8.5.2乘法公式(完全平方公式)
《完全平方公式》教案【通用七篇】

《完全平方公式》教案【通用七篇】(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、述职报告、心得体会、工作计划、演讲稿、教案大全、作文大全、合同范文、活动方案、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as work summaries, job reports, insights, work plans, speeches, lesson plans, essays, contract samples, activity plans, and other materials. If you want to learn about different data formats and writing methods, please pay attention!《完全平方公式》教案【通用七篇】《完全平方公式》教案篇1一、教学目标:经历探索完全平方公式的过程,进一步发展符号感和推理能力;在变式中,拓展提高;通过积极参与数学学习活动,培养学生自主探究能力,勇于创新的精神和合作学习的习惯;重点是正确理解完全平方公式(a±b)2=a2±2ab+b2.并初步运用;难点是完全平方公式的运用。
完全平方公式讲解

完全平方公式讲解第一部分概念导入1 •问题:根据乘方的定义,我们知道:穿=日・a,那么(a+b) 2应该写成什么样的形式呢? ( a+b) 2的运算结果有什么规律?计算下列各式,你能发现什么规律?(1)_____________________________ (P+1)2=( p+1)( P+1) = ;( m+2)2= ;(2)(P-1)2= ( p-1) ( p-1) = _______ ;( m-2) 2= _____ ;2 •学生计算3 •得到结果:(1) (p+1) 2= (p+1) ( p+1) =p2+2p+12 2(m+2) = (m+2) (m+2) = m +4m+4(2) (p-1) 2= (p-1) (p-1) = p2-2p+12 2(m-2) = ( m-2) ( m-2=m -4m+44•分析推广:结果中有两个数的平方和,而2p=2 • p • 1, 4m=2- m- 2,恰好是两个数乘积的二倍。
(1) ( 2)之间只差一个符号。
推广:计算(a+b) 2= ______ _______ _(a-b) 2= _________________ 【2]得到公式,分析公式(1) •结论:(a+b) 2=a2+2ab+b2(a-b)2=a2-2ab+b2即:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.(2 )公式特征左边:二项式的平方右边:二项式中每一项的平方与这两项乘积2倍的和.注意:公式右边2ab的符号取决于左边二项式中两项的符号.若这两项同号,则2ab取“ + ”,若这两项异号,则2ab的符号为“―” •(3)公式中字母可代表的含义公式中的a和b可代表一个字母,一个数字及单项式.(4 )几何解释图1 — 5图1 —5中最大正方形的面积可用两种形式表示:©( a + b) 2②a2+ 2ab+ b2,由于这两个代数式表示同一块面积,所以应相等,即( a + b) 2= a2+ 2ab + b2因此,用几何图形证明了完全平方公式的正确性.【学习方法指导][例1 ]计算(1) (3a+ 2b) 2(2) (mn —n2) 2点拨:运用完全平方式的时候,要搞清楚公式中a,b在题目中分别代表什么,在展开的过程中要把它们当作整体来做,适当的地方应打括号,如:进行平方的时候.同时应注意公式中2ab的符号.解:(1) (3a + 2b) 2=( 3a) 2+ 2 • ( 3a) • (2b) + ( 2b) 2= 9a2+ 12ab + 4b2(2) (rnn— iCT ?◎ b—〔机打)z—g(讥”)* 异+( ii)zA + *</ — 2 必+ ¥=z>? if —2 mtf ~\~ »4注意:(2)中n2的指数2与公式中b2的二次方所代表含义不同,所以在展开过程中不要漏掉“二次方”.[例2 ]计算(1)(- m- n) 2(2) (- 5a—2) ( 5a+ 2)点拨:(1)可直接用完全平方公式•由于一m与一n是同号,所以公式中的2ab取“ + ” .( 2)中两个二项式虽然不同,但若将第一个括号中的“一”提出,则剩下的两个括号里的项完全相同,可利用完全平方公式进行计算.解:(1) (- m- n) 2=(-m) 2+ 2 •( —m) (- n) + (—n) 2=m2+ 2mn+ n2(2)(- 5a- 2) (5a+ 2)=-(5a+ 2) (5a+ 2)=-(5a+ 2) 2=-(25a2+ 20a + 4)=-25a2- 20a- 4小结:由(2)可知,将两个二项式相乘,两个括号里的每一项都相反的话,可先作适当调整,再利用完全平方公式进行计算.[例3 ]计算(1)(x-2y) 2-( x- y) (x+ y)(2)(m-n) (m2- n2) ( m+ n)点拨:(1)可分别应用平方差公式与完全平方公式进行乘法运算,再化简. (2)可先利用平方差公式将m-n与m + n相乘,再将所得结果m2- n2与中间括号里的m2- n2相乘,可利用完全平方公式.解:(1) (x- 2y) 2-( x - y) (x+ y)=(x2- 4xy+ 4护)-(x2- y2)=x2- 4xy+ 4y2- x2+ y2=-4xy+ 5y2(2) (m-n) (m2- n2) ( m+ n)=(m- n) ( m+ n) ( m^- n2)=(m^-n2) (m2-n2)=(m2) 2- 2 • m2• n2+( n2) 2=m4- 2m2n2+ n4说明:这两题在能用公式的地方尽量用公式,是因为应用公式可以简化运算,若想不到,用多乘多也可.[例4]计算:(x+ — ) 2-(x- y ) 22 2a 2—b 2=一、选择题1•下列运算中,正确的是() 2•下列运算中,利用完全平方公式计算正确的是(点拨:第一种方法是利用完全平方公式直接展开,第二种方法是可利用平方差公式逆运算:(a + b ) (a — b ),将此题转化为平方差公式进行计算.解法一:(x + y ) 222 (x 2+ xy + 仝)— 42(x 2— xy + L )4 =x 2+ xy + 2 y 2—x 2 + xy — 44=2xy解法二: = [“+和+仃-和+炉-3-子口u u(出+ tO =* y■加』[例 5]计算:(a — 2b + 1) ( a + 2b — 1)点拨:此题“三项式乘三项式”,且这两个括号中的三项只有符号不同•先找出两个括号中完全相同的项放在一起,再把互为相反数的项放在一起, 构成(a + b ) ( a — b )的形式,利用平方差公式进行简化运算.(a -W相反-[a-(26-1) J La *^(26 -1).②寿_(2卜・关键:此题最重要一步就是由①到②的过程转化, 随堂练习要保证代数式在形式发生变化的同时,大小不变!A . 3a+2b=5abB . (a — 1) 2=a 2— 2a+1C . a 6心a 2D . (a 4) 5=a 9A . (x+y ) 2=x 2+y 2B . ( x — y ) 2=x 2 — y2C . (- x+y ) 2=x 2-2xy+y 2D . (- x -y ) 2=x 2- 2xy+y 23•下列各式计算结果为 2xy - x 2-y 2的是() A . (x - y ) 2 B . (- x -y ) 2 C .-( x+y ) 2 D .-( x -y )4•若等式(x - 4) 2=x 2 - 8x+m 2成立,则m 的值是()A . 16B . 4C . - 4D . 4 或—4二、 填空题5. (- x -2y ) 2= ______.6. 若(3x+4y ) 2= (3x - 4y ) 2+B ,贝U B= ______ .7. _______________________________ 若 a - b=3, ab=2,则 a 2+b 2= . 19 9 8 . ( --- ---- y ) 2= — x 2— xy+ ______ ; ( ____ ) 2=——a 2- 6ab+ _____ .34 16 三、 解答题 9 .利用完全平方公式计算:(1) 20082; ( 2) 782 .110 .先化简,再求值:(2x - 1) (x+2)-( x -2) 2-( x+2) 2,其中 x=-311利用公式计算:196212某正方形边长a cm ,若把这个正方形的边长减小1 1 分别求a 2+2 , (a - ) 2的值a a15.为了扩大绿化面积,若将一个正方形花坛的边长增加 3米,?则它的面积就增加 39平方米,求这个正方3 cm ,则面积减少了多少?13.已知 x+y=1 , 求1 x 2+xy+丄y 2的值. 2 2114.已知 a+ =5 a形花坛的边长.-时,找不到计算器,去向小华借,小华看了看题说根本2 不需要用计算器,而且很快说岀了答案•你知道他是怎么做的吗?17.已知:a + b=- 5,ab = - 6,求a2+ b2.18利用公式计算:992- 119.计算(1) (ab 1)( ab 1) ; (2) ( 2x 3)( 2x 3);(3) 1022; (4) 992.(5)(a b1)(a b 1) ; (6) (m 2n p)2.20. 一个正方形的边长增加3cm,它的面积就增加239cm ,这个正方形的边长是多少?21.当a1,b 1时,求(3a 2b)(3a22b) (a 2b)2的值16.小明在计算2200920082 2 20092007 2009200922.求证:当n为整数时,两个连续奇数的平方差2 2(2n 1) (2n 1)是8的倍数23. 观察下列等式:2 2 2 .2 2 2 2 21 0 1 ,2 1 3,3 2 5 ,4 3 7,请用含自然数n的等式表示这种规律为:____________________ .2 224. 已知4x Mxy 9y是一个完全平方式,求M的值.25.2005年12月1日是星期四,请问:再过2005 2天的后一天是星期几?答案1. B2. C 点拨:(x+y) 2=x2+2xy+y2,所以 A 不正确;(x—y2=x2- 2xy+y2,所以 B 不正确;(—x+y) 2= (-x) 2+2 (-x) y+y2=x2—2xy+y2,所以C正确;(—x —y) 2= (x+y) 2=x2+2xy+y2,所以 D 也不正确,故选C.3. D4. D 点拨:因为(x-4) 2=2—8x+16,所以若(x-4) 2=x2-8x+m2成立,则m2=16,从而得m=±4,故选D.__ 、5. x2+4xy+4y2点拨:(—x —2y) 2=[ —(x+2y) ] 2= (x+2y ) 2=x2+4xy+4y2.6. 48xy 点拨:B= (3x+4y) 2—( 3x —4y) 2=9x2+24xy+16y2—( 9x2—24xy+16y2) ?=?9x2+?24xy+16y 2—92 +24xy—16y2=48xy .7. 13 点拨:因为a—b=3,ab=2,所以a F+b2= (a—b) 2+2ab=32+2X2=9+4=13.3 1 2 3 28. —x; — y ; —a—4b;16b22 9 4三、9. 解:(1) 20082= (2000+8) 2 =20002+2 X2000 >8+8 2=4000000+32000+64=4032064;(2)782= ( 80—2) 2=802—2X80X2+22=6400 —320+4=6084.10. 解:(2x—1) (x+2 ) — ( x—2) 2—( x+2) 2=2x2+4x —x —2—( x2—4x+4 ) — ( x2+4x+4 )=2x 2+3x —2 —x2+4x —4 —x2—4x —4=3x —10 .1 1当x=—时,原式=3X(—-) —10=—1—10=—11.3 311思路:196接近整数200,故196= 200 —4,则此题可化为(200 —4 ) 2,利用完全平方公式计算.解:1962①(200— 4) 22002-2X 200 X 4 + 42 =40000 — 1600+ 16 = 38416说明:1 .可转化为完全平方的形式的数必须较接近一个整数才较易进行计算. 12. 思路:先分别表示出新旧正方形的边长,再根据“正方形面积=边长X 边长” ,表示出两个正方形的面积,用“大-小”即可得出所求.计算的关键在完全平方式的展开.解:原正方形面积:a 2 现正方形面积:(a — 3) 2面积减少了 a 2—( a — 3) 2 = a 2—( a 2 — 6a + 9)= a 2— a 2 + 6a — 9=( 6a — 9) (cm 2) 答:面积减少了( 6a — 9) cm 2. 13. 解:因为 x+y=1,所以(x+y ) 2=1,即 x 2+2xy+y 2=1.11 1 1 1 所以一 x 2+xy+— y 2= — (x 2+2xy+y 2) =— X =— .22 222点拨:通过平方将已知条件转化为完全平方公式,从而巧妙求值.1 1 1 所以(a —) 2=a 2+ 2 — 2a- =23 — 2=21.aaa点拨:注意公式的一些变形形式,例如: a F +b 2= (a+b ) 2 — 2ab, a 2+b 2= ( a — b )2+2ab , (a+b )2=( a — b ) 2+4ab , ( a — b ) 2=(a+b ) 2 — 4ab 等等.15. 解:设这个正方形花坛的边长为 x 米,依题意列方程得,(x+3 ) 2 — x 2=39, ?即 x 2+6x+9 — x 2=39, 6x=30, x=5. 答:这个正方形花坛的边长为 5米.点拨:适当引进未知数,?根据题中的相等关系得到方程,解方程即可. 16. 解:知道,做法如下:______ 200920082 ______ _________ 200920082 ___________ 200920072200920092 2 (20092008 1)2(20092008 1)2 22_____________________ 20092008 200920082 2 200920081 200920082 ____________2 20092008 1 2200920082 12 20092008^ 2点拨:由 200920072= (20092008 — 1) 2,200920092= ( 20092008+1) 2,运用完全平方公式化简即可.17. 点拨:同时存在a + b ,ab, a 2+ b 2的公式为完全平方公式(a + b ) 2 = a 2 +2ab + b 2,将题目中所给条件分别看作整体,代入公 式即可.注意:1.不要分别求出 a 和b ,运算繁琐.n.若已知a +b (或a — b), ab , a 2+ b 2中的二者,都可利用完全平方公式求出第三者.解:a 2+ b 2 =( a + b ) 2 — 2ab14. 因为 a+^=5,所以 a 2+4 =a1 1(a+ ) 2 — 2 a •=52 —2=23,aa当 a + b = — 5, ab =— 6 时原式=(—5) 2 —2 X(— 6)= 25 + 12 = 37.18. 点拨:可分别用完全平方公式或平方差公式两种方法得到相同的答案. 19. 【点拨】(1)符合平方差公式的特征,只要将 ab 看成是a , 1看成是b 来计算.( 2)利用加法交换律将原式变形为 ( 32x)( 3 2x) , 然后运用平方差公式计算 .22(3) 可将 1022改写为 (1002) ,利用两数和的平方公式进行简便运算 .22(4) 可将 99 改写为 (100 1) ,利用两数差的平方公式进行简便运算 . 解:(1) (ab 1)(ab 1) =(ab)2 1 a 2b 21;(2)( 2x 3)(2x 3)= ( 3 2x)( 3 2x) =( 3)2(2x)2 9 4x 2;(3)1022 = (100 2) 2 =100 2 2 100 2 2210000 400 4 10404 ; (4)992 =(100 1) 2=10022 100 1 1 10000 200 1 9801.【点拨】(5,6)两个因式中都含有三项,把三项看成是两项,符号相同的看作是一项,符号相反的看作是一项,运用公式 计算,本题可将 (a b) 看作是一项 .先将三项看成是两项,用完全平方公式,然后再用完全平方公式计算解:(5) (a b 1)(a b 1) =[(a b) 1][( a b) 1] (a b)2 1 a 2 2ab b 21;( 6) (m 2np)2=[(m 2n) p]2 (m 2n)2 2(m2n) p2p 22=m4mn 224n 2mp 4np p .【点评 】 1. 在运用平方差公式时 , 应分清两个因式中是不是有一项完全相同, 有一项互为相反数 , 这样才可以用平方差公式, 否则不能用; 2. 完全平方公式就是求一个二项式的平方,其结果是一个完全平方式,两数和或差的平方,等于这两个数的平方2 2 2 2 2 2和,加上或减去这两个数乘积的 2倍,在计算时不要发生:(a b) a b 或(a b) a b 这样的错误; 3.当因式中含有三项或三项以上时,要适当的分组,看成是两项,用平方差公式或完全平方公式. 20.【点拨】如果设原正方形的边长为 xcm,根据题意和正方形的面积公式可列出方程求解 . 解:设原正方形的边长为xcm,则 (x 3)2 x 239即 x 2 6x 9 x 2 39,解得 X=5.答:这个正方形的边长是 5cm . 21.【点拨】先用乘法公式计算,去括号、合并同类项后,再将 a 、b 的值代入计算出结果.2 2 2 2 2解: (3a 2b)(3a 2b) (a 2b)2 9a 2 4b 2 (a 2 4ab 4b 2)=9a 24b 2 a 24ab4b 2 8a 24ab 8b 2;当a 1,b 1时,(3a 2b)(3a 2b) (a 2b)28a 22 24ab 8b =8(-1)4( 1) 18=-4【点拨】运用完全平方公式将 (2n1)2(2n 21)化简,看所得的结果是否是8整数倍.2证明:(2n 1)(2n 1)2=4n 24n 21 (4n 4n 1)= 4n24n 1 4n 24n 1 8n ,又T n 为整数,二8n 也为整数且是8的倍数.23. 【点拨】本题是属于阅读理解,探索规律的题目,认真观察、分析已知的等式的特点,从中总结出规律 .同学们相互研讨交流一下.答案为:n2(n 1)2 2n 1(n 1且n 为整数).24. 【点拨】已知条件是一个二次三项式,且是一个完全平方式, x 2 与 y 2项的系数分别为4和9,所以这个完全平方式应该是2(2x 3y),由完全平方公式就可以求出 M .2 2 2解:根据(2x 3y) =4x 12xy 9y 得: M 12.二M 12答:M 的值是土 12.2 225. 【点拨】因为每个星期都有7天,要求再过2005天的后一天是星期几,可以想办法先求出 2005是7的多少倍数还余几天.解: 20052 = (7 286 3)2 (7 286)22 (7 286)3 9=(7 286)2(6 286) 7 7 2.2显然2005年12月1日是星期四,再过2005 天的后一天实际上要求星期四再过两天后的一天是星期日。
8.5乘法公式(完全平方公式)教学设计

8.5乘法公式(完全平方公式)教学设计七年级下册冀教版p89-90教学目标:1、会推导完全平方公式,理解公式的几何意义,体会数形结合的思想方法.2、掌握公式,能用公式进行有关计算,提高学生的运算能力.教学重点难点:1、完全平方公式的推导和应用.2、理解完全平方公式的结构特征,灵活应用公式.教学设计:环节一:探究完全平方公式一.自主探究:计算下列各式,你能发现什么规律?1.()()22++m m = ;3.()()22--m m = __ ;2.()()y x y x ++= ; 4.()()y x y x --22= . 发现规律:二.思考:你能根据图1和图2中的面积说明完全平方公式吗?图1 图2图1:将边长为a+b 的正方形分割成四部分,请用不同的方法分别表示出这个正方形的面积三.问题探究:(1)公式的左边是什么?(2)公式的右边是什么形式?(3)公式的右边有几项?( a + b )2= a 2 + 2ab + b 2归纳总结:你发现“完全平方公式”具有怎样的结构特征呢?“完全平方公式”的特征:________________________________________________________ ______________________________________________________________________________.环节二:探究完全平方公式的运用例1.应用完全平方公式计算:(1).()2y x +-= ;(2).()2y x --= ; (3).()232b a += ;(4).21⎪⎭⎫ ⎝⎛-x x = ; (5).()234y x -= ;(6).()223+x = ;(7).()2n m b a += ;(8).()2c b a ++ = .你对完全平方公式有更深的理解吗?例2.应用完全平方公式计算:(1) 2102; (2)29.99.思考:()2b a +与()2b a --相等吗? ()2b a -与()2a b -相等吗? ()2b a -与22b a -相等吗?为什么?例3. 若,6,5-==+ab b a 求,22b a + 22b ab a +- .基础练习1:课本P90练习1、2.拓展练习:1. =+⨯⨯-2220092009200822008_________.2. 若922++kx x 是一个完全平方式,则=k _________.3. 若228k x x ++是一个完全平方式,则=k _________.4. 请添加一项___________,使得42+k 是完全平方式.5. 已知4,8=-=+y x y x ,求xy .环节三:课堂小结 在这节课中你记住完全平方公式了吗?能给出完全平方公式的几何解释了吗?在运用公式的过程中我们要注意些什么呢?环节四:课后作业 课本P91习题AB 组石家庄市第八十一中学 邵亚坤。
完全平方公式教案精品

完全平方公式教案精品《完全平方公式》教案篇一一、教材分析本节课是继乘法公式的内容的一种升华,起着承上启下的作用。
在内容上是由多项式乘多项式而得到的,同时又为下一节课打下了基础,环环相扣,层层递进。
通过这节课的学习,可以培养学生探索与归纳能力,体会到从简单到复杂,从特殊到一般和转化等重要的思想方法。
二、学情分析多数学生的抽象思维能力、逻辑思维能力、数学化能力有限,理解完全平方公式的几何解释、推导过程、结构特点有一定困难。
所以中应尽可能多地让学生动手操作,突出完全平方公式的探索过程,自主探索出完全平方公式的基本形式,并用语言表述其结构特征,进一步发展学生的合情推理能力、合作交流能力和数学化能力。
三、目标知识与技能利用添括号法则灵活应用乘法公式。
过程与方法利用去括号法则得到添括号法则,培养学生的逆向思维能力。
情感态度与价值观鼓励学生算法多样化,培养学生多方位思考问题的习惯,提高学生的合作交流意识和创新精神。
四、教学重点难点教学重点理解添括号法则,进一步熟悉乘法公式的合理利用。
教学难点在多项式与多项式的乘法中适当添括号达到应用公式的目的。
五、教学方法思考分析、归纳总结、练习、应用拓展等环节。
六、教学过程设计师生活动设计意图一.提出问题,创设情境请同学们完成下列运算并回忆去括号法则.(1)4+(5+2)(2)4-(5+2)(3)a+(b+c)(4)a-(b-c)去括号法则:去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不改变符合;如果括号前是负号,去掉括号后,括号里的各项都改变符合.也就是说,遇“加”不变,遇“减”都变.二、探究新知把上述四个等式的左右两边反过来,又会得到什么结果呢?(1) 4+5+2=4+(5+2)(2)4-5-2=4-(5+2)(3) a+b+c =a+(b+c)(4)a-b+c=a-(b-c)左边没括号,右边有括号,也就是添了括号,•同学们可不可以总结出添括号法则来呢?(学生分组讨论,最后总结)添括号法则是:添括号时,如果括号前面是正号,括到括号里的。
8.3《平方差公式与完全平方公式》典型例题精析

8.3 完全平方公式与平方差公式1.了解乘法公式的几何背景,掌握公式的结构特征,并能熟练运用公式进行简单的计算.2.感受生活中两个乘法公式存在的意义,养成“观察—归纳—概括”的数学能力,体会数形结合的思想方法,提高学习数学的兴趣和运用知识解决问题的能力,进一步增强符号感和推理能力.1.完全平方公式(1)完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.上式用语言叙述为:两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍.(2)完全平方公式的证明:(a±b)2=(a±b)(a±b)=a2±ab±ab+b2(多项式乘多项式)=a2±2ab+b2(合并同类项).(3)完全平方公式的特点:①左边是一个二项式的完全平方,右边是一个二次三项式,其中有两项是公式左边二项式中每一项的平方,另一项是左边二项式中两项乘积的2倍.可简单概括为“首平方,尾平方,积的2倍夹中央”.②公式中的a,b可以是单项式,也可以是多项式.③对于符合两数和(或差)的平方的乘法,均可用上述公式计算.【例1-1】用完全平方公式计算(1)(x+2y)2;(2)(2a-5)2;(3)(-2s+t)2;(4)(-3x-4y)2;(5)(2x+y-3z)2.分析:第(1)、(2)两题可直接用和、差平方公式计算;第(3)题可先把它变成(t-2s)2,然后再计算,也可以把-2s看成一项,用和平方公式计算;第(4)题可看成-3x与4y差的平方,也可以看成-3x与-4y和的平方;(5)可把2x+y看成一项,用差平方公式计算,然后再用和平方公式计算,也可以把它看成2x与y-3z的和平方,再用差平方公式计算.解:(1)(x +2y )2=x 2+2·x ·2y +(2y )2=x 2+4xy +4y 2;(2)(2a -5)2=(2a )2-2·2a ·5+52=4a 2-20a +25;(3)(-2s +t )2=(t -2s )2=t 2-2·t ·2s +(2s )2=t 2-4ts +4s 2;(4)(-3x -4y )2=(-3x )2-2·(-3x )·4y +(4y )2=9x 2+24xy +16y 2;(5)(2x +y -3z )2=[2x +(y -3z )]2=(2x )2+2·2x ·(y -3z )+(y -3z )2=4x 2+4xy -12xz +y 2-2·y ·3z +(3z )2=4x 2+y 2+9z 2+4xy -12xz -6yz .(1)千万不要与公式(ab )2=a 2b 2混淆,发生类似(a ±b )2=a 2±b 2的错误;(2)切勿把“乘积项”2ab 中的2漏掉;(3)计算时,应先观察所给题目的特点是否符合公式的条件,如符合,则可以直接套用公式进行计算;如不符合,应先变形,使其具备公式的结构特点,再利用公式进行计算,如变形后仍不具备公式的结构特点,则应运用乘法法则进行计算.此外,在运用公式时要灵活,如第(4)题,由于(-3x -4y )2与(3x +4y )2是相等关系,故可以把(-3x -4y )2转化为(3x +4y )2,再进行计算,再如(5)题,也有许多不同的方法.(4)完全平方公式的几何解释.如图是对(a +b )2=a 2+2ab +b 2几何意义的阐释.大正方形的面积可以表示为(a +b )2,也可以表示为S =S Ⅰ+S Ⅱ+S Ⅲ+S Ⅳ,又S Ⅲ,SⅠ,S Ⅳ,S Ⅱ分别等于a 2,ab ,ab ,b 2,所以S =a 2+ab +ab +b 2=a 2+2ab +b 2.从而验证了完全平方公式(a +b )2=a 2+2ab +b 2.如图是对(a-b)2=a2-2ab+b2几何意义的阐释.正方形Ⅰ的面积可以表示为(a-b)2,也可以表示为SⅠ=S大-SⅡ-SⅣ+SⅢ,又S大,SⅡ,SⅢ,SⅣ分别等于a2,ab,b2,ab,所以SⅠ=a2-ab-ab+b2=a2-2ab+b2.从而验证了完全平方公式(a-b)2=a2-2ab+b2.【例1-2】下图是四张全等的矩形纸片拼成的图形,请利用图中的空白部分面积的不同表示方法,写出一个关于a,b的恒等式:__________________.解析:根据图中的面积写一个恒等式,需要用两种方法表示空白正方形的面积.首先观察大正方形是由四个矩形和一个空白正方形组成,所以空白正方形的面积等于大正方形的面积减去四个矩形的面积,即(a+b)2-4ab,空白正方形的面积也等于它的边长的平方,即(a-b)2,根据面积相等有(a+b)2-4ab=(a-b)2.答案:(a+b)2-4ab=(a-b)22.平方差公式(1)平方差公式:(a+b)(a-b)=a2-b2.上式用语言叙述为:两个数的和与这两个数的差的积,等于这两个数的平方差.(2)平方差公式的证明:(a+b)(a-b)=a2-ab+ab+b2(多项式乘多项式)=a2-b2(合并同类项).(3)平方差公式的特点:①左边是两个二项式相乘,这两项中有一项完全相同,另一项互为相反数;②右边是乘式中两项的平方差(相同项的平方减去互为相反数项的平方);③公式中的a和b可以是具体的数,也可以是单项式或多项式.利用此公式进行乘法计算时,应仔细辨认题目是否符合公式特点,不符合平方差公式形式的两个二项式相乘,不能用平方差公式.如(a+b)(a-2b)不能用平方差公式计算.【例2-1】计算:(1)(3x+2y)(3x-2y);(2)(-m+n)(-m-n);(3)(-2x-3)(2x-3).分析:(1)本题符合平方差公式的结构特征,其中3x对应“a”,2y对应“b”;(2)题中相同项为-m,互为相反数的项为n与-n,故本题也符合平方差公式的结构特征;(3)利用加法交换律将原式变形为(-3+2x)(-3-2x),然后运用平方差公式计算.解:(1)(3x+2y)(3x-2y)=(3x)2-(2y)2=9x2-4y2.(2)(-m+n)(-m-n)=(-m)2-n2.(3)(-2x-3)(2x-3)=(-3+2x)(-3-2x)=(-3)2-(2x)2=9-4x2.利用公式计算,关键是分清哪一项相当于公式中的a,哪一项相当于公式中的b,通常情况下,为防止出错,利用公式前把相同项放在前面,互为相反数的项放在后面,然后套用公式.(4)平方差公式的几何解释如图,阴影部分的面积可以看成是大正方形的面积减去小正方形的面积,即a2-b2;若把小长方形Ⅲ旋转到小长方形Ⅳ的位置,则此时的阴影部分的面积又可以看成SⅠ+SⅢ=SⅠ+SⅣ=(a+b)(a-b).从而验证了平方差公式(a+b)(a-b)=a2-b2.【例2-2】下图由边长为a和b的两个正方形组成,通过用不同的方法,计算图中阴影部分的面积,可以验证的一个乘法公式是____________________.分析:要表示阴影部分的面积,可以从两个方面出发:一是观察阴影部分是由边长为a的正方形除去边长为b的正方形得到的,所以它的面积等于a2-b2;二是阴影部分是由两个直角梯形构成的,所以它的面积又等于两个梯形的面积之和.这两个梯形的面积都等于12 (b+a)(a-b),所以梯形的面积和是(a+b)(a-b),根据阴影部分的面积不变,得(a+b)(a-b)=a2-b2.因此验证的一个乘法公式是(a+b)(a-b)=a2-b2.答案:(a+b)(a-b)=a2-b23.运用乘法公式简便计算平方差公式、完全平方公式不但是研究整式运算的基础,而且在许多的数字运算中也有广泛地运用.不少数字计算题看似与平方差公式、完全平方公式无关,但若根据数字的结构特点,灵活巧妙地运用平方差公式、完全平方公式,常可以使运算变繁为简,化难为易.解答此类题,关键是分析数的特点,看能否将数改写成两数和的形式及两数差的形式,若改写成两数和的形式乘以两数差的形式,则用平方差公式;若改写成两数和的平方形式或两数差的平方形式,则用完全平方公式.【例3】计算:(1)2 0132-2 014×2 012;(2)1032;(3)1982.分析:(1)2 014=2 013+1,2 012=2 013-1,正好符合平方差公式,可利用平方差公式进行简便运算;(2)可将1032改写为(100+3)2,利用两数和的平方公式进行简便运算;(3)可将1982改写为(200-2)2,利用两数差的平方公式进行简便运算.解:(1)2 0132-2 014×2 012=2 0132-(2 013+1)×(2 013-1)=2 0132-(2 0132-12)=2 0132-2 0132+1=1.(2)1032=(100+3)2=1002+2×100×3+32=10 000+600+9=10 613.(3)1982=(200-2)2=2002-2×200×2+22=40 000-800+4=39 204.4.利用乘法公式化简求值求代数式的值时,一般情况是先化简,再把字母的值代入化简后的式子中求值.在化简的过程中,合理地利用乘法公式能使整式的运算过程变得简单.在代数式化简过程中,用到平方差公式及完全平方公式时,要特别注意应用公式的准确性.【例4】先化简,再求值:5(m +n )(m -n )-2(m +n )2-3(m -n )2,其中m =-2,n =15. 解:5(m +n )(m -n )-2(m +n )2-3(m -n )2=5(m 2-n 2)-2(m 2+2mn +n 2)-3(m 2-2mn +n 2)=5m 2-5n 2-2m 2-4mn -2n 2-3m 2+6mn -3n 2=-10n 2+2mn .当m =-2,n =15时,原式=-10n 2+2mn =-10×⎝ ⎛⎭⎪⎫152+2×(-2)×15=-65. 5.乘法公式的运用技巧一些多项式的乘法或计算几个有理数的积时,表面上看起来不能利用乘法公式,实际上经过简单的变形后,就能直接运用乘法公式进行计算了.有些题目往往可用不同的公式来解,此时要选择最恰当的公式以使计算更简便.在运用平方差公式时,注意以下几种常见的变化形式:①位置变化:(b +a )(-b +a )=a 2-b 2.②符号变化:(-a +b )(-a -b )=(-a )2-b 2=a 2-b 2.③系数变化:(0.5a +3b )(0.5a -3b )=(0.5a )2-(3b )2.④指数变化:(a 2+b 2)(a 2-b 2)=(a2)2-(b2)2=a4-b4.⑤增项变化:(a-b-c)(a-b+c)=(a-b)2-c2,(a+b-c)(a-b+c)=a2-(b-c)2.⑥增因式变化:(a+b)(a-b)(-a-b)(-a+b)=(a2-b2)(a2-b2)=(a2-b2)2.⑦连用公式变化:(a-b)(a+b)(a2+b2)(a4+b4)=a8-b8.【例5-1】计算:(1)(a+b+1)(a+b-1);(2)(m-2n+p)2;(3)(2x-3y)2(2x+3y)2.解:(1)(a+b+1)(a+b-1)=[(a+b)+1][(a+b)-1]=(a+b)2-1=a2+2ab+b2-1.(2)(m-2n+p)2=[(m-2n)+p]2=(m-2n)2+2·(m-2n)·p+p2=m2-4mn+4n2+2mp-4np+p2.(3)(2x-3y)2(2x+3y)2=[(2x-3y)(2x+3y)]2=(4x2-9y2)2=(4x2)2-2×4x2×9y2+(9y2)2=16x4-72x2y2+81y4.在运用平方差公式时,应分清两个因式是否是两项之和与差的形式,符合形式才可以用平方差公式,否则不能用;完全平方公式就是求一个二项式的平方,其结果是一个三项式,在计算时不要发生:(a+b)2=a2+b2或(a-b)2=a2-b2这样的错误;当因式中含有三项或三项以上时,要适当的分组,看成是两项,从而应用平方差公式或完全平方公式.【例5-2】计算:(2+1)(22+1)(24+1)(28+1)…(22n+1)的值.分析:为了能便于运用平方差公式,观察到待求式中都是和的形式,没有差的形式,可设法构造出差的因数,于是可乘以(2-1),这样就可巧妙地运用平方差公式了.解:(2+1)(22+1)(24+1)(28+1)…(22n+1)=(2-1)(2+1)(22+1)(24+1)(28+1)…(22n+1)=(22-1)(22+1)(24+1)(28+1)…(22n+1)=(24-1)(24+1)(28+1)…(22n+1)=…=(22n-1)(22n+1)=24n-1.6.乘法公式的实际应用在解决生活中的实际问题时,经常把其中的一个量或几个量先用字母表示,然后列出相关式子,进而化简,这往往涉及到整式的运算.解题时,灵活运用乘法公式,往往能事半功倍,使问题得到快速解答.【例6】一个正方形的边长增加3 cm,它的面积就增加39 cm2,这个正方形的边长是多少?分析:如果设原正方形的边长为x cm,根据题意和正方形的面积公式可列出方程(x+3)2=x2+39,求解即可.解:设原正方形的边长为x cm,则(x+3)2=x2+39,即x2+6x+9=x2+39,解得x=5(cm).故这个正方形的边长是5 cm.7.完全平方公式的综合运用学习乘法公式应注意掌握公式的特征,认清公式中的“两数”,注意为使用公式创造条件.(1)完全平方公式变形后可得到以下一些新公式:①a 2+b 2=(a +b )2-2ab ;②a 2+b 2=(a -b )2+2ab ;③(a +b )2=(a -b )2+4ab ;④(a -b )2=(a +b )2-4ab ;⑤(a +b )2+(a -b )2=2(a 2+b 2);⑥(a +b )2-(a -b )2=4ab 等.在公式(a ±b )2=a 2±2ab +b 2中,如果把a +b ,ab 和a 2+b 2分别看做一个整体,则知道了其中两个就可以求第三个.(2)注意公式的逆用不仅会熟练地正用公式,而且也要求会逆用公式,乘法公式均可逆用,特别是完全平方公式的逆用——a 2+2ab +b 2=(a +b )2,a 2-2ab +b 2=(a -b )2.【例7-1】已知a 2+b 2+4a -2b +5=0,则a +b a -b的值是__________.解析:原等式可化为(a 2+4a +4)+(b 2-2b +1)=0,即(a +2)2+(b -1)2=0,根据非负数的特点知a +2=0且b -1=0,从而可知a =-2且b =1.然后将其代入求a +b a -b的值即可. 答案:13【例7-2】已知a +b =2,ab =1,求a 2+b 2的值.分析:利用完全平方公式有(a +b )2=a 2+2ab +b 2,把2ab 移到等式的左边,可得(a +b )2-2ab =a 2+b 2,然后代入求值即可.解:∵(a +b )2=a 2+2ab +b 2,∴a 2+b 2=(a +b )2-2aB .∵a +b =2,ab =1,∴a 2+b 2=22-2×1=2.涉及两数和或两数差及其乘积的问题,就要联想到完全平方公式.本题也可从条件出发解答,如因为a+b=2,所以(a+b)2=22,即a2+2ab+b2=4.把ab=1代入,得a2+2×1+b2=4,于是可得a2+b2=4-2=2.。
乘法公式(完全平方公式)

04 完全平方公式应用举例
一元二次方程求解
完全平方公式可以帮助我们将一 元二次方程化为完全平方的形式,
从而更容易地求解。
例如,对于方程 $x^2 + 2x - 3 = 0$,我们可以将其化为
$(x+1)^2 - 4 = 0$,进而求解 得到 $x = -3$ 或 $x = 1$。
通过完全平方公式,我们还可以 判断一元二次方程是否有实数解,
03
利用完全平方公式解二元一次方程组,如 $begin{cases} x + y = 5 xy = 6 end{cases}$ 可化为 $(x - 3)(y - 2) = 0$,解得 $begin{cases} x = 3 y = 2 end{cases}$ 或 $begin{cases} x = 2 y = 3 end{cases}$。
立方和公式
$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$。
立方差公式
$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$。
高阶乘法公式的应用
在处理涉及高次幂的代数问题时,高阶乘法公式能够提供简化的计算方法。同时,在解决一些复杂的几 何问题时,高阶乘法公式也能发挥重要作用。
完全平方公式的应用
在解决涉及一个二项式与自身相乘的问题时,可以直接套用 完全平方公式进行计算,如求解平方差、计算方差等。同时 ,在解决一些最优化问题时,完全平方公式也可以用于构造 目标函数或约束条件。
06 总结回顾与拓展延伸
关键知识点总结
1 2
完全平方公式的基本形式
$(a+b)^2 = a^2 + 2ab + b^2$ 和 $(a-b)^2 = a^2 - 2ab + b^2$。
完全平方公式教学设计(原稿)

【教材分析】1.地位、作用:完全平方公式是初中代数的一个重要知识点,是在整式乘法基础上的拓展。
从多项式乘法到完全平方公式是从一般到特殊的认知过程,而且公式的推导是初中代数中运用推理方法进行代数式恒等变形的开端,通过对公式的学习可以简化某些整式的运算,且在以后学习因式分解、解一元二次方程、配方法、函数及图形面积计算中都有举足轻重的作用。
2.重点、难点:重点:体会公式的发现和推导过程,理解公式的本质,会运用公式进行简单的计算。
难点:公式的结构特点及对公式中字母所表示广泛的含义的理解,公式的正确运用。
难点突破:通过引导学生思考、讨论、交流和归纳总结来突破难点。
【学情分析】学生已经具备了多项式乘法的基础,因而对于完全平方公式的得出会很容易理解;对于公式的几何意义的理解,学生可能会有一定的困难,教学时可以利用图形使学生获得直观感知,再通过让学生思考、讨论、交流来得到;学生已经具备了一定的分析和观察能力,教学时应该通过引导学生观察、分析公式来掌握公式的结构特点,从而正确运用公式。
【设计理念】本节课的设计以学生为主体,让学生通过自主学习,积极思考、合作交流等活动,主动获取知识;强调使学生积极主动地参与到课堂教学中来,充分经历知识的生成、发展与运用的过程,在这个过程中,掌握知识,形成技能、发展思维;在整个教学活动中,学生是学习的主人,教师是学生学习的组织者和引导者。
【教学目标】1、知识与技能:掌握公式的推导过程,了解公式的几何意义,会应用公式进行简单的计算。
2、过程与方法:经历完全平方公式的探究过程,发展观察、交流、归纳、验证的能力,培养发现能力、求简意识、应用意识、解决问题的能力和创新能力,发展推理能力和有条理的表达能力,体会数形结合的思想。
3、情感、态度、价值观:体会数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立学习自信心。
【教学流程】一、回顾旧知、引入新知运用多项式的乘法法则计算:(1)(a+b)2, (2) (a-b)2 (设计理念:通过回顾多项式乘法,继而运用法则推导公式,使学生温故而知新,培养学生的良好的学习习惯和逻辑推理能力)课题:完全平方公式:(a+b)2=a2+2ab+b2 (a-b)2=a2+2ab+b2二、合作交流、探究新知你能根据图1和图2中的面积说明完全平方公式吗?(设计意图:创设问题情境,激发学生学习兴趣,同时培养学生合作交流意识。
乘法公式:平方差与完全平方

乘法公式一、细说乘法公式1、平方差公式应用的条件:两个多项式相乘,一个多项式可以看作两数的和,另一个多项式正好是这两数的差,或两多项式中,一项相同,另一项互为相反数结果写成:(相同项)2-(相反项)2 2、完全平方公式:结果可看作对这两数分别平方,再加上它们乘积的2即写成:(a-b )2=a 2+b 2-2ab 试写出:(a-b-c )2=3、完全平方公式相关变形及推广: ○1()()222222a b a b ab a b ab +=+-=-+; ○2ab b a b a 4)()(22=--+; ○3()()()222a b a b a b -+=--=-⎡⎤⎣⎦; ○4()()()222a b a b a b --=-+=+⎡⎤⎣⎦;⑤(a-b+c-d )2 =二、下列能运用什么乘法公式:3、(b-a) (-a-b) 〈比较两项的关系: 〉∴=4、(-a-b )(a+b) 〈比较两项的关系: 〉∴=5、(-a+b )(-a-b) 〈比较两项的关系: 〉∴=6、(a+b) (-a+b) 〈比较两项的关系: 〉∴=7、(-a-b) (a-b) 〈比较两项的关系: 〉∴=8、(-a+b) (a-b) 〈比较两项的关系: 〉∴=平方差公式组题【典型例题】 9、 热身训练 (1)(21x+31y )(31y -21x )=(2)(2x -3y )( )=9y 2-4x 2 (3)(-a +51)(-a -51)=(-a -5)( )=25-a 2 (4)(x-1)(2x +1)( )=4x -1(5)(a+b+c)(a-b-c)= [ a + ( )] [ a - ( )]相同项 相反项用乘法公式运算:(7)1000110199⨯⨯ (8)2010200820092⨯-10.计算:(1)))(()2)(2(222x y y x y x y x x +-++--11.已知02,622=-+=-y x y x ,求5--y x 的值.12.解方程:()()2313154322365=⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛---+-++x x x x x13. 已知两个连续奇数的平方差为2000,则这两个连续奇数分别是多少?14、【初试锋芒】1).1.010.99⨯= 2).2221000252248-= ;3)22(2)(2)(4)x y x y x y -++=4).在下列多项式的乘法中,不能用平方差公式计算的是( )A .()()x y x y --+B .3333()()a b a b -+C .2222()()c d d c -+D .()()m n m n ---【大展身手】 15. 填空题1).若222,10x y x y -=-=则x+y= 2).2(1)(1)(1)x x x +-+= 3).(1)(2)(3)(3)x x x x +---+= 4).=⨯10199 16、选择题1).下列多项式乘法中,可以用平方差公式计算的是( ) A .()()a b a b -+- B .(2)(2)x x ++C .1133x y y x ⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭D .(2)(1)x x -+2).在下列各式中,运算结果是2236y x -的是( ) A. ()()x y x y --+-66 B. ()()x y x y -+-66 C. ()()y x y x 94-+ D. ()()x y x y ---66 17 :解答题 1 ) 计算: 2229995(2)(2)x x x-+--2) 解方程(21)(21)3(2)(2)(1)(2)12x x x x x x -+-+-=+-+完全平方公式组题【典型例题】1.课前热身训练:(1)221⎪⎭⎫ ⎝⎛+-cd (2)()23x y -+ (3)2199(4))2)(2(4)2(2y x y x y x +--- (5))12)(12(-+++y x y x2.已知()222116x m xy y -++是一个完全平方式,求m 的值.3.已知()()227,4a b a b +=-=,求22a b +和a b 的值.4. 若0132=+-a a ,求aa 1+的值.【初试锋芒】1.212a b ⎛⎫-- ⎪⎝⎭运算结果是( )A 、2214a b+B 、2214a b-C 、2214a ab b++D 、221124a ab b++2.运算结果是24221m n mn -+的是( )A 、22(1)m n -B 、22(1)m n -C 、22(1)m n --D 、22(1)m n +3.若224222)(n n m m M n m ++=+-,则M ( )A 、0B 、2m nC 、22m n -D 、24m n4.若249x Nx ++(N 为整数)是一个完全平方式,则N=( )A 、6,-6B 、12C 、6D 、12,-125.已知y x y x y x >=+=+且,7,2522,则x-y 的值等于【大展身手】 1.(35x +)2=22962525x xy y++ 2.22()()a b a b -=+3.()222a b a b +=-+ =2()a b +- 4.()2a b c -+= 4.若7,12,a b ab +==则22a ab b -+=5.要使等式()()22a b M a b -+=+成立,代数式M 应是( )A 、2abB 、4abC 、4ab -D 、2ab - 【中考真题演练】1.(2009枣庄)若3n m =+,则222426m mn n ++-的值为( )A.12B.6C.3D.02.(2009台州)若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式.....,如a b c ++就是完全对称式.下列三个代数式:①2)(b a -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( )A .①② B.①③ C . ②③ D .①②③ 3.(2009北京)已知2514x x -=,求()()()212111x x x ---++的值4.(2009十堰)已知3b a =+,2=ab ,求下列各式的值: (1)22ab b a + (2)22b a +。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乘法公式(完全平方公式)
问题1:计算下列多项式的积,你能发现什么规律?
2222(1)(p 1)(1)(p 1)________________;
(2)(m 2)___________________;
(3)(1)(1)(1)_______________;
(4)(2)____________________.p p p p m +=++=+=-=--=-=
上面几个运算都是形如2()a b ±的多项式相乘,则可得:
2()()()____________________________;a b a b a b +=++== 2()()()____________________________;a b a b a b -=--==
问题2 你能用式子表示发现的规律吗?
完全平方公式:________________________
________________________
问题3 你能用文字语言表述完全平方公式吗?
两个数的和(或差)的________,等于它们的________,加上(或减去)
它们的__________。
这两个公式叫做完全平方公式。
【归纳总结】
完全平方公式特点:
左边:两个数的_____(或_____)的______;
右边:①是____次______项式;
②有两项为两数的________;
③中间项是两数积的_____倍,且与左边乘式中间的符号____;
④公式中的字母a ,b 可以表示数,单项式和多项式.
【巩固练习】
练习 下面各式的计算是否正确?如果不正确,应当怎样改正?
(1)222();x y x y +=+ (2)222();x y x y -=-
(3)222()2;x y x xy y -=++ (4)222();x y x xy y +=++
【例题解析】
例1 运用完全平方公式计算:
(1)2(4m );n + (2)21(y );2
- 解:原式= 解:原式=
【变式练习】 (1)-=-22)2(x y x +4y 2;(2)22(1)____2t t t -+=-+;
(3)22(___1)21a a -=-+; (4)242(___2)44x x +=++
【思考辨析】
问题4:
(1)22(a )(a b)b +--与相等吗?
(2)22(a -)(b-a)b 与相等吗?
(3)222(a -)b 与a -b 相等吗?为什么?
【再探新知】
1、 现有下图所示三种规格的卡片各若干张,请你根据二次三项式
222a ab b ++,选取相应种类和数量的卡片,尝试拼成一个正方形,并讨论该正方形的代数意义:
2、 你能根据下图说明
222()2a b a ab b -=-+吗?(阴影部分
的面积)
【课堂训练】
【A 组】
1、若x 2+2(m-3)x+16是完全平方式,则m 的值等于( )
A. -5
B.7
C.-1
D. 7或-1
2、计算:
(1)2(3);3
t - (2)2(2x 3y);-+
【B 组】
3、计算:
(1)(2+y )2 +2(2y).- (2)(x+2y)(x-2y)-(x+2y)2
【总结归纳】
默写完全平方公式:
口诀——首平方,末平方,积的两倍中间放。