八年级下册数学期末考试试题一
人教版初中数学八年级下册期末测试题、答案

人教版初中数学八年级下册期末测试题一、选择题(本大题共小题,每小题分,共分)在每小题给出的四个选项中,只有一项是正确的,每小题选对得分,选错、不选或多选均得零分.)A B C D 如图,O A B 为直角三角形,O A =,A B =,则点A 的坐标为()A()B ()C ()D ()如图,矩形A B C D 的对角线A C =,B O C Ð=°,则A B 的长为()A B C D 一次函数()y kx k =-¹的函数值y 随x 的增大而减小,它的图象不经过的象限是()A 第一象限B 第二象限C 第三象限D 第四象限如图,直线y x =和y k x b =+相交于点()P ,则不等式x k x b £+的解集为()A.x ³B.x £C.x ³D.x £一组数据:n a a a ×××的平均数为P ,众数为Z ,中位数为W ,则以下判断正确的是()A P 一定出现在n a a a ×××中B Z 一定出现在n a a a ×××中C W 一定出现在n a a a ×××中D P ,Z ,W 都不会出现在n a a a ×××中二、填空题(本大题共小题,每小题分,共分)将函数y x =的图象向下平移个单位,所得图象的函数解析式为______如图,点P 是正方形A B C D 内位于对角线A C 下方的一点,已知:P C A P B C Ð=Ð,则B P C Ð的度数为______.南吕是国家历史文化名城,其名源于“昌大南疆,南方昌盛”之意,市内的滕王阁、八一起义纪念馆、海昏候遗址、绳金塔、八大山人纪念馆等都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学,人数分别为:,,,,(单位:人),这组数据的中位数是______.一组数据,,,x 的众数只有一个,则x 的值不能为______.如图,在A B C 中,已知:A C B Ð=°,c m A B =,c m A C =,动点P 从点B 出发,沿射线B C 以c m s 的速度运动,设运动的时间为t 秒,连接P A ,当A B P △为等腰三角形时,t 的值为______.三、解答题(本大题共小题,每小题分,共分)()计算:+-()求x =.如图,点C为线段A B上一点且不与A,B两点重合,分别以A C,B C为边向A B的同侧做锐角为°的菱形.请仅用无刻度的直尺分别按下列要求作图.(保留作图痕迹)=,作出线段D F的中点M;()在图中,连接D F,若A C B C()在图中,连接D F,若A C B C¹,作出线段D F的中点N.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图、(图为图的平面示意图),推开双门,双门间隙C D的距离为寸,点C和点D距离门槛A B都为尺(尺寸),则A B 的长是多少?某种子站销售一种玉米种子,单价为元千克,为惠民促销,推出以下销售方案:付款金额y(元)与购买种子数量x(千克)之间的函数关系如图所示.()当x³时,求y与x之间的的函数关系式:()徐大爷付款元能购买这种玉米种子多少千克?已知:①,,,,的平均数是,方差是;②,,,,的平均数是,方差是;③,,,,的平均数是,方差是;④,,,,的平均数是,方差是;请按要求填空:()n,n+,n+,n+,n+的平均数是,方差是;()n,n+,n+,n+,n+的平均数是,方差是;()n,n,n,n,n的平均数是,方差是.四、解答题(本大题共小题,每小题分,共分)下表是某公司员工月收入的资料.职位总经理财务总监部门经理技术人员前台保安保洁人数月收入元()这家公司员工月收入的平均数是元,中位数是和众数是;()在()中的平均数,中位数和众数哪些统计量能反映该公司全体员工收入水平?说明理由;()为了避免技术人员流失,该公司决定给他们每人每月加薪x元至公司员工月收入的平均数,求x的值.已知:一次函数()()y m x m m =+-¹与x 轴、y 轴交于A点,B 点()当m =时,求O A B 的面积;()请选择你喜欢的两个不同的()m m ¹的值,求得到的两个一次函数的交点坐标;()m 为何值时,O A B 是等腰直角三角形?如图,若D E 是A B C 的中位线,则A B C A D E S S =△△,解答下列问题:()如图,点P 是B C 边上一点,连接P D 、P E ①若P D E S =△,则A B CS=;②若P D B S =△,P C E S =△,连接A P ,则A P DS =,A P E S =△,A B CS=.()如图,点P 是A B C 外一点,连接P D 、P E ,已知:P D BS=,P C E S =△,P D E S =△,求A B CS的值;()如图,点P 是正六边形F G H I J K 内一点,连接P G 、P F 、P K ,已知:P G F S =△,P K J S =△,P F K S =△,求F G H I J K S 六边形的值.五、综合题(本大题共小题,共分)已知直线y x =-+分别与x 轴、y 轴交于A 点,B 点,点()n n Q x y 为这条直线上的点,Q P x ^轴于点P ,Q R y ^轴于点R .()①将下表中的空格填写完整:nn x --ny --n nx y +②根据表格中的数据,下列判断正确的是.A .x y =,B .x yS S =,C .x y S +=.()当点Q 在第一象限时,解答下列问题:①求证:矩形O P Q R 的周长是一个定值,并求这个定值;②设矩形O P Q R 的面积为S ,求证:S £.()当点Q 在第四象限时,直接写出Q P ,Q R 满足的等式关系.参考答案B C B A D By x﹣°或或()解:()原式(=+-=(=,∴x-=,∴x=解:()如图点M为D F的中点()如图点N为D F的中点解:取A B的中点O,过D作D E⊥A B于E,如图所示:由题意得:O A O B A D B C,设O A O B A D B C r寸,则A B r(寸),D E寸,O E C D寸,∴A E(r-)寸,在R t△A D E中,A E D E A D,即(r-)r,解得:r,∴r(寸),∴A B寸.解:()当x³时,设y与x之间的的函数关系式为y k x b=+,将点(),()带入解析式得k b k b+=ìí+=î解得k b=ìí=î∴y x=+.()将y=时,带入y x=+中解得x=千克.答:徐大爷付款元能购买这种玉米种子千克.解:()∵数据n,n+,n+,n+,n+是在数据,,,,的基础上每个数据均加上(n E)所得,∴数据n,n+,n+,n+,n+的平均数+n E=n+,方差依然是,()∵数据n,n+,n+,n+,n+是在数据,,,,的基础上每个数据均加上(n E)所得,∴n,n+,n+,n+,n+的平均数是+n E=n+,方差依然是,()数据n,n,n,n,n是将,,,,分别乘以n所得,∴数据n,n,n,n,n的平均数为n,方差为n,解:()∵一共有++++++=(人),∴这组数据的中位数是第、个数据的平均数,而第、个数据分别为、,∴中位数是+=(元),∵数据出现次数最多,∴这组数据的众数为元,故答案为:元,元;()中位数和众数能反映该公司全体员工收入水平,该公司员工月收入的平均数为,在这名员工中只有名员工的收入在元以上,有名员工的收入在元以下,因此用平均数不能反映所有员工的收入水平,中位数和众数为元能反映多数员工的收入水平.()由题意列方程:x x +=+,解得x =元∴技术人员需要加薪元.解:()当m =时,y x =-,当x =时,y =-,∴()B -,∴O B =当y =时,x =,∴A æöç÷èø,∴O A =,O A B S O A O B =×=△;()取m =,y x =+,取m =,y x=,∴y x y x =+ìí=î解得x y=ìí=î∴两个一次函数的交点坐标为()()当x =时,y m =-,∴O B m =-;当y =时,m x m-=,∴m O A m -=,∵O A B 是等腰直角三角形,∴O A O B =,即m m m--=;∵m -¹,∴m =±.解:()如图,连接B E ,∵D E 是△A B C 的中位线,∴D E ∥B C ,A E =E C ,A D =B D ,∴S △P D E =S △B D E =,∴S △A B E =,∴S △A B C =,②∵D E 是△A B C 的中位线,∴D E ∥B C ,A E =E C ,A D =B D ,∴S △P B D =S △A P D =,S △A P E =S △P E C =,∴S △A B C =;()如图,连接A P ,∵D E 是△A B C 的中位线,∴D E ∥B C ,A E =E C ,A D =B D ,S △A B C =S △A D E ,∴S △P B D =S △A P D =,S △A P E =S △P E C =,∴S △A D E =S △A P D S △A P E ﹣S △P D E =,∴S △A B C =S △A D E =;()如图,延长G F ,J K 交于点N ,连接G J ,连接P N ,∵六边形F G H I J K 是正六边形,∴F G =F K =K J ,∠G F K =∠J K F =°,S 六边形F G H I J K =S 四边形F G J K ,∴∠N F K =∠N K F =°,∴△N F K 是等边三角形,∴N F =N K =F K =F G =K J ,∴S △P G F =S △P F N =,S △P K J =S △P K N =,F K 是△N G J 的中位线,∴S △N F K =S △P F N S △P K N ﹣S △P F K =,∵F K 是△N G J 的中位线,∴S △N G J =S △N F K =;∴S 四边形F G J K =﹣=,∴S 六边形F G H I J K =.()①填表如下:n n x --n y --n nx y +②x y ==´--+++++++,故A 正确;[]x S =--+--+-+-+-+-+-+-+-=[]y S =--+--+-+-+-+-+-+-+-=∴x y S S =,故B 正确;∵x y +=∴x y S +=故C 正确;故答案为:A 、B 、C()①设()Q x x -+,∵点Q 在第一象限,∴O P x =,P Q x =-+,∴()O P Q R C O P P Q ==矩形+,∴矩形O P Q R 的周长是一个定值,周长为;②∵()()S x x x x x -=--+=+-=-³∴S £.()设点Q 的坐标为()xx -+,∵点Q 在第四象限,∴Q R x =,Q P x =-,∴Q R Q P -=.。
2022—2023年人教版八年级数学下册期末考试题及答案一

2022—2023年人教版八年级数学下册期末考试题及答案一班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-32.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-63.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm4.若关于x的一元一次不等式组11(42)423122x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x≤a,且关于y的分式方程24111y a yy y---=--有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.65.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)6.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣37.汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若S1+S2+S3=10,则S2的值为()A.113B.103C.3 D.838.如图是一张直角三角形的纸片,两直角边AC=6 cm、BC=8 cm,现将△ABC 折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4 cm B.5 cm C.6 cm D.10 cm9.如图,两个不同的一次函数y=ax+b与y=bx+a的图象在同一平面直角坐标系的位置可能是()A.B.C.D.10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)181________.2.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为_______cm.3.若m+1m =3,则m 2+21m=________. 4.如图,已知∠1=75°,将直线m 平行移动到直线n 的位置,则∠2﹣∠3=________°.5.如图,在Rt △BAC 和Rt △BDC 中,∠BAC =∠BDC =90°,O 是BC 的中点,连接AO 、DO .若AO =3,则DO 的长为________.6.如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC ∆≌△DCB ∆的是_____(只填序号).三、解答题(本大题共6小题,共72分)1.解下列方程:(1)2410x x -+= (2)()()2411x x x -=-2.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)10a b -+=.3.已知关于x 的一元二次方程2(4)240x m x m -+++=.(1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数图象是否经过点(5,9)A -,并说明理由.4.如图,在平面直角坐标系中,一次函数y=kx+b 的图象经过点A (﹣2,6),且与x 轴相交于点B ,与正比例函数y=3x 的图象相交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.5.如图,矩形EFGH 的顶点E ,G 分别在菱形ABCD 的边AD ,BC 上,顶点F 、H 在菱形ABCD 的对角线BD 上.(1)求证:BG DE =;(2)若E 为AD 中点,2FH =,求菱形ABCD 的周长.6.某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表:若用360元购进甲种商品的件数与用180元购进乙种商品的件数相同.(1)求甲、乙两种商品的进价是多少元?(2)若超市销售甲、乙两种商品共50件,其中销售甲种商品为a件(30a≥),设销售完50件甲、乙两种商品的总利润为w元,求w与a之间的函数关系式,并求出w的最小值.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、B4、B5、A6、D7、B8、B9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±32、223、74、1055、36、②.三、解答题(本大题共6小题,共72分)1、(1)1222x x ==2)1241,3x x ==. 2、1a b-+,-1 3、(1)见解析;(2)经过,理由见解析4、(1)k=-1,b=4;(2)点D 的坐标为(0,-4).5、(1)略;(2)8.6、(1)分别是120元,60元;(2)402000w a =+(30)a ≥,当a=30件时,w 最小值=3200元。
数学八年级下册数学期末试卷测试卷附答案

数学八年级下册数学期末试卷测试卷附答案数学八年级下册数学期末试卷及答案一、选择题1.下列各式中,一定是二次根式的是()A。
aB。
1/a^2C。
-a^2D。
a^2+12.下列数组中,能构成直角三角形的是()A。
1.1.3B。
2.3.5C。
0.2.0.3.0.5D。
1/11.1/45.1/33.如图,在ABCD中,点E,F分别在边BC,AD上。
若从下列条件中只选择一个添加到图中的条件中,那么不能使四边形AECF是平行四边形的条件是()A。
AE//CFB。
AE=CFC。
BE=DFD。
∠BAE=∠DCF4.某次数学趣味竞赛共有10组题目,某班得分情况如下表。
全班40名学生成绩的众数是人数。
成绩(分)5.1370.6080.7390.100A。
75B。
70C。
80D。
905.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A。
AB//DCB。
AC=BDC。
AC⊥BDD。
AB=DC6.如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD于点E,连结OA。
则四边形AOED的周长为()A。
9+√23B。
9+√3C。
7+√23D。
87.如图,在ABC中,D,E分别是AB,AC的中点,AC=20,F是DE上一点,连接AF,CF,DF=4.若∠AFC=90°,则BC的长度为()A。
24B。
28C。
20D。
128.一个内有进水管和出水管,开始4min内只进水不出水,在随后的8min内既进水又出水,第12min后只出水不进水。
进水管每分钟的进水量和出水量每分钟的出水量始终不变,内水量y(单位:L)与时间x(单位:min)之间的关系如图所示。
根据图象有下列说法:①进水管每分钟的进水量为5L;②4≤x≤12时,y=x+15;③当x=12时,y=30;④当y=15时,x=3,或x=17.其中正确说法的个数是()A。
1个B。
冀教版八年级下册数学期末试卷 (1)

冀教版八年级下册数学期末试卷一、选择题(本大题共10个小题,每小题2分,满分20分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)在平面直角坐标系中,第二象限内的一点P到x轴的距离是3,到y轴的距离是2,则点P的坐标为( )A.(3,﹣2)B.(﹣3,2)C.(2,﹣3)D.(﹣2,3)2.(2分)下列调查方式,你认为最合适的是( )A.要检测一批节能灯的使用寿命,采用全面调查B.要了解滦河的水质,采用抽样调查C.某高铁站对乘车旅客实施安检,采用抽样调查D.要了解全市初中生的睡眠情况,采用全面调查3.(2分)在▱ABCD中,对角线AC、BD交于点O,若AD=5,AC=10,BD=6,△BOC 的周长为( )A.13B.16C.18D.214.(2分)为了解全市6300名八年级学生的期中数学成绩,教研室随机从全部考生中抽取了500名学生的数学成绩进行分析,对于此次调查下列说法:①6300名学生是调查的总体;②500名学生的数学成绩是总体的一个样本;③每个学生的数学成绩是个体;④样本容量是500名学生.其中正确的有( )A.1个B.2个C.3个D.4个5.(2分)如图所示,在Rt△ABC中,∠A=30°,BC=3,D、E分别是直角边BC、AC 的中点,则DE的长为( )A.1.5B.2C.2.5D.36.(2分)据测试,拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小明洗手后没有把水龙头拧紧,水龙头以测试速度滴水,当小明离开x分钟后,水龙头滴水y毫升水,则y与x之间的函数关系式是( )A.y=0.05x B.y=5xC.y=100x D.y=0.05x+1007.(2分)如图,矩形ABCD中,对角线AC、BD交于点O,点P为AD边上一点,过点P 分别作AC、BD的垂线,垂足分别为E、F,若AB=6,BC=8,则PE+PF的值为( )A.4.8B.6C.8D.不能确定8.(2分)小明在计算某多边形的内角和时,由于马虎漏掉了一个角,结果得到970°,则原多边形是一个( )A.七边形B.八边形C.九边形D.十边形9.(2分)某仓库调拨一批物资,调进物资共用8小时,调进物资4小时后同时开始调出物资(调进与调出的速度保持不变).该仓库库存物资m(吨)与时间t(小时)之间的函数关系如图所示.则这批物资从开始调进到全部调出所需要的时间是( )A.8.4小时B.8.6小时C.8.8小时D.9小时10.(2分)如图,△ABO缩小后变为△A'B'O,其中A、B的对应点分别为A'、B',点A、B、A'、B'均在格点上,若线段AB上有点P(m,n),则点P在A'B'上的对应点P'的坐标为( )A.(,n)B.(m,n)C.(m,)D.()二、填空题(本大题共10个小题,每小题3分,共30分,)11.(3分)把点A(3,1)向左平移2个单位,再向下平移3个单位后与点B重合,则点B 的坐标是.12.(3分)已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是 .13.(3分)函数y=的自变量x的取值范围是.14.(3分)如图所示,直线l1:y=x+b与直线l2:y=kx+4交于点A,则不等式x+b≥kx+4的解集是.15.(3分)如图,在菱形ABCD中,对角线AC、BD交于点O,过点A作AH⊥BC于点H,若AC=6,BD=8,则AH= .16.(3分)已知点A(m﹣1,2m+3)在第二象限,则m的取值范围是.17.(3分)已知一次函数y=kx+2k+3的图象交y轴于正半轴,且函数值y随x的增大而减小,则k所能取到的整数值为.18.(3分)已知,在▱ABCD中,∠A的平分线交BC边于点E,若BC边被点E分为4和5两部分,则▱ABCD的周长为.19.(3分)如图,菱形ABCD中,∠A=120°,E是AD上的点,沿BE折叠△ABE,点A 恰好落在BD上的点F,那么∠BFC的度数是 .20.(3分)如图所示,正方形ABCD和正方形CEFG的边长分别为2和3,则图中阴影部分的面积为.三、解答题:(本大题共6个小题,50分,解答过程应写出文字说明,证明过程或演算步骤)21.(6分)已知:▱ABCD中,对角线AC、BD交于点O,EF过点O交AD于点E,交BC 于点F.(1)求证:AE=CF.(2)若▱ABCD的周长是18cm,且OE=1.5cm,请直接写出四边形CDEF的周长是cm.22.(7分)某校开展“阳光体育活动”,开设了以下体育项目:篮球、羽毛球、乒乓球和跳绳要求每名学生必须且只能选择其中的一项,为了解选择各体育项目的学生人数,随机抽取了部分学生进行调查,并对调查获取的数据进行了整理,绘制出两幅不完整的统计图,请根据统计图回答下列问题:(1)在这次调查中,一共调查了名学生;(2)计算选择跳绳的人数并补全条形统计图;(3)在扇形统计图中,乒乓球项目所对应的扇形圆心角的度数是;(4)请根据此统计数据估算该校1800名学生中有多少人选择了球类项目.23.(8分)某水果店以6元/千克的价格购进油桃若干千克,销售了一部分后,余下的油桃每千克降价2元进行销售,直至全部售完.销售金额y(元)与销量x(千克)之间的函数关系如图所示.请根据图象提供的信息解决下列问题:(1)降价前油桃的销售单价是元/千克.(2)求降价后销售总金额y(元)与总销量x(千克)之间的函数关系式,并写出自变量的取值范围;(3)该水果店销售这些油桃总共盈利多少元?24.(9分)已知:如图,四边形ABCD中,M、N、P、Q分别是AD、BC、BD和AC的中点.(1)求证:四边形MPNQ是平行四边形.(2)若满足AB=CD.试判断MN与PQ的位置关系(不用说明理由).25.(10分)已知:如图所示,在平面直角坐标系中,过点A(﹣6,0)的直线l1与直线l2:y=2x相交于点B(m,4),与y轴交于点M.(1)求直线l1的表达式.(2)求△BOM的面积.(3)点P(n,0)是x轴上一个动点,过点P垂直于x轴的直线分别与直线l1和l2交于C、D两点,当点C位于点D上方时,直接写出n的取值范围.26.(10分)已知:如图1所示,O是△ABC中AC边上一点,过点O的直线MN∥BA,D 是BA延长线上一点,∠BAC和∠DAC的角平分线分别交MN于点E、F.(1)请直接写出线段OA和EF的数量关系.(2)如图2所示,连接CE、CF,若点O是AC中点,试判断四边形AECF的形状并写出详细推理过程.(3)在(2)的条件下,在△ABC中添加什么条件能使四边形AECF是正方形.(直接写出结果即可)参考答案与试题解析一、选择题(本大题共10个小题,每小题2分,满分20分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】根据第二象限内点的坐标特征以及点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【解答】解:∵第二象限的点P到x轴的距离是3,到y轴的距离是2,∴点P的横坐标是﹣2,纵坐标是3,∴点P的坐标为(﹣2,3).故选:D.2.【分析】根据调查对象的特点,结合普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果接近准确数值,从而可得答案.【解答】解:A.要检测一批节能灯的使用寿命,适合采用抽样调查,故本选项不合题意;B.要了解滦河的水质,适合采用抽样调查,故本选项符合题;C.某高铁站对乘车旅客实施安检,适合采用全面调查方式,故本选项不合题意;D.要了解全市初中生的睡眠情况,适合采用抽样调查,故本选项不合题意.故选:B.3.【分析】利用平行四边形的性质对角线互相平分,进而得出BO,CO的长,即可得出△BOC的周长.【解答】解:∵▱ABCD的两条对角线交于点0,AC=10,BD=6,AD=5,∴BO=DO=3,AO=CO=5,BC=AD=5∴△BOC的周长为:BO+CO+BC=3+5+3=13.故选:A.4.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:①6300名学生的数学成绩是调查的总体;故命题错误;②500名学生的数学成绩是总体的一个样本;故命题正确;③每个学生的数学成绩是个体;故命题正确;④样本容量是500.故命题错误;故选:B.5.【分析】根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.【解答】解:在Rt△ABC中,∠A=30°,∴AB=2BC=6,∵D,E分别是直角边BC,AC的中点,∴DE=AB=3,故选:D.6.【分析】每分钟滴出100滴水,每滴水约0.05毫升,则一分钟滴水100×0.05毫升,则x 分钟可滴100×0.05x毫升,据此即可求解.【解答】解:根据题意可得:y=100×0.05x,即y=5x.故选:B.7.【分析】首先连接OP.由矩形ABCD的两边AB=6,BC=8,可求得OA=OD=5,然后由S△AOD=S△AOP+S△DOP求得答案.【解答】解:连接OP,∵矩形ABCD的两边AB=6,BC=8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD,AC==10,∴S△AOD=S矩形ABCD=12,OA=OD=5,∴S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=OA(PE+PF)=×5×(PE+PF)=12,∴PE+PF==4.8.故选:A.8.【分析】根据n边形的内角和公式,则内角和应是180°的倍数,且每一个内角应大于0°而小于180度,根据这些条件进行分析求解即可.【解答】解:∵970°÷180°=5…70°,则边数是:5+1+2=8,故选:B.9.【分析】通过分析题意和图象可求调进物资的速度,调出物资的速度;从而可计算最后调出物资20吨所花的时间.【解答】解:调进物资的速度是60÷4=15吨/时,当在第4小时时,库存物资应该有60吨,在第8小时时库存20吨,从4小时到8小时,物资既调进也调出,共调进15×4=60吨,实际这4个小时调出的物资是原来的60吨+调进的60吨减去仓库剩余的20吨,所以调出速度是=25(吨/时),所以剩余的20吨完全调出需要20÷25=0.8(小时).故这批物资从开始调进到全部调出需要的时间是8+0.8=8.8(小时).故选:C.10.【分析】根据A,B两点坐标以及对应点A′,B′点的坐标得出坐标变化规律,进而得出P′的坐标.【解答】解:∵△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上,即A点坐标为:(4,6),B点坐标为:(6,2),A′点坐标为:(2,3),B′点坐标为:(3,1),∴线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为:().故选:D.二、填空题(本大题共10个小题,每小题3分,共30分,)11.【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【解答】解:点P(3,1)向下平移3个单位,向左平移2个单位,得到点P'的坐标是(3﹣2,1﹣3),即(1,﹣2),故答案为:(1,﹣2).12.【分析】根据频率=频数÷总数,以及第五组的频率是0.2,可以求得第五组的频数;再根据各组的频数和等于1,求得第六组的频数,从而求得其频率.【解答】解:根据第五组的频率是0.2,其频数是40×0.2=8;则第六组的频数是40﹣(10+5+7+6+8)=4.故第六组的频率是,即0.1.13.【分析】根据二次根式的被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得:x﹣2>0,解得x>2∴自变量x的取值范围是x>2.故答案为:x>2.14.【分析】写出直线l1在直线l2上方所对应的自变量的范围即可.【解答】解:∵直线l1:y=x+b与直线l2:y=kx+4交于点A(2,2),当x≥2时,直线l1在直线l2的上方,∴不等式x+b≥kx+4的解集是x≥2.故答案为x≥2.15.【分析】由菱形面积=对角线积的一半可求面积,由勾股定理求出BC,然后由菱形的面积即可得出结果.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,∴BC=,∵菱形ABCD的面积=,∴AH=,故答案为:.16.【分析】根据第二象限内点的坐标的符号特点列出关于m的不等式组,解之即可得出答案.【解答】解:∵点A(m﹣1,2m+3)在第二象限,∴,解不等式①,得:m<1,解不等式②,得:m>﹣1.5,则不等式组的解集为﹣1.5<m<1,故答案为:﹣1.5<m<1.17.【分析】由一次函数图象与系数的关系可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:由题意得:,解得:﹣<k<0.∵k为整数,∴k=﹣1,故答案为﹣1.18.【分析】根据AE平分∠BAD及AD∥BC可得出AB=BE,BC=BE+EC,从而根据AB、AD的长可求出平行四边形的周长.【解答】解:在平行四边形ABCD中,AD∥BC,则∠DAE=∠AEB.∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,BC=BE+EC,①当BE=4,EC=5时,平行四边形ABCD的周长为:2(AB+AD)=2×(4+4+5)=26.②当BE=5,EC=4时,平行四边形ABCD的周长为:2(AB+AD)=2×(5+5+4)=28.故答案为:26或28.19.【分析】根据菱形的性质可得AB=BC,∠A+∠ABC=180°,BD平分∠ABC,然后再计算出∠FBC=30°,再证明FB=BC,再利用等边对等角可得∠BFC=∠BCF,利用三角形内角和可得答案.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∠A+∠ABC=180°,BD平分∠ABC,∵∠A=120°,∴∠ABC=60°,∴∠FBC=30°,根据折叠可得AB=BF,∴FB=BC,∴∠BFC=∠BCF=(180°﹣30°)÷2=75°,故答案为:75°.20.【分析】用两个正方形面积减去三个空白三角形面积即可求得.【解答】解:由题意知,阴影面积S=22+32﹣×(2+3)×3﹣×(3﹣2)×3﹣×22=×22=2,故答案为:2.三、解答题:(本大题共6个小题,50分,解答过程应写出文字说明,证明过程或演算步骤)21.【分析】(1)利用平行线的性质结合全等三角形的判定与性质得出即可.(2)根据全等三角形的性质和平行四边形的性质解答即可.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEO=∠CFO,在△AEO和△CFO中,∴△AEO≌△CFO(ASA),∴AE=CF;(2)∵AE=CF,∴CF+ED=AE+ED=AD,∵▱ABCD的周长是18cm,∴AD+DC=9(cm),∴四边形CDEF的周长=DE+CF+DC+EF=AD+DC+EF=9+1.5+1.5=12(cm).故答案为:12.22.【分析】(1)根据选择篮球的人数和所占的百分比,可以计算出本次调查的学生人数;(2)根据(1)中的结果和条形统计图中的数据,可以计算出选项跳绳的人数,然后即可将条形统计图补充完整;(3)根据(1)中的结果和条形统计图中的数据,可以计算出在扇形统计图中,乒乓球项目所对应的扇形圆心角的度数;(4)根据条形统计图中的数据,可以计算出该校1800名学生中有多少人选择了球类项目.【解答】解:(1)在这次调查中,一共调查了16÷32%=50名学生,故答案为:50;(2)选择跳绳的学生有:50﹣16﹣12﹣10=12(人),补全的条形统计图如右图所示;(3)在扇形统计图中,乒乓球项目所对应的扇形圆心角的度数是360°×=72°,故答案为:72°;(4)1800×=1368(人),答:估算该校1800名学生中有1368人选择了球类项目.23.【分析】(1)由函数图象可知:销售50千克所得销售收入为550元,由此可得降价前油桃的销售单价;(2)根据“余下的油桃每千克降价2元进行销售”求出降价后的销售单价,再利用减价后的收入为(730﹣550)元,可求减价后销售的油桃数,再利用待定系数法可求函数关系式;(3)根据盈利=销售收入﹣成本可得.【解答】解:(1)由图象可知,降价前油桃的销售单价是550÷50=11(元/千克),故答案为:11;(2)降价后销售的油桃数是:(730﹣550)÷(11﹣2)=20(千克),∴销售的油桃总数为50+20=70(千克),设降价后销售金额y(元)与销售量x(千克)之间的函数解析式是y=kx+b(k≠0),把(50,550),(70,730)代入得:,解得,∴y=9x+100(50<x≤70);(3)730﹣6×70=310(元).答:该水果店销售这些油桃总共盈利310元.24.【分析】(1)根据三角形中位线定理得到PM=AB,PM∥AB,NQ=AB,NQ∥AB,根据平行四边形的判定定理证明四边形PMQN是平行四边形,根据平行四边形的性质定理证明结论;(2)根据菱形的判定定理和性质定理解答即可.【解答】(1)证明:∵P、M分别是BD,AD的中点,∴PM=AB,PM∥AB,同理NQ=AB,NQ∥AB,∴PM∥NQ,PM=NQ,∴四边形PMQN是平行四边形;(2)PQ⊥MN,理由如下:由(1)知,PM=AB,PN=CD,当AB=CD时,PM=PN,∴平行四边形PMQN是菱形,∴PQ⊥MN.25.【分析】(1)先求出点B坐标,再利用待定系数法即可解决问题.(2)把x=0代入解析式,求出M坐标,利用三角形面积公式解答即可;(3)由图象可知直线l1在直线l2上方即可,由此即可写出n的范围.【解答】解:(1)∵点B(m,4)直线l2:y=2x上,∴4=2m,∴m=2,∴点B(2,4),设直线l1的表达式为y=kx+b,将A(﹣6,0),B(2,4)代入得:,解得,∴直线l1的表达式为y=x+3;(2)将x=0代入y=x+3,得:y=3,∴M(0,3),∴OM=3,∴△BOM的面积=OM•|x B|=×3×2=3;(3)当点C位于点D上方时,即是直线l1在直线l2上方,如图:由图象可知n<2.26.【分析】(1)根据MN∥BA,得∠OEA=∠BAE,由AE平分∠BAC,得∠BAE=∠CAE,从而∠OEA=∠CAE,则有OE=OA,同理可证:OF=OA,即可得出EF=2OA;(2)先通过对角线互相平分得出:四边形AECF是平行四边形,再证AC=EF即可;(3)添加∠BAC=90°,可得∠EAC=45°,从而CE=AE,得出结论.【解答】解:(1)∵MN∥BA,∴∠OEA=∠BAE,∵AE平分∠BAC,∴∠BAE=∠CAE,∴∠OEA=∠CAE,∴OE=OA,同理可证:OF=OA,∴EF=2OA;故答案为:EF=2OA;(2)四边形AECF是矩形,∵点O是AC中点,∴OC=OA,AC=2OA,由(1)知:OE=OF,∴四边形AECF是平行四边形,∵EF=2OA,∴EF=AC,∴▱AECF是矩形;(3)添加∠BAC=90°,能使四边形AECF是正方形,∵AE平分∠BAC,∠BAC=90°,∴∠EAC=45°,∴CE=AE,∴矩形AECF是正方形,故添加:∠BAC=90°.。
2023年人教版八年级数学下册期末考试题及答案【完美版】

2023年人教版八年级数学下册期末考试题及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是( )A .∠A=∠B B .∠A=∠C C .AC=BD D .AB ⊥BC3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩5.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A .4B .16C .34D .4或346.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③8.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y=-2x+24(0<x<12)B .y=-x +12(0<x<24)C .y=2x -24(0<x<12)D .y=x -12(0<x<24)10.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A表示的数为a,化简:a244a a+-+=________.2.已知三角形ABC的三边长为a,b,c满足a+b=10,ab=18,c=8,则此三角形为__________三角形.3.分解因式6xy2-9x2y-y3 = _____________.4.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm ,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是__________dm.5.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为___________cm(杯壁厚度不计).6.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC =8,则EF的长为______.三、解答题(本大题共6小题,共72分)2.解方程组(1)43524x yx y+=⎧⎨-=⎩(2)12163213x yx y--⎧-=⎪⎨⎪+=⎩2.先化简,后求值:(a+5)(a ﹣5)﹣a(a﹣2),其中a=12+2.3.解不等式组20{5121123xx x->+-+≥①②,并把解集在数轴上表示出来.4.如图,A(4,3)是反比例函数y=kx在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=kx的图象于点P.(1)求反比例函数y=kx的表达式;(2)求点B的坐标;(3)求△OAP的面积.5.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、D6、A7、C8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、直角3、-y(3x-y)24、255、206、1三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=-⎩;(2)53xy=⎧⎨=⎩.2、224-3、﹣1≤x<2.4、(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=5.5、(1)2.5小时;(2)y=﹣100x+550;(3)175千米.6、(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)略.。
苏科版八年级下册数学期末试卷 (1)

苏科版八年级下册数学期末试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)使二次根式的有意义的x的取值范围是( )A.x>0B.x>1C.x≥1D.x≠12.(3分)下列图形中,是中心对称图形但不是轴对称图形的为( )A.等边三角形B.平行四边形C.矩形D.圆3.(3分)下列事件中的必然事件是( )A.一箭双雕B.守株待兔C.水中捞月D.旭日东升4.(3分)下列分式中属于最简分式的是( )A.B.C.D.5.(3分)如图,已知四边形ABCD是平行四边形,对角线AC、BD交于点O,则下列结论中错误的是( )A.当AB=BC时,它是菱形B.当∠ABC=90°时,它是正方形C.当AC=BD时,它是矩形D.当AC⊥BD时,它是菱形6.(3分)在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是( )A.抽取乙校初二年级学生进行调查B.在丙校随机抽取600名学生进行调查C.随机抽取150名老师进行调查D.在四个学校各随机抽取150名学生进行调查7.(3分)在Rt△ABC中,∠C=90°,∠A=30°,BC=4,D、E分别为AC、AB边上的中点,连接DE并延长DE到F,使得EF=2ED,连接BF,则BF长为( )A.2B.2C.4D.48.(3分)已知一次函数y=kx+b的图象经过一、二、四象限,则下列关于反比例函数y=的描述,其中正确的是( )A.图象在一、三象限B.y随x的增大而减小C.y随x的增大而增大D.当x<0时,y>09.(3分)已知:a2+b2=3ab(a>b>0),则的值为( )A.B.3C.D.510.(3分)如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE、BE,若AD平分∠OAE,反比例函数y=(k<0,x<0)的图象经过AE上的点A、F,且AF=EF,△ABE的面积为18,则k的值为( )A.﹣6B.﹣12C.﹣18D.﹣24二、填空题(本大题共8小题,每小题2分,共16分.)11.(2分)给出下列3个分式:,,,它们的最简公分母为.12.(2分)当x= 时,分式的值为零.13.(2分)一枚质地均匀的骰子的六个面上分别刻有1~6的点数,抛掷这枚骰子,若抛到偶数的概率记作P1,抛到奇数的概率记作P2,则P1与P2的大小关系是.14.(2分)已知实数a、b满足+|6﹣b|=0,则的值为.15.如图,面积为3的矩形OABC的一个顶点B在反比例函数y=的图象上,另三点在坐标轴上,则k= .16.(2分)如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥BC于点H,连接OH,若OA=8,OH=6,则菱形ABCD的面积为.17.(2分)已知正比例函数y1=k1x(k1≠0)与反比例函数y2=(k2≠0)的图象有一个交点的坐标为(3,﹣1),则关于x的不等式k1x﹣>0的解集为.18.(2分)如图,E为正方形ABCD中BC边上的一点,且AB=3BE=6,M、N分别为边CD、AB上的动点,且始终保持MN⊥AE,则AM+NE的最小值为.三、解答题(本大题共9小题,共74分.)19.(8分)计算:(1)+|3﹣|﹣()2;(2)﹣(3+)(3﹣).20.(8分)(1)计算:;(2)解方程:.21.(6分)化简代数式÷(x+),并求当x=7时此代数式的值.22.(8分)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)m= ,E组对应的圆心角度数为°;(2)补全频数分布直方图;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.23.(8分)如图,在▱ABCD中,延长BC到点E,使得BC=CE,连接AE、DE.(1)求证:四边形ACED是平行四边形;(2)如果AB=AE=4,BE=2,求四边形ACED的面积.24.(8分)某文具店王老板用240元购进一批笔记本,很快售完;王老板又用600元购进第二批笔记本,所购本数是第一批的2倍,但进价比第一批每本多了2元.(1)第一批笔记本每本进价多少元?(2)王老板以每本12元的价格销售第二批笔记本,售出60%后,为了尽快售完,决定打折促销,要使第二批笔记本的销售总利润不少于48元,剩余的笔记本每本售价最低打几折?25.(8分)如图1,在矩形ABCD中,AB=6,BC=10,P是AD边上一点,将△ABP沿着直线PB折叠,得到△EBP.(1)请在图2上用没有刻度的直尺和圆规,在AD边上作出一点P,使P、E、C三点在一直线上(不写作法,保留作图痕迹),此时AP的长为;(2)请在图3上用没有刻度的直尺和圆规,在AD边上作出一点P,使BE平分∠PBC (不写作法,保留作图痕迹),此时△BEC的面积为.26.(10分)如图,在平面直角坐标系中,B、C两点在x轴的正半轴上,以线段BC为边向上作正方形ABCD,顶点A在正比例函数y=2x的图象上,反比例函数y=(x>0,k >0)的图象经过点A,且与边CD相交于点E.(1)若BC=4,求点E的坐标;(2)连接AE,OE.①若△AOE的面积为24,求k的值;②是否存在某一位置使得AE⊥OA,若存在,求出k的值;若不存在,请说明理由.27.(10分)如图,在平面直角坐标系中,矩形ABCO的边OC、OA分别在x轴、y轴上,已知B(m,4)(m>0),AB上有一点P(n,4),将△OAP绕着点O顺时针旋转60°得到△OA1P1.(1)点A1的坐标为;连接PP1,若PP1⊥x轴,则n的值为;(2)如果m﹣n=2.①当点P1落在OC上时,求CP1的长;②请直接写出CP1最小值.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.【分析】根据中a≥0得出不等式,求出不等式的解即可.【解答】解:要使有意义,必须x﹣1≥0,解得:x≥1.故选:C.2.【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A.等边三角形是轴对称图形,不是中心对称图形,故本选项不符合题意;B.平行四边形是中心对称图形但不是轴对称图形,故本选项符合题意;C.矩形既是轴对称图形,又是中心对称图形,故本选项不符合题意;D.圆既是轴对称图形,又是中心对称图形,故本选项不符合题意.故选:B.3.【分析】根据必然事件的定义即可判断.【解答】解:A、一箭双雕,是随机事件,不符合题意;B、守株待兔,是随机事件,不符合题意;C、水中捞月,是不可能事件,不符合题意;D、旭日东升,是必然事件,故选项符合题意;故选:D.4.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、是最简分式,故本选项符合题意;B、原式=﹣,不是最简分式,故本选项不符合题意;C、原式=,不是最简分式,故本选项不符合题意;D、原式=x﹣3,该式子不是最简分式,故本选项不符合题意;故选:A.5.【分析】利用矩形的判定、正方形的判定及菱形的判定方法分别判断后即可确定正确的选项.【解答】解:A、根据邻边相等的平行四边形是菱形可以得到该结论正确;B、当∠ABC=90°时,可以得到平行四边形ABCD是矩形,不能得到正方形,故错误,C、根据对角线相等的平行四边形是矩形可以判断该选项正确;D、根据对角线互相垂直的平行四边形是菱形可以得到该选项正确;故选:B.6.【分析】根据抽样调查的具体性和代表性解答即可.【解答】解:为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,在四个学校各随机抽取150名学生进行调查最具有具体性和代表性,故选:D.7.【分析】根据直角三角形的性质求出AB,进而求出AE、EB,根据三角形中位线定理得到DE∥BC,得到∠AED=∠AED=60°,根据等边三角形的判定定理和性质定理解答即可.【解答】解:在Rt△ABC中,∠C=90°,∠A=30°,BC=4,∴AB=2BC=8,∠ABC=60°,∵E为AB边上的中点,∴AE=EB=4,∵D、E分别为AC、AB边上的中点,∴DE∥BC,∴∠AED=∠AED=60°,∴∠BEF=∠ABC=60°,在Rt△AED中,∠A=30°,∴AE=2DE,∵EF=2DE,∴AE=EF,∴△BEF为等边三角形,∴BF=BE=4,故选:C.8.【分析】根据一次函数y=kx+b的图象经过一、二、四象限,可以得到k<0,b>0,从而可以得到b﹣k>0,然后根据反比例函数的性质,即可判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,∴b﹣k>0,∴反比例函数y=的图象在第一、三象限,故选项A正确;在每个象限内,y随x的增大而增大,故选项B错误、选项C错误;当x<0时,反比例函数y=的函数值y<0,故选项D错误;故选:A.9.【分析】首先进行配方,得出a+b以及a﹣b的值,进而求出答案.【解答】解:∵a>b>0,a2+b2=3ab,∴(a﹣b)2=ab,(a+b)2=5ab,∴a+b>0,a﹣b>0,∴的值为:.故选:A.10.【分析】连接BD,先由AD平分∠EAO得∠DAE=∠OAD,由矩形ABCD的性质得到∠OAD=∠ODA,从而得到∠EAD=∠ADO,故而AE∥BD,再由平行线的性质得到△ABE和△AOE的面积相等,然后设点A的坐标,结合AF=EF得到点F和点E的坐标,最后结合△AOE的面积求出k的取值.【解答】解:连接BD,则OA=OD,∴∠OAD=∠ADO,∵AD平分∠EAO,∴∠EAD=∠OAD,∴∠EAD=∠ADO,∴AE∥BD,∴S△AEB=S△AEO=18,设A(a,),∵AF=EF,∴F(2a,),E(3a,0),∴S△AEO=×(﹣3a)×=18,∴k=﹣12,故选:B.二、填空题(本大题共8小题,每小题2分,共16分.)11.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,,的分母分别是ab、a3b,abc,故最简公分母是a2bc;故答案为a2bc.12.【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得x﹣2=0且x+2≠0,解得x=2.故当x=2时,分式的值为零.故答案为:2.13.【分析】直接利用概率公式求出P1,P2的值,进而得出答案.【解答】解:抛到偶数的概率P1==,抛到奇数的概率P2==,则P1=P2.故答案为:P1=P2.14.【分析】先根据非负数的和为0求出a、b的值,再代入化简.【解答】解:∵+|6﹣b|=0,又∵≥0,|6﹣b|≥0,∴a﹣3=0,6﹣b=0.∴a=3,b=6.∴==2.故答案为:15.【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S =|k|.【解答】解:根据题意,知S=|k|=3,k=±3,又因为反比例函数位于第四象限,k<0,所以k=﹣3,16.【分析】由菱形的性质得OA=OC=8,OB=OD,AC⊥BD,则AC=16,再由直角三角形斜边上的中线性质求出BD的长度,然后由菱形的面积公式求解即可.【解答】解:∵四边形ABCD是菱形,∴OA=OC=8,OB=OD,AC⊥BD,∴AC=2OA=16,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH=2×6=12,∴菱形ABCD的面积=AC•BD=×16×12=96,故答案为:96.17.【分析】利用反比例函数和正比例函数的性质判断两个交点关于原点对称,然后根据关于原点对称的点的坐标特征写出另一个交点的坐标.根据交点坐标和图象即可得出不等式的解集.【解答】解:∵正比例函数y1=k1x(k1≠0)与反比例函数y2=(k2≠0)的图象关于原点对称,∴正比例函数y1=k1x(k1≠0)与反比例函数y2=(k2≠0)的图象的交点关于原点对称,∵一个交点的坐标为(3,﹣1),∴另一个交点的坐标是(﹣3,1),如图,则关于x的不等式k1x﹣>0的解集为x<﹣3或0<x<3,故答案为:x<﹣3或0<x<3.18.【分析】由勾股定理可求AE的长,由“ASA”可证△ABE≌△DAH,可得DH=AE=2,通过证明四边形NEGM是平行四边形,可得NE=MG,MN=EG=AE=2,由AM+NE =AM+MG,则当点A,点M,点G三点共线时,即AM+NE的最小值为AG,由勾股定理可求解.【解答】解:如图,过点D作DH∥MN,交AB于H,过点E作EG∥MN,过点M作MG∥NE,两直线交于点G,连接AG,∵四边形ABCD是正方形,∴AB∥CD,∠B=∠BAD=90°,∵AB=3BE=6,∴BE=2,∴AE===2,∵DH∥MN,AB∥CD,∴四边形DHNM是平行四边形,∴DH=MN,∵MN⊥AE,DH∥MN,EG∥MN,∴DH⊥AE,AE⊥EG,∴∠BAE+∠AHD=90°=∠AHD+∠ADH,∠AEG=90°,∴∠BAE=∠ADH,在△ABE和△DAH中,,∴△ABE≌△DAH(ASA),∴DH=AE=2,∴MN=DH=AE=2,∵EG∥MN,MG∥NE,∴四边形NEGM是平行四边形,∴NE=MG,MN=EG=AE=2,∴AM+NE=AM+MG,则当点A,点M,点G三点共线时,AM+NE的最小值为AG,∴AG===4,故答案为4.三、解答题(本大题共9小题,共74分.)19.【分析】(1)直接利用二次根式的性质以及绝对值的性质分别化简,进而合并得出答案;(2)直接分母有理化以及结合乘法公式计算得出答案.【解答】解:(1)原式=3+3﹣2﹣3=;(2)原式=﹣(9﹣6)=4+4+3﹣3=4+4.20.【分析】(1)先因式分解,再通分,最后同分母相加,结果化为最简分式;(2)先因式分解,再去分母、去括号、移项、合并同类项、把x系数化为一,最后一定检验.【解答】解:(1)原式=+===;(2)x(x+2)﹣(x+2)(x﹣2)=8,x2+2x﹣x2+4=8,2x=8﹣4,x=2,经检验x=2为原方程的增根,∴原方程无解.21.【分析】根据分式的加法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可.【解答】解:÷(x+)=÷==,当x=7时,原式==.22.【分析】(1)根据A组的频数和所占的百分比,可以求得本次调查的人数,然后即可计算出m的值,以及E组对应的圆心角度数;(2)根据D组所占的百分比和(1)中的结果,可以计算出D组的频数,从而可以将频数分布直方图补充完整;(3)根据直方图中的数据,可以计算出该校3000名学生中每周的课外阅读时间不小于6小时的人数.【解答】解:(1)本次调查的人数为:10÷10%=100,m%=40÷100×100%=40%,∴m=40,E组对应的圆心角度数为:×360°=14.4°,故答案为:40,14.4;(2)D组的频数为:100×25%=25,补全的频数分布直方图如右图所示;(3)3000×=870(人),答:估计该校3000名学生中每周的课外阅读时间不小于6小时的有870人.23.【分析】(1)由平行四边形的性质得AD∥BC,AD=BC,再证AD=CE,即可得出结论;(2)由等腰三角形的性质得∠ACE=90°,则平行四边形ACED是矩形,再由勾股定理得AC=,即可求解.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵BC=CE,∴AD=CE,∵AD∥CE,∴四边形ACED是平行四边形;(2)解:由(1)得:四边形ACED是平行四边形,∵AB=AE,BC=CE=BE=,∴AC⊥BE,∴∠ACE=90°,∴平行四边形ACED是矩形,在Rt△ACE中,由勾股定理得:AC===,∴矩形ACED的面积=AC×CE=×=.24.【分析】(1)设第一批笔记本每本进价为x元,则第二批每本进价为(x+2)元,由题意:某文具店王老板用240元购进一批笔记本,很快售完;王老板又用600元购进第二批笔记本,所购本数是第一批的2倍,列出分式方程,解方程即可;(2)设剩余的笔记本每本打y折,由题意:王老板以每本12元的价格销售第二批笔记本,售出60%后,为了尽快售完,决定打折促销,要使第二批笔记本的销售总利润不少于48元,列出一元一次不等式,解不等式即可.【解答】解:(1)设第一批笔记本每本进价为x元,则第二批每本进价为(x+2)元,由题意得:,解之得:x=8,经检验,x=8为原方程的解,答:第一批笔记本每本进价为8元.(2)第二批笔记本有:=60(本),设剩余的笔记本每本打y折,由题意得:,解得:y≥7.5,答:剩余的笔记本每本最低打七五折.25.【分析】(1)以C为圆心,BC长为半径作弧交AD于点P,则∠CBP=∠CPB,而∠CBP =∠APB,所以AP=2(2)以为AB边再矩形内作等边三角形ABE,作∠ABE的角平分线BP与AD交于点P,则BE平分∠PBC,作EH⊥BC,然后求出BE,从而得到△BEC的面积.【解答】解:(1)如图2,点P为所作;∵CP=CB=10,∴PD===8,∴AP=AD﹣DP=10﹣8=2;故答案为2;(2)如图3,点P为所作,过E作EH⊥BC于H,∵△ABE为等边三角形,∴∠ABE=60°,BE=BA=6,∴∠EBC=30°,∴EH=BE=3,∴S△BEC=×10×3=15.故答案为15.26.【分析】(1)根据正方形的性质得到AB=BC=4,求得A(2,4),得到k=2×4=8,于是求得点E的坐标为;(2)①设A(a,2a)(a>0),则点,根据梯形的面积公式即可得到答案;②根据余角的性质得到∠OAB=∠BAE,根据全等三角形的性质得到OB=DE,由①可知,A(a,2a)(a>0),则点,求得OB=a,,推出k=0,于是得到答案.【解答】解:(1)在正方形ABCD中,AB=BC=4,∴A(2,4),∵A(2,4)在的图象上,∴k=2×4=8,∵OC=OB+BC=6,∴x E=6,将x E=6代入中,得:,∴点E的坐标为;(2)①设A(a,2a)(a>0),则点,∵S梯形ABCE=S△AOE=24,∴得a2=9,∴k=2a2=18;②答:不存在,理由:∵AE⊥OA,∴∠OAB+∠BAE=90°,∵∠BAD=∠BAE+∠DAE=90°,∴∠OAB=∠DAE,∵∠ABO=∠D=90°,AB=AD,∴△OAB≌△EAD(ASA),∴OB=DE,由①可知,A(a,2a)(a>0),则点,∴OB=a,,∴,∴a=0,∴k=0,∵k>0,∴不符合题意,不存在.27.【分析】(1)连接AA1,过A1作A1D⊥x轴于D,设PP1与x轴交于E,根据将△OAP 绕着点O顺时针旋转60°得到△OA1P1,B(m,4),可得∠AOA1=∠POP1=60°,OA=OA1=4,OP=OP1,即得A1D=OA1=2,OD==2,故A1(2,2),由PP1⊥x轴,可得∠POE=30°,在Rt△POE中,即得OP=8,OE=4,故n =4;(2)①连接PP1,过P作PF⊥x轴于F,由△POP1是等边三角形,PF⊥x轴,知P1F=OP1=PP1,而PF=4,即得P1F=,根据m﹣n=2,即BP=2=CF,即得CP1=CF﹣P1F=;②过A1作A1R⊥OA于R,过P1作P1S⊥A1R于S,由m﹣n=2,得m=2+n,C(2+n,0),证明△A1RO∽△P1A1S,可得OR:A1R:OA1=A1S:P1S:A1P1=1::2,OR=2,A1R=2,从而有P1(2+n,2﹣n),即得CP12=(n﹣)2+1,故CP12最小为1,CP1最小值是1.【解答】解:(1)连接AA1,过A1作A1D⊥x轴于D,设PP1与x轴交于E,如图:∵将△OAP绕着点O顺时针旋转60°得到△OA1P1,B(m,4),∴∠AOA1=∠POP1=60°,OA=OA1=4,OP=OP1,∴∠A1OD=30°,△POP1是等边三角形,∴A1D=OA1=2,OD==2,∴A1(2,2),∵△POP1是等边三角形,∴∠OPP1=60°,∵PP1⊥x轴,∴∠OEP=90°,∴∠POE=30°,在Rt△POE中,PE=OA=4,∴OP=8,OE==4,∴P(4,4),即n=4,故答案为:(2,2),;(2)①连接PP1,过P作PF⊥x轴于F,如图:∵△POP1是等边三角形,PF⊥x轴,∴P1F=OP1=PP1,∵PF=4,∴P1F==,∵m﹣n=2,即BP=2=CF,∴CP1=CF﹣P1F=;②过A1作A1R⊥OA于R,过P1作P1S⊥A1R于S,如图:∵m﹣n=2,∴m=2+n,∴C(2+n,0),∵∠OA1P1=∠OAP=90°,∴∠RA1O=90°﹣∠SA1P1=∠A1P1S,又∠A1RO=∠A1SP1,∴△A1RO∽△P1A1S,∵∠AOA1=60°,OA=OA1=4,∴OR:A1R:OA1=A1S:P1S:A1P1=1::2,OR=2,A1R=2,∵P(n,4),∴A1P1=AP=n,∴A1S=n,P1S=n,∴P1(2+n,2﹣n),∴CP12=(2+n﹣2﹣n)2+(2﹣n﹣0)2=n2﹣2n+4=(n﹣)2+1,∴n=时,CP12最小为1,∴当P1(,),C(3,0)时,CP1取最小值,最小值是1.。
人教版八年级下册数学期末考试卷及详细答案解析(部分试题选自全国各地中考真题)

人教版八年级下册数学期末考试卷附详细答案解析(部分试题选自全国各地中考真题)一、选择题(每小题3分,共30分)1.下列计算正确的是( )。
A.×=4 B.+= C.÷=2 D.=-152.要使式子错误!未找到引用源。
有意义,则x 的取值范围是( )。
A.x>0B.x ≥-2C.x ≥2D.x ≤23.矩形具有而菱形不具有的性质是( )。
A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等4.根据表中一次函数的自变量x 与函数y 的对应值,可得p 的值为( )。
A.1B.-1C.3D.-35.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )。
A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元x -2 0 1 y 3 p 0 工资(元) 2 000 2 200 2 400 2 600 人数(人) 1 3 4 26.如右图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )。
A.AB∥DC,AD∥BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB∥DC,AD=BC7.如右图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是( )。
A.24B.16C.4错误!未找到引用源。
D.2错误!未找到引用源。
8.如右图,图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD长( )A.错误!未找到引用源。
B.2错误!未找到引用源。
C.3错误!未找到引用源。
D.4错误!未找到引用源。
9.如图,正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是( )10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为( )A.x<错误!未找到引用源。
新人教版八年级数学下册期末考试(及参考答案)

新人教版八年级数学下册期末考试(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152-D .1522.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .24.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+18.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ; ③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④9.如图,两个不同的一次函数y=ax+b 与y=bx+a 的图象在同一平面直角坐标系的位置可能是( )A .B .C .D .10.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b|+2()a b +的结果是________.2.方程22310x x +-=的两个根为1x 、2x ,则1211+x x 的值等于__________. 3.如果实数a ,b 满足a+b =6,ab =8,那么a 2+b 2=________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--.2.先化简,再求值:3x 4x 2x x 1x 1--⎛⎫-÷ ⎪--⎝⎭,其中1x 2=.3.已知方程组713x y m x y m+=--⎧⎨-=+⎩的解满足x 为非正数, y 为负数. (1)求m 的取值范围;(2)化简:||32m m --+;(3)在m 的取值范围内,当m 为何整数时,不等式221mx x m +<+的解为1x >.4.如图,直线y =kx +b 经过点A (-5,0),B (-1,4)(1)求直线AB 的表达式;(2)求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、C5、D6、C7、B8、A9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、3.3、204、()()2a b a b ++.5、49136、8三、解答题(本大题共6小题,共72分)1、x=32、x 2-,32-. 3、(1)23m -<≤;(2)12m -;(3)1m =-4、(1)y =x +5;(2)272;(3)x >-3.5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下册数学期末试题一一、细心填一填,一锤定音.1、同学们都知道,蜜蜂建造的蜂房既坚固又省料。
那你知道蜂房蜂巢的厚度吗?事实上,蜂房的蜂巢厚度仅仅约为0.000073m 。
此数据用科学计数法表示为( )A 、m 4103.7-⨯ B 、m 5103.7-⨯ C 、m 6103.7-⨯ D 、m 51073-⨯2、若一个四边形的两条对角线相等,则称这个四边形为对角线四边形。
下列图形不是对角线四边形的是( ) A 、平行四边形 B 、矩形 C 、正方形 D 、等腰梯形3、某地连续10天的最高气温统计如下:这组数据的中位数和众数分别是( )A 、24,25B 、24.5,25C 、25,24D 、23.5,24 4、下列运算中,正确的是( ) A 、b a b a =++11 B 、a b b a =⨯÷1 C 、b a a b -=-11 D 、01111=-----x xx x 5、下列各组数中以a ,b ,c 为边的三角形不是Rt △的是 ( ) A 、a=2,b=3, c=4B 、a=5, b=12, c=13C 、a=6, b=8, c=10D 、a=3, b=4, c=56、一组数据 0,-1,5,x ,3,-2的极差是8,那么x 的值为( ) A 、6 B 、7 C 、6或-3 D 、7或-37、已知点(3,-1)是双曲线)0(≠=k xky 上的一点,则下列各点不在该双曲线上的是( ) A 、 ),(931- B 、 ),(216- C 、(-1,3) D 、 (3,1) 8、下列说法正确的是( )A 、一组数据的众数、中位数和平均数不可能是同一个数B 、一组数据的平均数不可能与这组数据中的任何数相等C 、一组数据的中位数可能与这组数据的任何数据都不相等D 、众数、中位数和平均数从不同角度描述了一组数据的波动大小9、如图(1),已知矩形ABCD 的对角线AC 的长为10cm ,连结各边中点E 、F 、G 、H 得四边形EFGH ,则四边形EFGH 的周长为( )A 、20cm B、 C、 D 、25cm 10、若关于x 的方程3132--=-x mx 无解,则m 的取值为( ) A 、-3 B 、-2 C 、 -1 D 、311、在正方形ABCD 中,对角线AC=BD=12cm ,点P 为AB 边上的任一点,则点P 到AC 、BD 的距离之和为( ) A 、6cm B 、7cm C 、12、如图(2)所示,矩形ABCD 的面积为102cm ,它的两条对角线交于点1,以AB 、1AO 为邻边作平行四边形11O ABC,平行四边形11O ABC 的对角线交于点2O ,同样以AB 、2AO 为邻边作平行四边形22O ABC ,……,依次类推,则平行四边形55O ABC 的面积为( )A 、12cm B 、22cm C 、852cm D 、1652cm 二、细心填一填,相信你填得又快又准.13、若反比例函数xk y 4-=的图像在每个象限内y 随x 的增大而减小,则k 的值可以为_________(只需写出一个符合条件的k 值即可)14、某中学八年级人数相等的甲、乙两个班级参加了同一次数学测验,两班平均分和方差分别为79=甲x 分,79=乙x 分,23520122==乙甲,S S ,则成绩较为整齐的是________(填“甲班”或“乙班”)。
15、如图(3)所示,在□ABCD 中,E 、F 分别为AD 、BC 边上的一点,若添加一个条件_____________,则四边形EBFD 为平行四边形。
16、如图(4),是一组数据的折线统计图,这组数据的平均数是 ,极差是 .17、如图(5)所示,有一直角梯形零件ABCD ,AD ∥BC ,斜腰DC=10cm ,∠D=120°,则该零件另一腰AB 的长是_______cm;2 B18、如图(6),四边形ABCD 是周长为20cm 的菱形,点A 的坐标是(4,0),则点B 的坐标为 . 19、如图(7)所示,用两块大小相同的等腰直角三角形纸片做拼图游戏,则下列图形:①平行四边形(不包括矩形、菱形、正方形);②矩形(不包括正方形);③正方形;④等边三角形;⑤等腰直角三角形,其中一定能拼成的图形有__________(只填序号)。
20、任何一个正整数n 都可以进行这样的分解:t s n ⨯=(s 、t 是正整数,且s ≤t),如果q p ⨯在n 的所有这种分解中两因数之差的绝对值最小,我们就称q p ⨯是最佳分解,并规定q p F n =)(。
例如:18可以分解成1×18,2×9,3×6,这是就有2163)==n F (。
结合以上信息,给出下列)n F (的说法:①212=)(F ;②8324=)(F ;③327=)(F ;④若n 是一个完全平方数,则1)=n F (,其中正确的说法有_________.(只填序号)三、开动脑筋,你一定能做对.21、解方程482222-=-+-+x x x x x22、先化简,再求值11)1113(2-÷+--x x x ,其中x=2图(7)A B CDE F图(3)第15题图O D CBA yx图(4)图(6)A BCD图(5)5623、某校八年级(1)班50名学生参加2007年济宁市数学质量监测考试,全班学生的成绩统计如下表:成绩(分) 71 74 78 80 82 83 85 86 88 90 91 92 94 人数1235453784332请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数和中位数分别是多少?(2)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中偏上水平?试说明理由.24、如图(8)所示,由5个大小完全相同的小正方形摆成如图形状,现移动其中的一个小正方形,请在 图(8-1)、图(8-2)、图(8-3)中分别画出满足以下要求的图形.(用阴影表示) (1)使所得图形成为轴对称图形,而不是中心对称图形; (2)使所得图形成为中心对称图形,而不是轴对称图形; (3)使所得图形既是轴对称图形,又是中心对称图形.25、某青少年研究机构随机调查了某校100名学生寒假零花钱的数量(钱数取整数元),以便研究分析并引导图(8-1)图(8-2)图(8-3)图(8)学生树立正确的消费观.现根据调查数据制成了如下图所示的频数分布表.(1)请将频数分布表和频数分布直方图补充完整;(2)研究认为应对消费150元以上的学生提出勤俭节约合理消费的建议.试估计应对该校1200名学生中约多少名学生提出该项建议?(3)你从以下图表中还能得出那些信息?(至少写出一条)26、 如图(10)所示,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知AB=8cm,BC=10cm 。
求CE的长?27、如图(9)所示,一次函数b kx y +=的图像与反比例函数xmy =的图像交于M 、N 两点。
(元)频数分布表 频数分布直方图(1)根据图中条件求出反比例函数和一次函数的解析式; (2)当x 为何值时一次函数的值大于反比例函数的值?28、如图(11)所示,在梯形ABCD 中,AD ∥BC ,∠B=90°,AD=24 cm ,BC=26 cm ,动点P 从点A 出发沿AD方向向点D 以1cm/s 的速度运动,动点Q 从点C 开始沿着CB 方向向点B 以3cm/s 的速度运动。
点P 、Q 分别从点A 和点C 同时出发,当其中一点到达端点时,另一点随之停止运动。
(1)经过多长时间,四边形PQCD 是平行四边形? (2)经过多长时间,四边形PQBA 是矩形? (3)经过多长时间,四边形PQCD 是等腰梯形?八年级数学试题一答案Q图 (11)PDCBA图(10)一、选择题(3分×12=36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BAADACDCABAD二、填空题(3分×8=24分)13、k>4的任何值(答案不唯一); 14、___甲班___; 15、答案不唯一; 16、 46.5 , 31 ; 17、35cm; 18、 (0,3) ; 19、__①③⑤__; 20、 __①③④__.三、开动脑筋,你一定能做对(共60分)21、(6分)解:方程两边同乘)2)(2(-+x x 得:8)2()2(2=+--x x x 解得:2-=x检验:把2-=x 代入)2)(2(-+x x =0 所以-2是原方程的增根, 原方程无解.22、(6分)解: 原式=42+x把x=2 代入原式=823、(8分)(1)众数为88,中位数为86;(2)不能,理由略.24、(6分)25、(9分)(1)略图(8-1)图(8-2)图(8-3)4分6分4分6分6分8分4分(2)5401200%451200%10010045=⨯=⨯⨯(名)(3)略26、(8分)解: (1)反比例函数解析式为:xy 6=一次函数的解析式为:33-=x y(2) 当01<<-x 或3>x 时一次函数的值大于反比例函数的值.27、(8分)CE=328、(9分)(1)(3分)设经过xs ,四边形PQCD 为平行四边形,即PD=CQ,所以x x 324=- 得6=x(2)(3分) 设经过ys ,四边形PQBA 为矩形, 即A P=B Q,所以x x 326-= 得213=x (3)(3分) 设经过ts ,四边形PQCD 是等腰梯形.(过程略)7分9分6分8分八年级数学答案共2页 第1页。