6分)如图,已知△ABC,AC<BC,(1)尺规作图:作△ABC的边BC上的高AD(不写作法,保留作图痕迹).(2)试用尺规作图的方法在线段BC上确定一点P,使P A+PC=BC,并说明理由.【分析】(1)直接利用过一点作已知直线的垂线作法得出答案;(2)利用线段垂直平分线的作法与性质得出答案.解:(1)如图所示:AD即为所求;(2)如图所示:点P即为所求.理由:∵MN垂直平分线段AB,∴AP=BP,∴P A+PC=BP+PC=BC.【点评】此题主要考查了复杂作图,正确应用线段垂直平分线的性质是解题关键.19.(7分)(1)计算:(x﹣8y)(x﹣y);(2)解分式方程:.【分析】(1)原式利用多项式乘以多项式法则计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:(1)原式=x2﹣9xy+8y2;(2)去分母得:x2﹣3x+2+2x=x2﹣2x,解得:x=﹣2,经检验x=﹣2是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.(7分)在如图所示的方格纸中,(1)作出△ABC关于MN对称的图形△A1B1C1.(2)说明△A2B2C2可以由△A1B1C1经过怎样的平移变换得到?(3)以MN所在直线为x轴,AA1的中点为坐标原点,建立直角坐标系xOy,试在x轴上找一点P,使得P A1+PB2最小,直接写出点P的坐标.【分析】(1)依据轴对称的性质,即可得到△ABC关于MN对称的图形△A1B1C1;(2)依据△A2B2C2与△A1B1C1的位置,即可得到平移的方向和距离;(3)连接AB2,交x轴于P,连接A1P,依据两点之间,线段最短,即可得到P A1+PB2最小,进而得到点P的坐标.解:(1)如图所示,△A1B1C1即为所求;(2)△A2B2C2可以由△A1B1C1向右平移6个单位,向下平移2个单位得到;(3)如图,连接AB2,交x轴于P,连接A1P,则P A1+PB2最小,此时,点P的坐标为(1,0).【点评】本题考查了轴对称﹣最短路线问题以及利用轴对称变换作图,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.21.(8分)如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠CDA.(1)求证:BE∥DF;(2)若∠ABC=56°,求∠ADF的大小.【分析】(1)根据四边形的内角和定理和∠A=∠C=90°,得∠ABC+∠ADC=180°;根据角平分线定义、等角的余角相等易证明和BE与DF两条直线有关的一对同位角相等,从而证明两条直线平行;(2)根据四边形的内角和和角平分线的定义即可得到结论.(1)证明:∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∵BE平分∠ABC,DF平分∠ADC,∴∠1=∠2=∠ABC,∠3=∠4=∠ADC,∴∠1+∠3=(∠ABC+∠ADC)=×180°=90°,又∠1+∠AEB=90°,∴∠3=∠AEB,∴BE∥DF;(2)解:∵∠ABC=56°,∴∠ADC=360°﹣∠A﹣∠C﹣∠ABC=124°,∵DF平分∠CDA,∴∠ADF=∠ADC=62°.【点评】本题考查了平行线的判定,角平分线定义,三角形的内角和定理,四边形的内角和定理的应用,解此题的关键是求出∠EBC和∠DFC的度数,难度适中.22.(8分)(1)计算:÷;(2)先化简,再求值:,其中x=﹣【分析】(1)原式利用除法法则变形,约分即可得到结果;(2)原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,把x 的值代入计算即可求出值.解:(1)原式=•=﹣;(2)原式=•=•=﹣2(3+x)=﹣2x﹣6,当x=﹣时,原式=3﹣6=﹣3.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.(8分)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连接CD,过点C作CE⊥CD,且CE=CD,连接DE交BC于点F,连接BE.(1)求证:AB⊥BE;(2)当AD=BF时,求∠BEF的度数.【分析】(1)由等腰直角三角形的性质可得∠A=∠ABC=45°,根据“SAS”可证△ACD ≌△BCE,可得∠A=∠CBE=45°=∠ABC,即AB⊥BE;(2)由全等三角形的性质可得AD=BE=BF,根据等腰三角形的性质和三角形内角和定理可求∠BEF的度数.证明:(1)∵∠ACB=90°,AC=BC,∴∠A=∠ABC=45°,∵CE⊥CD,∴∠DCE=90°,∴∠ACB=∠DCE,∴∠ACD=∠BCE,且AC=BC,CD=CE,∴△ACD≌△BCE(SAS)∴∠A=∠CBE=45°∵∠ABE=∠ABC+∠CBE=45°+45°=90°,∴AB⊥BE(2)∵△ACD≌△BCE∴AD=BE∵AD=BF∴BE=BF,且∠CBE=45°∴∠BEF=∠BFE=67.5°【点评】本题考查了全等三角形的性质和判定,等腰直角三角形的性质,熟练运用全等三角形的判定和性质解决问题是本题的关键.24.(8分)某校为创建“书香校园”,购置了一批图书,已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普类图书的数量与购买文学类图书的数量相等.求科普类图书平均每本的价格.【分析】设科普类图书平均每本的价格为x元,则文学类图书平均每本的价格为(x﹣5)元,根据数量=总价÷单价结合用10000元购买科普类图书和用9000元购买文学类图书数量相等,即可得出关于x的分式方程,解之经检验即可得出结论.解:设科普类图书平均每本的价格为x元,则文学类图书平均每本的价格为(x﹣5)元,根据题意得:=,解得:x=50,经检验,x=50是所列分式方程的解,且符合题意.答:科普类图书平均每本的价格为50元.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式是解题的关键.25.(10分)阅读下面的学习材料(研学问题),尝试解决问题:(a)某学习小组在学习时遇到如下问题:如图①,在Rt△ABC中,∠C=90°,D为边BC上一点,DA=DB,E为AD延长线上一点,∠AEB=120°,猜想BC、EA、EB的数量关系,并证明结论.大家经探究发现:过点B作BF⊥AE交AE的延长线于F,如图②所示,构造全等三角形使问题容易求解,请写出解答过程.参考上述思考问题的方法,解答下列问题:(b)如图③,等腰△ABC中,AB=AC,H为AC上一点,在BC的延长线上顺次取点E、F,在CB的延长线上取点BD,使EF=DB,过点E作EG∥AC交DH的延长线于点G,连接AF,若∠HDF+∠F=∠BAC.(1)探究∠BAF与∠CHG的数量关系;(2)请在图中找出一条和线段AF相等的线段,并证明你的结论.【分析】(a)如图2中,结论:BC=AE+BE.理由如下,只要证明△BAF≌△ABC,推出BC=AF,再证明EF=BE,可得BC=AF=AE+EF=AE+BE;(b)(1)由∠F+∠FDG=∠BAC,推出∠CHG=∠FDG+∠DCH=∠FDG+∠F+∠CAF=∠BAC+∠CAF=∠BAF;(2)结论:AF=DG.如图3中,延长BD到R,使得BR=CF,连接AR,作AJ∥CF 交EG的延长线于J,连接FJ.首先证明四边形ACEJ,四边形AJDR是平行四边形,再证明△ABF≌△JED,想办法证明∠1=∠2,即可解决问题.解:(a)如图2中,结论:BC=AE+BE.理由如下,∵DA=DB,∴∠DBA=∠DAB,∵AF⊥BF,∴∠F=∠C=90°,在△BAF和△ABC中,,∴△BAF≌△ABC(AAS),∴BC=AF,∵∠AEB=120°=∠F+∠FBE,∴∠FBE=30°,∴EF=BE,∴BC=AF=AE+EF=AE+BE,∴BC=AE+BE;(b)(1)如图3中,∵∠HDF+∠F=∠BAC,∴∠CHG=∠FDG+∠DCH=∠FDG+∠F+∠CAF=∠BAC+∠CAF=∠BAF,∴∠CHG=∠BAF;(2)结论:AF=DG.理由如下,如图3中,延长BD到R,使得BR=CF,连接AR,作AJ∥CF交EG的延长线于J,连接FJ.∵AJ∥CE,AC∥JE,∴四边形ACEJ是平行四边形,∴AJ=CE,AC=JE,∵AB=CA,∴JE=AB,∵AB=AC,∴∠ABC=∠ACB,∴∠ABR=∠ACF,在△ABR和△ACF中,,∴△ABR≌△ACF(SAS),∴AR=AF,∵BR=CF,BD=EF,∴DR=CE=AJ,EF=BF,∵AJ∥RD,∴四边形ARDJ是平行四边形,∴JD=AR=AF,在△ABF和△JED中,,∴△ABF≌△JED(SSS),∴∠1=∠BAF,∵∠BAF=∠CHG=∠2,∴∠1=∠2,∴DG=FJ,∴AF=DG.【点评】本题考查翻折变换、等腰三角形的性质、直角三角形30度角性质、全等三角形的判定和性质等知识,解题的关键是学会添加辅助线,构造全等三角形或特殊四边形解决问题,属于中考压轴题.。

2018-2019学年沪科版八年级(上册)期末数学试卷(含答案)

2018-2019学年沪科版八年级(上册)期末数学试卷(含答案)

2018-2019学年沪科版八年级(上册)期末数学试卷(含答案)2018-201年八年级(上)期末数学试卷一、选择题:(本大题共6题,每题3分,满分18分)1.如果最简二次根式与是同类二次根式,那么x的值是()A。

-1 B。

C。

1 D。

22.下列代数式中,+1的一个有理化因式是()A。

B。

C。

+1 D。

-13.如果关于x的方程ax^2-3x+2=0是一元二次方程,那么a取值范围是()A。

a>0 B。

a≥0 C。

a=1 D。

a≠04.下面说法正确的是()A。

一个人的体重与他的年龄成正比例关系B。

正方形的面积和它的边长成正比例关系C。

车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系D。

水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成反比例关系5.下列条件中不能判定两个直角三角形全等的是()A。

两个锐角分别对应相等B。

两条直角边分别对应相等C。

一条直角边和斜边分别对应相等D。

一个锐角和一条斜边分别对应相等6.如图,已知△ABC中,∠ACB=90°,CH、CM分别是斜边AB上的高和中线,则下列结论正确的是()A。

CM=BCB。

CB=ABC。

∠ACM=30°D。

CH·AB=AC·BC二、填空题(本题共12小题,每小题2分,满分24分)7.计算:=8.计算:=9.如果关于x的一元二次方程x^2+4x-m=0没有实数根,那么m的取值范围是。

10.在实数范围内分解因式x^2-4x-1=。

11.函数的定义域是。

12.如果正比例函数y=(k-3)x的图象经过第一、三象限,那么k的取值范围是。

13.命题“全等三角形的周长相等”的逆命题是。

14.经过已知点A和点B的圆的圆心的轨迹是。

15.已知直角坐标平面内两点A(-3,1)和B(1,2),那么A、B 两点间的距离等于。

16.如果在四边形ABCD中,∠B=60°,AB=BC=13,AD=12,DC=5,那么∠ADC=。

2018-2019学年 八年级(上)期末数学试卷(有答案和解析)

2018-2019学年 八年级(上)期末数学试卷(有答案和解析)

2018-2019学年八年级(上)期末数学试卷一、选择题(每题3分,共30分)1.如图所示的图案是我国几家银行标志,其中不是轴对称图形的是()A.B.C.D.2.下列运算中,正确的是()A.a2•a4=a8B.a10÷a5=a2C.(a5)2=a10D.(2a)4=8a43.下列变形属于因式分解的是()A.4x+x=5x B.(x+2)2=x2+4x+4C.x2+x+1=x(x+1)+1D.x2﹣3x=x(x﹣3)4.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣115.已知图中的两个三角形全等,图中的字母表示三角形的边长,则∠1等于()A.72°B.60°C.50°D.58°6.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13B.16C.8D.107.下列各式成立的是()A.B.(﹣a﹣b)2=(a+b)2C.(a﹣b)2=a2﹣b2D.(a+b)2﹣(a﹣b)2=2ab8.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF9.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③④B.①②④C.①③D.②③④10.已知x=3y+5,且x2﹣7xy+9y2=24,则x2y﹣3xy2的值为()A.0B.1C.5D.12二、填空题(本大题共6小题,每小题3分,共18分)11.因式分解:2a2﹣8=.12.若代数式有意义,则实数x的取值范围是.13.一个n边形的内角和是540°,那么n=.14.如图,Rt△ABC中,∠C=90°,AD为△ABC的角平分线,与BC相交于点D,若CD=4,AB =15,则△ABD的面积是.15.如图,在△ABC中,AB=AC,点D在AC上,过点D作DF⊥BC于点F,且BD=BC=AD,则∠CDF的度数为.16.如图,△ABC角平分线AE、CF交于点P,BD是△ABC的高,点H在AC上,AF=AH,下列结论:①∠APC=90°+ABC;②PH平分∠APC;③若BC>AB,连接BP,则∠DBP=∠BAC﹣∠BCA;④若PH∥BD,则△ABC为等腰三角形,其中正确的结论有(填序号).三、解答题17.(10分)计算(1)(2﹣)0﹣()﹣2(2)(﹣3a2)3÷6a+a2•a318.(10分)计算(1)(x+1)2﹣(x+1)(x﹣1)(2)﹣x﹣219.(10分)如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.求证:(1)△ABC≌△EDF;(2)AB∥DE.20.(10分)如图,已知A(﹣2,4),B(4,2),C(2,﹣1)(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)P为x轴上一点,请在图中找出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).21.(12分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.(1)现在平均每天生产多少台机器;(2)生产3000台机器,现在比原计划提前几天完成.22.(10分)已知代数式.(1)先化简,再求当x=3时,原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?23.(12分)如图,已知△ABC中AB=AC,在AC上有一点D,连接BD,并延长至点E,使AE =AB.(1)画图:作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接CF,求证:∠ABE=∠ACF;(3)若AC=8,∠E=15°,求三角形ABE的面积.24.(14分)因式分解是把多项式变形为几个整式乘积的形式的过程.(1)设有多项式x2+2x﹣m分解后有一个因式是x+4,求m的值.(2)若有甲、乙两个等容积的长方体容器,甲容器长为x﹣1,宽为x﹣2.体积为x4﹣x3+ax2+bx ﹣6,(x为整数),乙容器的底面是正方形.①求出a,b的值;②分别求出甲、乙两容器的高.(用含x的代数式表示)25.(14分)在Rt△ABC中,∠B=90°,AB=8,CB=5,动点M从C点开始沿CB运动,动点N从B点开始沿BA运动,同时出发,两点均以1个单位/秒的速度匀速运动(当M运动到B点即同时停止),运动时间为t秒.(1)AN=;CM=.(用含t的代数式表示)(2)连接CN,AM交于点P.①当t为何值时,△CPM和△APN的面积相等?请说明理由.②当t=3时,试求∠APN的度数.2018-2019学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】根据同底数幂的乘除法则,及幂的乘方法则,结合各选项进行判断即可.【解答】解:A、a2•a4=a6,计算错误,故本选项错误;B、a10÷a5=a5,计算错误,故本选项错误;C、(a5)2=a10,计算正确,故本选项正确;D、(2a)4=16a4,计算错误,故本选项错误;故选:C.【点评】本题考查了同底数幂的乘除运算及幂的乘方的运算,属于基础题,掌握运算法则是关键.3.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,结合选项进行判断即可.【解答】解:A、是整式的计算,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选:D.【点评】本题考查了因式分解的意义,属于基础题,掌握因式分解的定义是关键.4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10;故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【分析】根据全等三角形的性质即可求出答案.【解答】解:由于两个三角形全等,∴∠1=180﹣50°﹣72°=58°,故选:D.【点评】本题考查了全等三角形的性质,属于基础题型.解答本题的关键是熟练运用全等三角形的性质6.【分析】由于△ABC是等腰三角形,底边BC=5,周长为21,由此求出AC=AB=8,又DE是AB的垂直平分线,根据线段的垂直平分线的性质得到AE=BE,由此得到△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB,然后利用已知条件即可求出结果.【解答】解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.7.【分析】根据完全平方公式和分式的化简判断即可.【解答】解:A、,错误;B、(﹣a﹣b)2=(a+b)2,正确;C、(a﹣b)2=a2﹣2ab+b2,错误;D、(a+b)2﹣(a﹣b)2=4ab,错误;故选:B.【点评】此题考查完全平方公式,关键是根据完全平方公式和分式的化简判断.8.【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:D.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.9.【分析】根据等边三角形的判定判断,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.【解答】解:①两个角为60度,则第三个角也是60度,则其是等边三角形;②有一个角等于60°的等腰三角形是等边三角形;③三个外角相等,则三个内角相等,则其是等边三角形;④根据等边三角形的性质,可得该等腰三角形的腰与底边相等,则三角形三边相等.所以都正确.故选:A.【点评】此题主要考查等边三角形的判定,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.10.【分析】依据x﹣3y=5两边平方,可得x2﹣6xy+9y2=25,再根据x2﹣7xy+9y2=24,即可得到xy的值,进而得出x2y﹣3xy2的值.【解答】解:∵x=3y+5,∴x﹣3y=5,两边平方,可得x2﹣6xy+9y2=25,又∵x2﹣7xy+9y2=24,两式相减,可得xy=1,∴x2y﹣3xy2=xy(x﹣3y)=1×5=5,故选:C.【点评】本题主要考查了完全平方公式的运用,应用完全平方公式时,要注意:公式中的a,b 可是单项式,也可以是多项式;对形如两数和(或差)的平方的计算,都可以用这个公式.二、填空题(本大题共6小题,每小题3分,共18分)11.【分析】首先提取公因式2,进而利用平方差公式分解因式即可.【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.12.【分析】根据分式有意义的条件可得x﹣3≠0,再解即可.【解答】解:由题意得:x﹣3≠0,解得:x≠3,故答案为:x≠3.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.13.【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,解得n=5.故答案为:5.【点评】本题考查了多边的内角和定理:n边形的内角和为(n﹣2)•180°.14.【分析】作DE⊥AB于E,根据角平分线的性质求出DE,根据三角形的面积公式计算即可.【解答】解:作DE⊥AB于E,∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=CD=4,∴△ABD的面积=,故答案为:30【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.【分析】设∠A=α,可得∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,再根据△ABC中,∠A+∠ABC+∠C=180°,即可得到∠C的度数,再根据DF⊥BC,即可得出∠CDF的度数.【解答】解:∵AB=AC,BD=BC=AD,∴∠ACB=∠ABC,∠A=∠ABD,∠C=∠BDC,设∠A=α,则∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,∵△ABC中,∠A+∠ABC+∠C=180°,∴α+2α+2α=180°,∴α=36°,∴∠C=72°,又∵DF⊥BC,∴Rt△CDF中,∠CDF=90°﹣72°=18°,故答案为:18°.【点评】本题主要考查了等腰三角形的性质以及三角形内角和定理的运用,解题时注意:等腰三角形的两个底角相等.16.【分析】①利用三角形的内角和定理以及角平分线的定义即可判断.②利用反证法进行判断.③根据∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),由此即可判断.④利用全等三角形的性质证明CA=CB即可判断.【解答】解:∵△ABC角平分线AE、CF交于点P,∴∠CAP=∠BAC,∠ACP=∠ACB,∴∠APC=180°﹣(∠CAP+∠ACP)=180°﹣(∠BAC+∠ACB)=180°﹣(180°﹣∠ABC)=90°+∠ABC,故①正确,∵PA=PA,∠PAF=∠PAH,AF=AH,∴△PAF≌△PAH(SAS),∴∠APF=∠APH,若PH是∠APC的平分线,则∠APF=60°,显然不可能,故②错误,∵∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),故③错误,∵BD⊥AC,PH∥BD,∴PH⊥AC,∴∠PHA=∠PFA=90°,∵∠ACF=∠BCF,CF=CF,∠CFA=∠CFB=90°,∴△CFA≌△CFB(ASA),∴CA=CB,故④正确,故答案为①④.【点评】本题考查全等三角形的判定和性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题17.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则以及整式的乘除运算法则计算得出答案.【解答】解:(1)原式=1﹣4=﹣3;(2)原式=﹣27a6÷6a+a2•a3=﹣a5+a5=﹣3a5.【点评】此题主要考查了整式的乘除运算,正确掌握相关运算法则是解题关键.18.【分析】(1)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=x2+2x+1﹣(x2﹣1)=x2+2x+1﹣x2+1=2x+2;(2)原式=﹣=﹣=.【点评】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减混合运算顺序和运算法则及完全平方公式、平方差公式.19.【分析】(1)由垂直的定义,结合题目已知条件可利用HL证得结论;(2)由(1)中结论可得到∠D=∠B,则可证得结论.【解答】证明:(1)∵AC⊥BD,EF⊥BD,∴△ABC和△EDF为直角三角形,∵CD=BF,∴CF+BF=CF+CD,即BC=DF,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(HL);(2)由(1)可知△ABC≌△EDF,∴∠B=∠D,∴AB∥DE.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和性质(即对应边相等、对应角相等)是解题的关键.20.【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)连接AB1,交x轴于点P,根据图形可得点P的坐标.【解答】解:(1)如图1所示,△A1B1C1即为所求;C1的坐标为(2,1).(2)如图所示,连接AB1,交x轴于点P,点P的坐标为(2,0).【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.21.【分析】(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,根据工作时间=工作总量÷工作效率结合现在生产600台机器所需要时间与原计划生产450台机器所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由提前完成的天数=工作总量÷原计划工作效率﹣工作总量÷现在工作效率,即可得出结论.【解答】解:(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,依题意,得:=,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+50=200.答:现在平均每天生产200台机器.(2)﹣=20﹣15=5(天).答:现在比原计划提前5天完成.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)根据题意得出=﹣1,解之求得x的值,再根据分式有意义的条件即可作出判断.【解答】解:(1)原式=[﹣]•=(﹣)•=•=,当x=3时,原式==2;(2)若原代数式的值等于﹣1,则=﹣1,解得x=0,而x=0时,原分式无意义,所以原代数式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及分式有意义的条件.23.【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AC、AE相交,然后以这两点为圆心,以大于它们长度为半径画弧,两弧相交于一点,过点A与这一点作出射线与BE的交点即为所求的点F;(2)求出AE=AC,根据角平分线的定义可得∠EAF=∠CAF,再利用“边角边”证明△AEF和△ACF全等,根据全等三角形对应角相等可得∠ABE=∠ACF;(3)作高线EG,根据三角形的外角性质得∠EAG=30°,根据直角三角形的性质可得高线EG =4,根据三角形面积公式可得结论.【解答】(1)解:如图所示;(2)证明:∵AB=AC,AE=AB,∴AE=AC,∵AF是∠EAC的平分线,∴∠EAF=∠CAF,在△AEF和△ACF中,,∴△AEF≌△ACF(SAS),∴∠E=∠ACF,∵AB=AE,∴∠ABE=∠E,∴∠ABE=∠ACF.(3)解:如图,过E作EG⊥AB,交BA的延长线于G,∵AB=AC=AE=8,∴∠ABE=∠AEB=15°,∴∠GAE=∠ABE+∠AEB=30°,∴EG=AE=4,∴三角形ABE的面积===16.【点评】本题考查了全等三角形的判断与性质,等腰三角形的性质,角平分线的作法,确定出全等三角形的条件是解题的关键.24.【分析】(1)根据分解因式的定义,假设未知数,进行求解;(2)同上一问,假设未知数,进行求解;然后对体积的表达式进行因式分解,得到乙容器的高;【解答】解:(1)设原式分解后的另一个因式为x+n,则有:x2+2x﹣m=(x +4)(x +n )=x 2+(4+n )x +4n∴4+n =2可得n =﹣24n =﹣m 可得m =8综上所述:m =8(2)①设甲容器的高为x 2+mx ﹣3,则有:(x ﹣1)(x ﹣2)(x 2+mx ﹣3)=x 4﹣x 3+ax 2+bx ﹣6 ∴x •(﹣2)•x 2+(﹣1)•x •x 2+x •x •mx =﹣2x 3﹣x 3+mx 3=(m ﹣3)x 3=﹣x 3从而得m ﹣3=﹣1m =2原甲容器的体积=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=x 4﹣x 3﹣9x 2+13x ﹣6从而得a =﹣9,b =13②由乙容器的底面为正方形可得:x 4﹣x 3﹣9x 2+13x ﹣6=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=(x ﹣1)(x ﹣2)(x +3)(x ﹣1)=(x ﹣1)2(x 2+x ﹣6)故答案为:甲容器的高为x 2+2x ﹣3,乙容器的高为x 2+x ﹣6【点评】该题通过设置未知数,运用多项式乘多项式的方法求解未知数的值.25.【分析】(1)根据路程=速度×时间,可用含t 的代数式表示BN ,CM 的长,即可用含t 的代数式表示AN 的长;(2)①由题意可得S △ABM =S △BNC ,根据三角形面积公式可求t 的值;②过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,可证四边形PGBF 是矩形,可得PF =BG ,根据三角形的面积公式,可得方程组,求出PG ,PF 的长,根据勾股定理可求PN 的长,通过证△ANE ∽△CNB ,可求AE ,NE 的长,即可求∠APN 的度数.【解答】解:(1)∵M ,N 两点均以1个单位/秒的速度匀速运动,∴CM =BN =t ,∴AN =8﹣t ,故答案为:8﹣t ,t ;(2)①若△CPM 和△APN 的面积相等∴S △CPM +S 四边形BMPN =S △APN +S 四边形BMPN ,∴S △ABM =S △BNC ,∴=∴8×(5﹣t )=5t∴t =∴当t =时,△CPM 和△APN 的面积相等;②如图,过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,∵PG ⊥AB ,PF ⊥BC ,∠B =90°,∴四边形PGBF 是矩形,∴PF =BG ,∵t =3,∴CM =3=BN ,∴BM =2,AN =5,∵S △ABM =S △ABP +S △BPM ,∴∴16=8PG +2PF ①∵S △BCN =S △BCP +S △BPN ,∴×5×3=∴15=3PG +5PF ②由①②组成方程组解得:PG =,PF =,∴BG =∴NG =BN ﹣BG =3﹣=在Rt△PGN中,PN==,在Rt△BCN中,CN==∵∠B=∠E=90°,∠ANE=∠BNC∴△ANE∽△CNB∴∴∴AE=,NE=∵PE=EN+PN∴PE=+=∴AE=PE,且AE⊥PE∴∠APN=45°【点评】本题是三角形综合题,考查了三角形的面积公式,勾股定理,矩形的判定,相似三角形的判定和性质等知识,本题的关键是求出PN的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年第一学期期末测试题八年级数学【试卷说明】1.本试卷共4页,全卷满分100分,考试时间为120分钟.考生应将答案全部(涂)写在答题卡相应位置上,写在本试卷上无效.考试时允许使用计算器;2.答题前考生务必将自己的姓名、准考证号等填(涂)写到答题卡的相应位置上; 3.作图必须用2B 铅笔,并请加黑加粗,描写清楚.一、选择题(本大题共10小题,每小题2分,满分20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列交通标志是轴对称图形的是(※).2.下列运算中正确的是(※). (A )532a a a =⋅ (B )()532a a =(C )326a a a =÷(D )10552a a a =+3.下列长度的三条线段能组成三角形的是(※). (A )5,3,2(B )2,4,7(C )8,4,3(D )4,3,34. 下列各分式中,是最简分式的是(※).(A )22x y x y++(B )22x y x y -+(C )2x x xy+(D )2xy y 5. 在平面直角坐标系xOy 中,点P (2,1)关于y 轴对称的点的坐标是(※). (A )(-2 ,0 ) (B )( -2 ,1 ) (C )(-2 ,-1) (D )(2 ,-1) 6. 已知图中的两个三角形全等,则∠1等于(※). (A )72° (B )60° (C )50°(D )58°7. 若分式211x x --的值为零,则x 的值为(※).(A )1(B )1-(C )0(D )1±8. 已知等腰三角形的一边长为4,另一边长为8,则它的周长是(※). (A )12(B )16(C )20 (D )16或209. 如果229x mx ++是一个完全平方式,则m 的值是(※). (A )3(B )3±(C )6(D )6±(A ) (B ) (C )(D )第6题1acba72 °50 °10. 如图①是长方形纸带,α=∠DEF ,将纸带沿EF 折叠成图②,再沿BF 折叠成图③,则图③中的CFE ∠的度数是(※).图① 图② 图③(A )α2(B )α290+︒(C )α2180-︒(D )α3180-︒二、填空题(共6题,每题2分,共12分.)11. 2013年,我国上海和安徽首先发现“H7N9”新型禽流感病毒,此病毒颗粒呈多边形,其中球形病毒的最大直径为0.00000012米,这一直径用科学计数法表示为 ※ 米. 12. 若分式11+-x x 有意义,则x 的取值范围是 ※ . 13. 因式分解:22x y -= ※ . 14. 计算:3422x x x x++--的结果是 ※ . 15. 已知一个多边形的各内角都等于120︒,那么它是 ※ 边形.16. 已知等腰三角形的底角是15︒,腰长是8cm ,则其腰上的高是 ※ cm .三、解答题(本大题共9小题,满分68分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分6分,各题3分)分解因式:(1)323312ab abc -;(2)2231827x xy y -+.FGEGFFEE DDD CCCBBBA A A 第10题第18题18.(本小题满分6分)如图,有一池塘,要测池塘两端A 、B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B . 连接AC 并延长到点D ,使CD =CA . 连接BC 并延长到点E ,使CE =CB . 连接DE ,那么量出DE 的长就是A ,B 的距离.为什么?19.(本小题满分7分)已知2133x xA x x =-++,若1A =,求x 的值.20.(本小题满分7分)如图所示的方格纸中,每个小方格的边长都是1, 点(41)A -,,(33)B -,,(12)C -,. (1)作ABC △关于y 轴对称的'''A B C △; (2)在x 轴上找出点P ,使PA PC +最小,并直接写出点P 的坐标.21.(本小题满分8分)(1)先化简,再求值:2(2)(2)x y x x y +--,其中23x =,5y =; (2)计算:5(2)2a a ++- 243a a --.xy12345–1–2–3–4–512345O–1–2–3–4–5AB C 第20题·22.(本小题满分8分)如图,ABC △中,A ABC ∠=∠,DE 垂直平分BC , 交BC 于点D ,交AC 于点E .(1)若5AB =,8BC =,求ABE △的周长; (2)若BE BA =,求C ∠的度数.23.(本小题满分8分)如图,在ABC △中,90ABC ∠=︒,点D 在AC 上,点E 在BCD △的内部,DE 平分BDC ∠,且BE CE =.(1)求证:BD CD =;(2)求证:点D 是线段AC 的中点.24.(本小题满分9分)甲乙两人同时同地沿同一路线开始攀登一座600米高的山,甲的攀登速度是乙的1.2倍,他比乙早20分钟到达顶峰.甲乙两人的攀登速度各是多少?如果山高为h 米,甲的攀登速度是乙的m 倍,并比乙早t 分钟到达顶峰,则两人的攀登速度各是多少?25.(本小题满分9分)如图,在ABC ∆中,45ABC ∠=︒,点P 为边BC 上一点,3BC BP =, 且15PAB ∠=︒,点C 关于直线PA 的对称点为D ,连接BD ,C第22题A又APC ∆的PC 边上的高为AH .(1)判断直线BD AH ,是否平行?并说明理由; (2)证明:BAP CAH ∠=∠.2018-2019学年第一学期八年级数学科期末抽测试题参考答案及评分说明一、选择题(本大题共10小题,每小题2分,满分20分)11. 71.210-⨯;12. 1x ≠-;13.()()x y x y +-;14. 2; 15. 六边形; 16.4 .[评卷说明】1.在评卷过程中做到“三统一”:评卷标准统一,给分有理、扣分有据,始终如一;掌握标准统一,宽严适度,确保评分的客观性、公正性、准确性.2.如果考生的解法与下面提供的参考解答不同,凡正确的,一律记满分;若某一步出现错误,则可参照该题的评分意见进行评分.3. 评卷时不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分,但该步后的解答未改变这一道题的内容和难度,在未发生新的错误前,可视影响的程度决定后面部分的记分,这时原则上不应超过后面部分应给分数之半;如有严重概念性错误,就不记分,在一道题解答过程中,对发生第二次错误起的部分,不记分.三、解答题(本大题共9小题,满分68分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分6分,各题3分) 解:(1)323312ab abc -=2223(4)ab a b c - . …………………………(3分)(2)2231827x xy y -+=22369)x xy y -+(…………………………(1分) =23+3)x y (. …………………………(3分)第25题第18题【评卷说明】1.在评卷过程中做到“三统一”:评卷标准统一,给分有理、扣分有据,始终如一;掌握标准统一,宽严适度,确保评分的客观性、公正性、准确性.2.如果考生的解法与下面提供的参考解答不同,凡正确的,一律记满分;若某一步出现错误,则可参照该题的评分意见进行评分.3. 评卷时不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分,但该步后的解答未改变这一道题的内容和难度,在未发生新的错误前,可视影响的程度决定后面部分的记分,这时原则上不应超过后面部分应给分数之半;如有严重概念性错误,就不记分,在一道题解答过程中,对发生第二次错误起的部分,不记分. 18.(本小题满分6分)如图,有一池塘,要测池塘两端A 、B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B . 连接AC 并延长到点D ,使CD =CA . 连接BC 并延长到点E ,使CE =CB . 连接DE ,那么量出DE 的长就是A ,B 的距离.为什么?解:连接AB ,由题意: 在△ACB 与△DCE 中,,,,CA CD ACB DCE CB CE =⎧⎪∠=∠⎨⎪=⎩…………………………(3分) ACB DCE SAS ∴≌(). …………………………(4分) AB ED ∴=,即ED 的长就是AB 的距离. …………………………(6分)【评卷说明】1.在评卷过程中做到“三统一”:评卷标准统一,给分有理、扣分有据,始终如一;掌握标准统一,宽严适度,确保评分的客观性、公正性、准确性.2.如果考生的解法与下面提供的参考解答不同,凡正确的,一律记满分;若某一步出现错误,则可参照该题的评分意见进行评分.3. 评卷时不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分,但该步后的解答未改变这一道题的内容和难度,在未发生新的错误前,可视影响的程度决定后面部分的记分,这时原则上不应超过后面部分应给分数之半;如有严重概念性错误,就不记分,在一道题解答过程中,对发生第二次错误起的部分,不记分.19.(本小题满分7分)已知2133x x A x x =-++,若1A =,求x 的值.解:由题意得:21133x x x x -=++, …………………………(2分) 两边同时乘以31)x +(得:3233x x x -=+, …………………………(4分)2x=3∴- 即 3.2x =- …………………………(5分)经检验,32x =-是分式方程的解, …………………………(6分) 3.2x ∴=- …………………………(7分)【评卷说明】1.在评卷过程中做到“三统一”:评卷标准统一,给分有理、扣分有据,始终如一;掌握标准统一,宽严适度,确保评分的客观性、公正性、准确性.2.如果考生的解法与下面提供的参考解答不同,凡正确的,一律记满分;若某一步出现错误,则可参照该题的评分意见进行评分.3. 评卷时不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分,但该步后的解答未改变这一道题的内容和难度,在未发生新的错误前,可视影响的程度决定后面部分的记分,这时原则上不应超过后面部分应给分数之半;如有严重概念性错误,就不记分,在一道题解答过程中,对发生第二次错误起的部分,不记分.20.(本小题满分7分)如图所示的方格纸中,每个小方格的边长都是1, 点(41)A -,,(33)B -,,(12)C -,. (1)作ABC △关于y 轴的'''A B C △; (2)在x 轴上找出点P ,使PA PC +最小,并直接写出点P 的坐标.解:(1)如图. ……………………(3分)(2)如图, …………………………(5分)(30).P -, …………………………(7分)第20题【评卷说明】1.在评卷过程中做到“三统一”:评卷标准统一,给分有理、扣分有据,始终如一;掌握标准统一,宽严适度,确保评分的客观性、公正性、准确性.2.如果考生的解法与下面提供的参考解答不同,凡正确的,一律记满分;若某一步出现错误,则可参照该题的评分意见进行评分.3. 评卷时不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分,但该步后的解答未改变这一道题的内容和难度,在未发生新的错误前,可视影响的程度决定后面部分的记分,这时原则上不应超过后面部分应给分数之半;如有严重概念性错误,就不记分,在一道题解答过程中,对发生第二次错误起的部分,不记分.21.(本小题满分8分)(1)先化简,再求值:2(2)(2)x y x x y +--,其中23x =,5y =; (2)计算:5(2)2a a ++- 243a a --. 解:(1)2222(2)(2)=442x y x x y x xy y x xy +--++-+ …………………………(2分)2=64xy y + …………………………(3分)23x =,5y =, 22264=65+45=1253xy y ∴+⨯⨯⨯. …………………………(4分)(2)5(2)2a a ++-243a a --2452(2)=23a a a a -+-⨯-- …………………………(6分)3+)(3)2=13a a a-⨯-( …………………………(7分) =26a +. …………………………(8分)【评卷说明】1.在评卷过程中做到“三统一”:评卷标准统一,给分有理、扣分有据,始终如一;掌握·标准统一,宽严适度,确保评分的客观性、公正性、准确性.2.如果考生的解法与下面提供的参考解答不同,凡正确的,一律记满分;若某一步出现错误,则可参照该题的评分意见进行评分.3. 评卷时不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分,但该步后的解答未改变这一道题的内容和难度,在未发生新的错误前,可视影响的程度决定后面部分的记分,这时原则上不应超过后面部分应给分数之半;如有严重概念性错误,就不记分,在一道题解答过程中,对发生第二次错误起的部分,不记分.22.(本小题满分8分)如图,ABC △中,A ABC ∠=∠,DE 垂直平分BC , 交BC 于点D ,交AC 于点E .(1)若5AB =,8BC =,求ABE △的周长; (2)若BE BA =,求C ∠的度数. 解:(1)ABC △中,A ABC ∠=∠,∴ 8.AC BC == ………………(1分)DE 垂直平分BC , ∴.EB EC = …………………………(2分)又5AB =,∴ABE △的周长为:()5813AB AE EB AB AE EC AB AC ++=++=+=+=. ……………(4分)(2),EB EC =∴.C EBC ∠=∠,AEB C EBC ∠=∠+∠∴2.AEB C ∠=∠ …………………………(5分),BE BA =∴.AEB A ∠=∠又,AC BC =∴2.CBA A C ∠=∠=∠ …………………………(6分)180,C A CBA ∠+∠+∠=︒ …………………………(7分)∴5180.C ∠=︒∴36.C ∠=︒ …………………………(8分)【评卷说明】1.在评卷过程中做到“三统一”:评卷标准统一,给分有理、扣分有据,始终如一;掌握标准统一,宽严适度,确保评分的客观性、公正性、准确性.2.如果考生的解法与下面提供的参考解答不同,凡正确的,一律记满分;若某一步出现错误,则可参照该题的评分意见进行评分.3. 评卷时不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分,但该步后的解答未改变这一道题的内容和难度,在未发生新的错误前,可视影响的程度决定后面部分的记分,这时原则上不应超过后面部分应给分数之半;如有严重概念性错误,就不记分,在一道题解答过程中,对发生第二次错误起的部分,不记分.23.(本小题满分8分)如图,在ABC △中,90ABC ∠=︒,点D 在AC 上,点E 在BCD △的内部,DE 平分BDC ∠,且第22题BE CE =.(1)求证:BD CD =;(2)求证:点D 是线段AC 的中点.证明:(1)过点E 作EM CD ⊥于M ,EN BD ⊥于N ,……(1分)DE 平分BDC ∠,∴.EM EN = ……………(2分)在Rt ECM ∆和Rt EBN ∆中,,,CE BE EM EN =⎧⎨=⎩∴Rt ECM ∆≌.Rt EBN ∆∴.MCE NBE ∠=∠ ……………(3分)又,BE CE =∴.ECB EBC ∠=∠ ………(4分) ∴.DCB DBC ∠=∠∴BD CD =. …………………………(5分)(2)ABC △中,90ABC ∠=︒,∴90,90.DCB A DBC ABD ∠+∠=︒∠+∠=︒∴.A ABD ∠=∠ ∴AD BD =. …………………………(7分)又BD CD =.∴,AD CD = 即:点D 是线段AC 的中点. …………………………(8分)【评卷说明】1.在评卷过程中做到“三统一”:评卷标准统一,给分有理、扣分有据,始终如一;掌握标准统一,宽严适度,确保评分的客观性、公正性、准确性.2.如果考生的解法与下面提供的参考解答不同,凡正确的,一律记满分;若某一步出现错误,则可参照该题的评分意见进行评分.3. 评卷时不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分,但该步后的解答未改变这一道题的内容和难度,在未发生新的错误前,可视影响的程度决定后面部分的记分,这时原则上不应超过后面部分应给分数之半;如有严重概念性错误,就不记分,在一道题解答过程中,对发生第二次错误起的部分,不记分.24.(本小题满分9分)甲乙两人同时同地沿同一路线开始攀登一座600米高的山,甲的攀登速度是乙的1.2倍,他比乙早20分钟到达顶峰.甲乙两人的攀登速度各是多少?如果山高为h 米,甲的攀登速度是乙的m 倍,并比乙早t 分钟到达顶峰,则两人的攀登速度各是多少?解:设乙的速度为x 米/时, …………………………(1分) 则甲的速度为1.2x 米/时, …………………………(2分)根据题意,得:600600201.260x x -=, …………………………(4分) 方程两边同时乘以3x 得:18001500x -=, 即:300x =.经检验,x=300是原方程的解. …………………………(5分)∴ 甲的攀登速度为360米/时,乙的速度为300米/时. ……………………(6分)当山高为h 米,甲的攀登速度是乙的m 倍,并比乙早0)t t >(分钟到达顶峰时, 设乙的速度为y 米/时,则有:60h h ty my -=, …………………………(7分) 解此方程得:60(1).h m y mt-=当1m ≥时,60(1)h m y mt-=是原方程的解, …………………………(8分)当1m <时,甲不可能比乙早到达顶峰.∴此时甲的攀登速度为60(1)h m t -米/时,乙的速度为60(1)h m mt-米/时.……(9分)【评卷说明】1.在评卷过程中做到“三统一”:评卷标准统一,给分有理、扣分有据,始终如一;掌握标准统一,宽严适度,确保评分的客观性、公正性、准确性.2.如果考生的解法与下面提供的参考解答不同,凡正确的,一律记满分;若某一步出现错误,则可参照该题的评分意见进行评分.3. 评卷时不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分,但该步后的解答未改变这一道题的内容和难度,在未发生新的错误前,可视影响的程度决定后面部分的记分,这时原则上不应超过后面部分应给分数之半;如有严重概念性错误,就不记分,在一道题解答过程中,对发生第二次错误起的部分,不记分.25.(本小题满分9分)如图,在ABC ∆中,45ABC ∠=︒,点P 为边BC 上一点,3BC BP =, 且15PAB ∠=︒,点C 关于直线PA 的对称点为D ,连接BD , 又APC ∆的PC 边上的高为AH .(1)判断直线BD AH ,是否平行?并说明理由; (2)证明:BAP CAH ∠=∠.解:(1)//BD AH . …………………………(1分) 证明:点C 关于直线PA 的对称点为D ,,,.PC PD AD AC APC APD ∴==∠=∠ ……(2分)又45ABC ∠=︒,15PAB ∠=︒,第25题AB CDH P60.APC ABC PAB ∴∠=∠+∠=︒ 18060.DPB DPA APC ∴∠=︒-∠-=︒13,,2BC BP BP PC =∴=1.2BP PD ∴=…………………………(3分) 取PD 的中点E ,连接BE ,则,PE PB =BPE ∴为等边三角形,,BE PE DE ∴==130.2DBE BDE BEP ∴∠=∠=∠=︒90.DBP DBE EBP ∴∠=∠+∠=︒ …………………………(4分)又,90AH PC AHC ⊥∴∠=︒,,//.DBP AHC DB AH ∴∠=∠∴ …………………………(5分)(2)证明:作ADP ∆的PD 边上的高为AF ,又作AG BD ⊥交BD 的延长线于G , 由对称性知,AF AH =.…………………………(6分) 45GBA GBC GBP ∠=∠-∠=︒, 45GBA HBA ∴∠=∠=︒,,AG AH ∴= ,AG AF ∴=AD ∴平分GDP ∠,…………………………(7分)118075.22BDP GDA GDP ︒-∠∴∠=∠==︒ …………………………(8分)9015,CAH DAF GAD GDA ∴=∠=∠=︒-∠=︒15BAP ∠=︒,.BAP CAH ∴∠=∠ …………………………(9分)BCDHPB CDH P。

相关文档
最新文档