2.4平面向量的坐标----教案
北师大版数学必修四课件:2.4平面向量的坐标

r r r 【例1】在直角坐标系xOy中,向, c 4,分别计算出它们的坐标.
r
r
r
【审题指导】已知三向量的模以及与坐标轴的夹角,要求向 量的坐标,先将向量正交分解,把它们分解成横、纵坐标的
形式.
r r r 【规范解答】设 a a1 ,a 2 ,b b1 ,b 2 ,c c1 ,c 2 , r 则 a1 a cos45 2 2 2. 2 r 2 a 2 a sin45 2 2, 2 r 1 3 b1 b cos120 3 ( ) , 2 2 r 3 3 3 b 2 b sin120 3 , 2 2 r 3 c1 c cos 30 4 2 3, 2 r 1 c 2 c sin 30 4 ( ) 2. 2 r r r 3 3 3 因此 a 2,2 , b ( , ), c 2 3, 2 . 2 2
r
r
得6(x+1)-3(4x-2)=0,解得x=2.
r r r r 方法二:因为 a 与 4b 2a 平行,则存在常数λ,使 b
r r r r r r 即 2 1 a 4 1 b, 根据向量共线的条 a b 4b 2a , r r 件知,向量 a 与 b 共线,故x=2.
坐
标.
uuu r uuu r 【审题指导】A、B、 C 点的坐标已知,求解本题可先利用向 CA, CB CM 3CA, uuu r uur
种形式,求解时注意向量运算的平行四边形法则及三角形
法则在解题中的灵活应用.
【例2】已知 a 2,1 , b 3, 4 ,求 a b,a b,3a 4b
r
r
r
高二数学《平面向量的坐标表示》说课稿 3篇

高二数学《平面向量的坐标表示》说课稿1各位老师好:我是户县二中的李敏,今天讲的课题是《平面向量的坐标的表示》,本节课是高中数学北师大版必修4第二章第4节的内容,下面我将从四个方面对本节课的教学设计来加以说明。
一、学情分析本节课是在学生已学知识的基础上进行展开学习的,也是对以前所学知识的巩固和发展,但对学生的知识准备情况来看,学生对相关基础知识掌握情况是很好,所以在复习时要及时对学生相关知识进行提问,然后开展对本节课的巩固性复习。
而本节课学生会遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算。
二、高考的考点分析:在历年高考试题中,平面向量占有重要地位,近几年更是有所加强。
这些试题不仅平面向量的相关概念等基本知识,而且常考平面向量的运算;平面向量共线的条件;用坐标表示两个向量的夹角等知识的解题技能。
考查学生在数学学习和研究过程中知识的迁移、融会,进而考查学生的学习潜能和数学素养,为考生展现其创新意识和发挥创造能力提高广阔的空间,相关题型经常在高考试卷里出现,而且经常以选择、填空、解答题的形式出现。
三、复习目标1.会用坐标表示平面向量的加法、减法与数乘运算.2.理解用坐标表示的`平面向量共线的条件.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能用坐标表示两个向量的夹角,理解用坐标表示的平面向量垂直的条件.教学重难点的确定与突破:根据《20xx高考大纲》和对近几年高考试题的分析,我确定本节的教学重点为:平面向量的坐标表示及运算。
难点为:平面向量坐标运算与表示的理解。
我将引导学生通过复习指导,归纳概念与运算规律,模仿例题解决习题等过程来达到突破重难点。
四、说教法根据本节课是复习课,我采用了“自学、指导、练习”的教学方法,即通过对知识点、考点的复习,围绕教学目标和重难点提出一系列精心设计的问题,在教师的指导下,用做题来复习和巩固旧知识点。
五、说学法根据平时作业中的问题来看,学生会本节课遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算等方面。
高中数学北师大版2019必修第二册教案平面向量及运算的坐标表示

平面向量的坐标及其运算【教学过程】一、基础铺垫1.平面向量的坐标平面上的两个非零向量a与b,如果它们所在的直线互相垂直,我们就称向量a与b垂直,记作a⊥b.规定零向量与任意向量都垂直.如果平面向量的基底{e1,e2}中,e1⊥e2,就称这组基底为正交基底;在正交基底下向量的分解称为向量的正交分解.一般地,给定平面内两个相互垂直的单位向量e1,e2,对于平面内的向量a,如果a=x e1+y e2,则称(x,y)为向量a的坐标,记作a=(x,y).方便起见,以后谈到平面直角坐标系时,默认已经指定了与x轴及y轴的正方向同向的两→对应的个单位向量.此时,如果平面上一点A的坐标为(x,y)(通常记为A(x,y)),那么向量OA→=(x,y);反之结论也成立.坐标也为(x,y),即OA2.平面上向量的运算与坐标的关系设平面上两个向量a,b满足a=(x1,y1),b=(x2,y2),则a=b⇔x1=x2__且y1=y2;a+b=(x1+x2,y1+y2).设u,v是两个实数,那么u a+v b=(ux1+vx2,uy1+vy2),u a-v b=(ux1-vx2,uy1-vy2).如果向量a=(x,y),则|a|■名师点拨(1)向量的坐标只与起点、终点的相对位置有关,而与它们的具体位置无关.(2)当向量确定以后,向量的坐标就是唯一确定的,因此向量在平移前后,其坐标不变.3.平面直角坐标系内两点之间的向量公式与中点坐标公式设A (x 1,y 1),B (x 2,y 2)为平面直角坐标系中的两点,则AB →=(x 2-x 1,y 2-y 1); 设线段AB 中点为M (x ,y ),则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 224.向量平行的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 2y 1=x 1y 2.■名师点拨两向量的对应坐标成比例,这种形式较易记忆,而且不易出现搭配错误.二、合作探究1.平面向量的坐标表示【例1】如图,在平面直角坐标系xOy 中,已知OA =4,AB =3,∠AOx =45°,∠OAB =105°,OA→=a ,AB →=b ,四边形OABC 为平行四边形. (1)求向量a ,b 的坐标;(2)求向量BA→的坐标; (3)求点B 的坐标.【解】(1)作AM ⊥x 轴于点M ,则OM =OA ·cos 45°=4×22=22,AM =OA ·sin 45°=4×22=22, 所以A (22,22),故a =(22,22).因为∠AOC =180°-105°=75°,∠AOy =45°,所以∠COy =30°.又OC =AB =3,所以C ⎝ ⎛⎭⎪⎫-32,332, 所以AB →=OC →=⎝ ⎛⎭⎪⎫-32,332, 即b =⎝ ⎛⎭⎪⎫-32,332.(2)BA →=-AB →=⎝ ⎛⎭⎪⎫32,-332. (3)因为OB→=OA →+AB → =(22,22)+⎝ ⎛⎭⎪⎫-32,332 =⎝⎛⎭⎪⎫22-32,22+332. 所以点B 的坐标为(22-32,22+332).【规律方法】平面内求点、向量坐标的常用方法(1)求一个点的坐标:可利用已知条件,先求出该点相对应坐标原点的位置向量的坐标,该坐标就等于相应点的坐标.(2)求一个向量的坐标:首先求出这个向量的始点、终点的坐标,再运用终点坐标减去始点坐标即得该向量的坐标.2.平面向量的坐标运算【例2】(1)已知a +b =(1,3),a -b =(5,7),则a =________,b =________.(2)已知A (-2,4),B (3,-1),C (-3,-4),且CM→=3CA →,CN →=2CB →,求M ,N 及MN →的坐标.【解】(1)由a +b =(1,3),a -b =(5,7),所以2a =(1,3)+(5,7)=(6,10),所以a =(3,5),2b =(1,3)-(5,7)=(-4,-4),所以b =(-2,-2).(2)法一(待定系数法):由A (-2,4),B (3,-1),C (-3,-4),可得CA→=(-2,4)-(-3,-4)=(1,8), CB→=(3,-1)-(-3,-4)=(6,3), 所以CM→=3CA →=3(1,8)=(3,24), CN→=2CB →=2(6,3)=(12,6). 设M (x 1,y 1),N (x 2,y 2),则CM →=(x 1+3,y 1+4)=(3,24),x 1=0,y 1=20;CN →=(x 2+3,y 2+4)=(12,6),x 2=9,y 2=2,所以M (0,20),N (9,2),MN→=(9,2)-(0,20)=(9,-18). 法二(几何意义法):设点O 为坐标原点,则由CM→=3CA →,CN →=2CB →, 可得OM→-OC →=3(OA →-OC →),ON →-OC →=2(OB →-OC →), 从而OM→=3OA →-2OC →,ON →=2OB →-OC →, 所以OM→=3(-2,4)-2(-3,-4)=(0,20), ON→=2(3,-1)-(-3,-4)=(9,2), 即点M (0,20),N (9,2),故MN→=(9,2)-(0,20)=(9,-18). 【规律方法】平面向量坐标的线性运算的方法(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行.(2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的坐标运算.(3)向量的线性坐标运算可完全类比数的运算进行.3.判定直线平行、三点共线【例3】(1)已知A ,B ,C 三点共线,且A (3,-6),B (-5,2),若C 点的横坐标为6,则C 点的纵坐标为()A .-13B .9C .-9D .13(2)已知A (-1,-1),B (1,3),C (1,5),D (2,7),向量AB→与CD →平行吗?直线AB 平行于直线CD 吗?【解】(1)选C .设C (6,y ),因为AB→∥AC →, 又AB→=(-8,8),AC →=(3,y +6), 所以-8×(y +6)-3×8=0,所以y =-9.(2)因为AB→=(1-(-1),3-(-1))=(2,4), CD→=(2-1,7-5)=(1,2). 又2×2-4×1=0,所以AB→∥CD →. 又AC→=(2,6),AB →=(2,4),所以2×4-2×6≠0, 所以A ,B ,C 不共线,所以AB 与CD 不重合,所以AB ∥CD .【规律方法】向量共线的判定方法4.已知平面向量共线求参数【例4】已知a =(1,2),b =(-3,2),当k 为何值时,k a +b 与a -3b 平行?平行时它们是同向还是反向?【解】法一(共线向量定理法):k a +b =k (1,2)+(-3,2)=(k -3,2k +2),a -3b =(1,2)-3(-3,2)=(10,-4),当k a +b 与a -3b 平行时,存在唯一实数λ,使k a +b =λ(a -3b ).由(k -3,2k +2)=λ(10,-4),所以⎩⎨⎧k -3=10λ,2k +2=-4λ,解得k =λ=-13. 当k =-13时,k a +b 与a -3b 平行,这时k a +b =-13a +b =-13(a -3b ),因为λ=-13<0,所以k a +b 与a -3b 反向.法二(坐标法):由题知k a +b =(k -3,2k +2),a -3b =(10,-4),因为k a +b 与a -3b 平行,所以(k -3)×(-4)-10×(2k +2)=0,解得k =-13.此时k a +b =⎝ ⎛⎭⎪⎫-13-3,-23+2=-13(a -3b ), 所以当k =-13时,k a +b 与a -3b 平行,并且反向.【规律方法】已知平面向量共线求参数的思路(1)利用共线向量定理a =λb (b ≠0)列方程组求解.(2)利用向量平行的坐标表达式x 1y 2-x 2y 1=0直接求解.三、课堂练习1.给出下面几种说法:①相等向量的坐标相同;②平面上一个向量对应于平面上唯一的坐标;③一个坐标对应于唯一的一个向量;④平面上一个点与以原点为始点,该点为终点的向量一一对应.其中正确说法的个数是()A .1B .2C .3D .4解析:选C .由向量坐标的定义不难看出一个坐标可对应无数个相等的向量,故③错误.2.下列向量组中,能作为表示它们所在平面内所有向量的一组基底的是()A .a =(0,0),b =(2,3)B .a =(1,-3),b =(2,-6)C .a =(4,6),b =(6,9)D .a =(2,3),b =(-4,6)解析:选D .只有D 选项中两个向量不共线,可以作为表示它们所在平面内所有向量的一组基底,故选D .3.已知两点A (2,-1),B (3,1),则与AB→平行且方向相反的向量a 可以是() A .(1,-2)B .(9,3)C .(-2,4)D .(-4,-8)解析:选D .由题意,得AB→=(1,2),所以a =λAB →=(λ,2λ)(其中λ<0).符合条件的只有D 项,故选D .4.已知平行四边形OABC ,其中O 为坐标原点,若A (2,1),B (1,3),则点C 的坐标为________.解析:设C 的坐标为(x ,y ),则由已知得OC→=AB →,所以(x ,y )=(-1,2). 答案:(-1,2)5.已知点A (1,3),B (4,-1),则与向量AB→同方向的单位向量为________. 解析:AB →=(3,-4),则与AB →同方向的单位向量为AB →|AB →|=15(3,-4)=⎝ ⎛⎭⎪⎫35,-45. 答案:⎝ ⎛⎭⎪⎫35,-45。
平面向量教案3篇

平面向量教案3篇平面向量教案1一、教学目标:1. 理解平面向量的定义及相关术语;2. 掌握平面向量的基础运算和性质,如向量的加、减、数乘、模长等;3. 能够利用向量解决几何、三角学以及力学等问题。
二、教学重难点:教学重点:向量的基础运算和性质;教学难点:向量问题的解答。
三、教学方法:讲述法、举例法、实验法。
四、教学过程:1. 前置知识概括为了有利于学生对本次课程的学习,首先需要对平面向量有一定的了解。
向量是运用在三角学以及计算机科学中的一个概念,它表示一个方向和一个大小。
在二维空间中,向量通常用一个有序数对(x, y)表示,其中x和y分别表示向量在x轴和y轴上的分量。
然而,在本课程中,我们将会介绍另一种同样重要的表现向量的方式:平面向量。
2. 讲解平面向量的定义及相关术语平面向量即为有向线段,表示为 $\vec{a}$,具有大小和方向。
平面向量有以下几个重要的术语:(1)起点:向量 $\vec{a}$ 的起点是线段的始点,表示为 $A$。
(2)终点:向量 $\vec{a}$ 的终点是线段的末点,表示为 $B$。
(3)长度:向量 $\vec{a}$ 的长度等于线段 $AB$ 的长度,可以用$|\vec{a}|$表示。
(4)方向角:向量 $\vec{a}$ 的方向角是向量与$x$轴正方向的夹角,通常用 $\theta$表示。
(5)方向余弦:向量 $\vec{a}$ 的方向余弦分别是向量在$x$和$y$轴上的投影与向量长度的比值,分别用 $\cos\alpha$ 和$\cos\beta$表示。
(6)坐标表示:用有序数对 $(a_x, a_y)$ 表示向量 $\vec{a}$,其中 $a_x$ 和 $a_y$ 分别表示向量在$x$轴和$y$轴上的分量。
3. 讲解向量的基本运算及性质(1)向量的加法:设 $\vec{a}$ 和 $\vec{b}$ 为两个向量,它们的和记为 $\vec{a}+\vec{b}$,可通过作一平行四边形得到。
2.4平面向量数量积的坐标表示 课件(2课时)

b
θ
O
b同向; 当θ= 180º 时, a 与 b反向;
a b a b
a
A
当θ= 90º 时, a与 b垂直,记作 a b 。
a b
平面向量数量积的重要性质有: 设a与b都是非零向量, e是单位向量,θ 0是a与e
的夹角,θ 是a与b的夹角。
(1)e a a e a cos 0
想一想:还 有其他证明 方法吗?
△ABC是直角三角形
提示:可先计算三边长,再用勾股定理验证。
变形:在ABC中,设 AB (2,3), AC (1, k ), 且 ABC是直角三角形,求k的值。
解 : BC AC AB (1, k 3) 又ABC是直角三角形 即(2, 3) ( 1, k 3) 0 2 3( k 3) 0 11 k 3
待定系数法
分析: 可设x=(m, n),只需求m, n. 易知 m n 1 …… ① 再利用 a x (定义) a x (数量积的 坐标法)即可! 解:设所求向量为 x (m, n) ,由定义知:
2 a x a x cos 45 8 2 2 另一方面 a x ( 3 1) m ( 3 1) n
( 2)a b a b 0
( 3)当a与b 同向时a , b a b
当a与b 同向时a , b a b
特 别 地a , a a 或a a a a
(4) cos ab ab
2
2
( 5) a b a b
二、新课讲授
问题1:已知 a ( x1, y1 ),b ( x2 , y2 ), 怎样用 a, b 的坐标表示 a b 呢?请同学们看下 列问题. 设x轴上单位向量为 i ,Y轴上单位向量为 请计算下列式子: ① i i =
必修4-2.4 平面向量的坐标

Q
c OR OR RP 2 3i 2 j 所以c (2 3, 2) .
b
60°
j a
45°
P x c R
O
i
30°
平面向量线性运算可以用坐标表示,那么一个向量 的坐标与其起点坐标和终点坐标有什么关系?
y
如图,已知A( x1,y1 ),B( x2,y2 ),则有 AB OB OA ( x2,y2 ) ( x1,y1 ) ( x2 x1,y2 y1 ) .
解 依题意,得 AB (4, 5) (k, 12) (4 k, 7) , BC (10,k ) (4, 5) (6,k 5) .
要使A,B,C三点共线,只需AB , BC共线, 根据向量平行的坐标表 示,有(4 k )(k 5) 6 (7) 0 .
北师版必修4第二章 平面向量
4 平面向量的坐标
1.知识与技能 (1)掌握平面向量的正交分解及其坐标表示; (2)会用坐标表示平面向量的加法、减法以及数乘向量运算; (3)理解用坐标表示的平面向量共线的条件. 2.过程与方法 通过将基底特殊化,使向量的表示形式统一的学习过程,学 习研究和处理问题的方法. 3.情感、态度与价值观 体会由一般到特殊的知识建构,数形结合的运用.
b
60°
j a
45°
P x c R
O
i
30°
解 设OP a, OQ b, OR c,并设P( x1,y1 ),Q( x2,y2 ),R( x3,y3 ).
【高教版中职教材—数学(基础模块)下册电子教案课程】7

【高教版中职教材—数学(基础模块)下册电子教案课程】平面向量的坐标表示【教学目标】知识目标:(1)了解向量坐标的概念,了解向量加法、减法及数乘向量运算的坐标表示;(2)了解两个向量平行的充要条件的坐标形式.能力目标:培养学生应用向量知识解决问题的能力.【教学重点】向量线性运算的坐标表示及运算法则.【教学难点】向量的坐标的概念.采用数形结合的方法进行教学是突破难点的关键.【教学设计】向量只有“模”与“方向”两个要素,为了研究方便,我们首先将向量的起点放置在坐标原点(一般称为位置向量).设x轴的单位向量为i,轴的单位向量为j.如果点A的坐标为(x,y),则i j,=+OA x y将有序实数对(x,y)叫做向量OA的坐标.记作OA=(x,y).例1是关于“向量坐标概念”的知识巩固性例题.要强调此时起点的位置.让学生认识到,当向量的起点为坐标原点时,其终点的坐标就是向量的坐标.例2是关于“向量线性运算的坐标表示”的知识巩固性例题.要强调与公式的对应.在研究起点为坐标原点的向量的基础上,利用向量加法的三角形法则,介绍起点在任意位置的向量的坐标表示,向量的坐标等于原点到终点的向量的坐标减去原点到起点的向量的坐标,由此得到公式().数值上可以简单记为:终点的坐标减去起点的坐标.例3是关于“起点在任意位置的向量的坐标表示”的巩固性例题.要强调“终点的坐标减去起点的坐标”.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程行为 行为 意图 间 *揭示课题平面向量的坐标表示*创设情境 兴趣导入 【观察】设平面直角坐标系中,x 轴的单位向量为i , y 轴的单位向量为j ,OA 为从原点出发的向量,点A 的坐标为(2,3)(图7-17).则图7-172OM =i ,3ON =j .由平行四边形法则知23OA OM ON =+=+i j .【说明】可以看到,从原点出发的向量,其坐标在数值上与向量终点的坐标是相同的.介绍 质疑引导分析了解 思考 自我 分析从实例出发使学生自然的走向知识点0 5*动脑思考 探索新知 【新知识】设i , j 分别为x 轴、y 轴的单位向量,(1)设点(,)M x y ,则i +j =OM x y (如图7-18(1));仔细思考引导 式启(2)设点1122(,)(,)A x y B x y ,(如图7-18(2)),则(1)(2)图7-1822112121()()()()i +j i +j i j =-=-=-+-AB OB OA x y x y x x y y .由此看到,对任一个平面向量a ,都存在着一对有序实数(,)x y , 使得x y =+a i j .有序实数对(,)x y 叫做向量a 的坐标,记作 (,)x y =a . 如图7-17所示,向量的坐标为(2,3)=OA .如图7-18(1)所示,起点为原点,终点为(,)M x y 的向量的坐标为(,)=OM x y .j iBA OyxOxij M (x ,y)y2(=AB x *巩固知识 典型例题例1 如图7-19所示,用x 轴与y 轴上的单位向量i 、j 表示向量a 、b , 并写出它们的坐标.解 因为a =OM +MA =5i +3j ,所以 (5,3)=a . 同理可得 (4,3)=-b .【想一想】观察图7-19,OA 与OM 的坐标之间存在什么关系?例2 已知点(2,1)(3,2)-P Q ,,求PQ QP ,的坐标. 解 (3,2)(2,1)(1,3),=--=PQ (2,1)(3,2)(1,3)=--=--QP .图7-19OA的坐标,并用OA.,写出向量的坐标.两点的坐标,求AB BA,的坐标.*创设情境兴趣导入【观察】观察图7-20,向量=+=.可以看到,(5,3)OM OA OPOP=,(8,3)OA=,(3,0)两个向量和的坐标恰好是这两个向量对应坐标的和.图7-20【教师教学后记】。
向量的坐标表示-教学设计

7.3.1 向量的分解
【教学目标】
1. 理解平面向量的基本定理,会用已知的向量来表示未知的向量.
2. 启发学生发现问题和提出问题,培养学生独立思考的能力,让学生学会分析问题和解决问题.
3. 通过教学,培养学生数形结合的能力.
【教学重点】
平面向量的基本定理,用已知的向量来表示未知的向量.
【教学难点】
理解平面向量的基本定理.
【教学方法】
本节课采用启发式教学和讲练结合的教学方法,引导学生分析归纳,形成概念.
7.3.2 向量的直角坐标运算
【教学目标】
1. 理解平面向量的坐标表示,掌握平面向量的坐标运算.
2. 能够根据平面向量的坐标,判断向量是否平行.
3. 通过学习,使学生进一步了解数形结合思想,认识事物之间的相互联系,培养学生辩证思维能力.
【教学重点】
平面向量的坐标表示,平面向量的坐标运算,根据平面向量的坐标判断向量是否平行.
【教学难点】
理解平面向量的坐标表示.
【教学方法】
本节课采用启发式教学和讲练结合的教学方法,教师可以充分发挥学生的主体作用,开展自学活动,通过类比、联想,发现问题,解决问题.引导学生分析归纳,形成概念.
【教学过程】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2-4平面向量的坐标
一、教学目标:
1.知识与技能
⑴平面向量的坐标表示,平面向量的坐标运算.
⑵理解平面向量的坐标概念,掌握已知平面向量的和、差、实数与向量的积的坐标表示方法.
2.过程与方法
通过探索平面向量共线的坐标形式,灵活运用公式解决一些问题。
3.情感态度价值观
通过本节的学习,了解相关数学知识的来龙去脉,认识其作用和价值,培养学生的探索研究能力。
二.教学重、难点
重点: 平面向量的坐标运算.
难点: 向量的坐标表示的理解及运算的准确性.
三.学法与教学用具
自主性学习+探究式学习法
教学用具:电脑、投影机.
四.教学设想
【复习引入】 1.平面向量的基本定理:1212a e e λλ=+ ;
2.在平面直角坐标系中,每一个点都可用一对实数(,)x y 表示,那么,每一个向量可否也用一对实数来表示?
【新课讲解】
【知识点1】向量的坐标表示的定义 分别选取与x 轴、y 轴方向相同的单位向量i ,j 作为基底,对于任一向量a ,a xi y j =+ ,(,xy R ∈),实数对(,)x y 叫向量a 的坐标, 记作(,)a x y = . 其中x 叫向量a 在x 轴上的坐标,y 叫向量a 在y 轴上的坐标。
说明:⑴对于a ,有且仅有一对实数(,)x y 与之对应; ⑵(1,0)i = ,(0,1)j = ,0(0,0)= ; ⑶只有从原点引出的向量OA 的坐标(,)x y 才是点A 的坐标;不是从原点引出的向量C B 的坐标(,)x y ,就不是终点C 的坐标
⑷要把点的坐标与向量的坐标区别开来,相等的向量的坐标是相同的,但起点、终点的坐标却可以不同,若()3,5A ,()6,8B ,则()3,3AB = ;若()C 5,3-,()D 2,6-,则()3,3CD = 。
这里AB CD = ,显然,,,A B C D 四点坐标各不相同。
⑸向量的坐标表示实质上是向量的代数表示,引入向量表示后,可使向量运算代数化,将数形紧密结合起来,从而使许多几何问题的证明转化为数量运算。
【知识点2】向量的坐标运算 y x O (,)A x y j i a
已知11(,)a x y = ,22(,)b x y =
1.向量相等:a b = 等价于1212
x x y y =⎧⎨=⎩. 2.向量坐标的和与差
(1)()1212,a b x x y y +=++
(2)1212(,)a b x x y y -=--
即:向量和与差的坐标分别等于各向量相应坐标的和与差
3.向量坐标数乘
11(,)a x y λλλ=
即:实数与向量积的坐标分别等于实数与向量的相应坐标的乘积。
4.已知向量AB ,且点11(,)A x y ,22(,)B x y ,
则2211(,)(,)AB OB OA x y x y =-=- 2121(,)x x y y =--
即:一个向量的坐标等于其终点的相应坐标减去始点的相应坐标。
例1:已知()3,4a = ,()1,4b =- ,求a b + ,a b - ,23a b - 的坐标表示。
例2:已知平行四边形ABCD 的三个顶点,,A B C 的坐标分别为(2,1)-、(1,3)-、(3,4),求顶点D 的坐标。
变式训练:
1.已知(1,2),(2,1),(3,2),(2,3)A B C D --,以,AB AC 为一组基底来表示向量AD BD CD ++ .
2.设向量a =(1,-3), b =(-2,4), c =(-1,-2),若表示向量4a 、4b -2c 、()
2a c - 、d 的有向线段首尾相接能构成四边形,则向量d 为 。
【知识点3】向量平行的坐标表示 设11(,)a x y = ,22(,)b x y = ,(0b ≠ ),且//a b , 则(,0)a b R b λλ=∈≠ ,∴112222(,)(,)(,)x y x y x y λλλ==.
∴1212
x x y y λλ=⎧⎨=⎩, ∴12210x y x y -=. 进一步可变形为:
1212
x x y y = 我们可以得到:
定理:若两个向量(与坐标轴不平行)平行,则它们相应的坐标成比例。
定理:若两个向量相对应的坐标成比例,则它们平行。
符号表示: ①//a b (0)b ≠⇔ (,0)a b R b λλ=∈≠ ;
②11(,)a x y = ,22(,)b x y = ,(0)b ≠
//a b ⇔12210x y x y -=⇔1212
x x y y = 例3.已知(4,2)a = ,(6,)b y = ,且//a b ,求y .
例4.已知()1,2a = ,()3,2b =- 试判断是否存在实数k ,试向量ka b + 与3a b - 共线?若
存在,求k 的值;若不存在,说明理由。
变式练习:
1.已知(1,1)A --,(1,3)B ,(2,5)C ,求证A 、B 、C 三点共线.
2.如三点A(1,2),B(2,4),C(3,m)共线,求m.
3.如果(,12)OA k = ,(4,5)OB = ,(,10)OC k =- ,且A,B,C 三点共线,求k..
4.已知A(-1,6),B(3,0),在直线AB 上求一点P,使1.3
AP AB = 【课堂小结】
1.熟悉平面向量共线充要条件的两种表达形式;
2会用平面向量平行的充要条件的坐标形式证明三点共线和两直线平行;
3.明白判断两直线平行与两向量平行的异同。