第七章 交通流量速度和密度之间的关系

合集下载

第七章交通流三参数之间的关系

第七章交通流三参数之间的关系

参考文献
1、任福田,刘小明,荣建等.交通工程学. 北京:人民交通 出版社,2003.7
2、刘建军.交通工程学基础. 北京:人民交通出版社, 1995.7
第七章 交通流量、速度和密度之间来自关系授课内容:1、三参数之间的关系
2、速度—密度之间的关系
3、交通流量—密度之间的关系
4、交通流量—速度之间的关系
授课要求:
掌握交通流中交通流量、速度和密度各参数之间
的关系,会分析和应用三参数之间的关系。
第一节 三参数之间的关系
一、交通流的三个参数关系
描述交通流的三个参数是交通量、速度和交通密 度,它们之间的关系可以用下式表示:
Q VK
式中:Q——交通量(辆/h);
V——速度(km/h);
K——交通密度(辆/km)。
二、交通量、速度和交通密度的关系曲线 由交通量、速度和交通密度三者关系图(图 7-1 ) 可见:
图7—1交通量、速度和交通密度的关系
(1)Qm是速度-流量图上的峰值,表示最大流量。
(2)Vm是流量取最大值(Q=Qm)时的速度,称为 临界速度。
例7-1已知某公路上畅行速度Vf=80 km/h,阻塞密度Kj =105veh/km,速度一密度符合直线关系式。 求:(1)在该路段上期望得到的最大流量? (2)此时所对应的车速是多少? 解:(1)该路段上期望得到的最大流量为: Qm=1/4 KjVf=1/4*80*105= 2100(veh/h)
阻塞密度值:kj=1000/hd=1000/8.05=124辆 /km,如假定ht=1.5s,由于 ht=3600/Q
因此,最大通行能力Qm=3600/1.5=2400辆/h。 此时的速度Vm=Qm/Km=2400/62=38.7km/ h。

交通流三个参数KQV之间关系解读

交通流三个参数KQV之间关系解读

图7-3所示。
图7-3交通量和密度的关系
当交通密度为零时,流量为零,故曲线通过坐标 原点。当交通密度增加,流量增大,直至达到道路的 通行能力,即曲线C点的交通量达到最大值,对应的 交通密度为最佳密度Km;从C点起,交通密度增加, 速度下降,交通量 减少,直到阻塞密度Kj,速度等 于零,流量等于零;由坐标原点向曲线上任一点画矢 径。这些矢径的斜率,表示矢端的平均速度。通过A 点的矢径与曲线相切,其斜率为畅行速度Vf;对于密 度比Km小的点,表示不拥挤情况,而密度比Km大 的点,表示拥挤情况。
例7-2 在长400m的道路上行驶28辆车,速度-密度为直 线关系,V=60-3/4 K,
求:该道路的Vf ,Kj ,Q ,Qm 。 解:V=60-3/4 K=60(1- K/80)
Vf=60 km/h K=N/L=28/0.4=70(veh/km) V=60-3/4*70=7.5(km/h) Q= KV=7.5*70=525(veh/h) Qm=1/4 KjVf=1/4*60*80=1200(veh/h)
线同样是一条抛物线(图7-4)
图7—4 速度与流量的关系
当交通密度为零时,畅行交通流的车速就可能达 到最高车速,如图中曲线的最高点A,就是畅行速度 Vf,而流量等于零。当交通密度等于阻塞密度时,速 度等于零,流量也等于零,因此,曲线通过坐标原点。
过C点作一条平行于流量坐标轴的线,将曲线分 成两部分,这条线以上的部分,为不拥挤部分,速度 随流量的增加而降低,直至达到通行能力的流量Qm 为止,速度为Vm;这条线以下部分为拥挤部分,流 量和速度都下降。
对于式(7-6)若另dQ/dK=0,则可求出对应于 Qm的Km值:
km
1 2
k
j
从而

交通量、速度、密度之间的关系

交通量、速度、密度之间的关系
Vf源自• 指数模型:Kj
V Vf (1 e Km )
• 广义模型:
V Vf (1 K )N Kj
直线关系模型
V Vf (1 K ) Kj
1933年格林希尔兹提出单段式直线关系模型
对数关系模型(车流密度大时适用)
made by Greenberg
V VmIn ( K ) Kj
指数模型(车流密度小时)
交通量—密度的关系
Q Vf (K K 2 ) Kj
(1)0<K<Km:密度增大,交 通流增大 (2)K=临界密度Km时,交 通流最大为Qm
(3)Km<K<Kj:密度增加, 交通流减小。到达阻塞密 度时,Q为0
交通量—速度的关系
Q=KV (1) K=Kj(1-V/Vf) (2)
V2 Q Kj(V )
速度:区间平均车速 km/h
三参数之间的关系
Q KV
L路段上的车流密度: K=N/L
N号车通过L所用的时间: t=L/v
N号车通过A断面时的交通量: Q=N/t=Kv
三参数关系图
速度—密度关系
• 直线关系模型: V Vf (1 K )
Kj
• 对数关系模型: V VmIn ( K )
Kj
交通量 速度 密度 之间的关系
11交通 徐卓斌 1104028
授课大纲
• 三个参数之间的关系 • 速度密度的关系 • 交通量密度的关系 • 交通量速度的关系
三个参数之间的关系
交通量:单位时间通过某道路断面的交通体数量 辆/h 辆/(h.l)
密度:单位长度道路区段上的车辆数 辆/km 辆/(km.l)
安德伍德制造
Kj
V Vf (1 e Km )

交通工程—— 三参数的关系

交通工程—— 三参数的关系

V Vf e
使用条件:交通密度小
§7.3交通流量-密度的关系
根据Greenshields公式可得
2
Q K V K V f (1
K K
j
) Vf (K
K K
)
j
可以求得:
K
Q
m
K j/2
Vf K j / 4
Vm Vf / 2
m
§7.4速度-交通流量的关系

K K j (1
K:密度,辆/km
§7.1三参数之间的关系
V
f
V
三 维 曲 线
Q
K
K
j
§7.1三参数之间的关系
Q
m
A K
B K
0
m
j
ቤተ መጻሕፍቲ ባይዱVf
Vf V
A
m
B 0 K K
m m
三 参 数 关 系 曲 线
Q
m
K
j
0
§7.1三参数之间的关系
曲线中的一些特殊值: 自由流速度Vf:一辆车在无其它车辆干扰的 条件下通过某一区域的最高车速,即畅行速度 阻塞密度K j:密度持续增大使流量趋近于零时 的速度或指停车排队的密度。 临界密度K m :流量逐渐增大,接近或达到道 路通行能力时的密度。又称最佳密度。 最大流量Q m:路段上能够通行的最大流量。
§7.2速度-密度的关系
一、直线关系模型
V V f (1 -
K K
j
)
使用条件:车流密度比较适中
§7.2速度-密度的关系
二、对数关系模型(Greenberg模型)
V V m ln (
K K
j

第七章 交通流量、速度和密度之间的关系

第七章 交通流量、速度和密度之间的关系

第七章 流量、速度和密度之间的关系
格 林 息 尔 治 ( Greenshield )
的线性关系模型 (密度适中)
v vf
1
K Kj
格 林 伯 ( Greenberg ) 的对数模型(密度大时)
安德伍德(Underwood)的 指数模型(密度很小时)
v
vm
ln
Kj K
vvf eK/ Km
交通工程电子教程
速度(km/h) 流量(辆/h) 速度(km/h)
交通工程电子教程
最大流量
Qm
0
Km Kj
第七章 流量、速度和密度之间的关系
畅行速度
vfLeabharlann vivmvm临界速度
最佳密度
0
Km Kj
密度(辆/km)
0
Qm
流量(辆/h)
阻塞密度
交通工程电子教程
第七章 流量、速度和密度之间的关系
反映交通流特性的特征变量:
• 1959年,格林柏(Greenberg)提出了用于密度 很大时对数模型:
V
Vm
l
n(Kj K
)
格林柏模型 的适用范围
交通工程电子教程
第七章 流量、速度和密度之间的关系
• 1961年安德伍德(Underwood)提出了用于密 度很小时的指数模型:
K
V Vf e Km
安德伍德模型 的适用范围
交通工程电子教程
交通工程电子教程
第七章 流量、速度和密度之间的关系
第七章 交通流量、速度和密度之间的关系
第一节 三参数之间的关系
交通流宏观指标: 交通量Q、速度V、密度K是 表征交通流特性的三个基本参数。其基本关系为:
Q=VK

07 第七章 交通量、速度、密度之间的关系

07 第七章  交通量、速度、密度之间的关系
适用条件:密度较大, 交通拥挤
三、指数关系
V Vfe
适用条件: 密度较小时
k km
四、广义模型
k n V Vf (1 ) kj
第三节 交通流量-密度之间的关系
V Vf
一、数学模型 格林希尔兹模型导出
Vf K K Vf(1 - ) Kj Kj
Kj V Vmln( ) K
第七章 交通流量、速度、 密度之间的关系
第一节 三参数之间关系 * 第二节 速度-密度的关系 * 第三节 交通流量-密度之间的关系 * 第四节 速度-交通流量之间的关系 *
第一节 三参数之间关系

道路上的人流和车流形成了交通流,交通流定 性和定量的特征,称为交通流特性。
三、算例
第四节 速度—流量之间的关系
一、数学模型 以速度—密度直线模型为基础:
二、特征描述
三、算例

交通流近似看作是由交通体组成的一种粒子 流体,同其他流体一样,可以用交通流量、
速度和对交通密度三大基本参数来描述。
交通流量、速度、密度三个参数是描述交通流基 本特征的主要参数,三个参数之间相互联系,

相互制约

速度和密度反应交通流从路上获得的服务 质量,流量可度量车流的数量和对交通设
施的需求情况。

上式是二次函数关系, 可用一条抛物线表示, 如图7-7;
V Vfe
k km

k n V Vf (1 ) kj
二、特征描述 当交通密度为零时,流量为零,故曲线通过坐标原点。 随交通密度增加,流量增大,直至达到道路的通行能 力,即曲线C点的交通量达到最大值,对应的交通密度 为最佳密度Km; 从C点起.交通密度增加,速度下降,交通量减少,直 到阻塞密度Kj,速度等于零,流量等于零; 由坐标原点向曲线上任一点画矢径。这些矢径的斜率表 示区段平均速度:通过A点的矢径与曲线相切,其斜率 为畅行速度Vt. 对于密度比Km小的点,表示不拥挤情况,而密度比Km 大的点,表示拥挤情况。

第七章 交通流量、速度和密度之间的关系.

第七章 交通流量、速度和密度之间的关系.

7.2 速度—密度的关系
速度一密度对数曲线(小密度)
7.2 速度—密度的关系
广义速度—密度模型
K n V V f (1 ) Kj
n——大于零的实数
当n=1时,该式变为直线关系式
7.3 交通量—密度的关系
数学模型
K V Vf K V f (1 ) Kj Kj Vf
Q KV
第七章
交通流量、速度和密度 之间的关系
7.1 三参数之间的关系
假设交通流为自由流。在长度为L的路段上有连续行 进的N辆车,其速度V,如下图。由三个参数的定义可 知:
V A 1 2 N B
K
N L
L t V
Q
N t
Q
N N L t V
Q
N V L
Q KV
7.1 三参数之间的关系
交通流量、速度、密度三参数关系图
K K2 Q KV KV f (1 ) V f ( K ) Kj Kj
1 V V m Vt 2
1 Qm V f K j 4
7.3 交通量—密度的关系
上图中由坐标原点A向曲线上任一点画矢径,矢 径的斜率表示区段平均车速。而其切线的斜率则表示 交通量微小变化时速度的变化:
7.4 交通量—速度的关系
不同的速度—密度关系式将产生不同的速度—交通量关系式
V K K j (1 ) Vf
V2 Q K j (V ) Vf
7.4 交通量—速度的关系
流量—速度曲线图
7.4 交通量—速度的关系
算例2
已知某公路上畅行速度 Vf 80 km h ,阻塞密度 K j 100辆 / km, 速度—密度关系为直线关系。试问: (1)该路段上期望得到的最大交通量是多少? (2)此时所对应的车速是多少?

交通流三个参数K Q V之间关系

交通流三个参数K Q V之间关系

过C点作一条平行于流量坐标轴的线,将曲线分 成两部分,这条线以上的部分,为不拥挤部分,速度 随流量的增加而降低,直至达到通行能力的流量Qm 为止,速度为Vm;这条线以下部分为拥挤部分,流 量和速度都下降。
综合以上三个参数的关系可知:当道路上交通密 度小时,车辆可自由行驶,平均车速高,交通流量不 大;随着交通密度增大,交通流量也增加,但车速下 降;当交通密度增加到最佳密度时,交通流量达到最 大值,即交通流量达到了道路的通行能力,车辆的行 驶形成了车队跟随现象,车速低且均衡;当交通密度 继续增大,即超过了最佳密度,交通流量下降,车速 明显下降,直到车速接近于零,道路出现阻塞,交通 密度达到最大值,即阻塞密度,交通流量等于零。
(2)此时所对应的车速是:
Vm=Vf/2=1/2*80=40 km/h
例7-2 在长400m的道路上行驶28辆车,速度-密度为直 线关系,V=60-3/4 K, 求:该道路的Vf ,Kj ,Q ,Qm 。 解:V=60-3/4 K=60(1- K/80) Vf=60 km/h K=N/L=28/0.4=70(veh/km)
上式是二次函数关系,可用一条抛物线表示,如 图7-3所示。
图7-3交通量和密度的关系
当交通密度为零时,流量为零,故曲线通过坐标 原点。当交通密度增加,流量增大,直至达到道路的 通行能力,即曲线C点的交通量达到最大值,对应的 交通密度为最佳密度Km;从C点起,交通密度增加, 速度下降,交通量 减少,直到阻塞密度Kj,速度等 于零,流量等于零;由坐标原点向曲线上任一点画矢 径。这些矢径的斜率,表示矢端的平均速度。通过A 点的矢径与曲线相切,其斜率为畅行速度Vf;对于密 度比Km小的点,表示不拥挤情况,而密度比Km大 的点,表示拥挤情况。
参考文献
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当车流密度小时不适宜使用此模型。
7.2 速度—密度的关系
速度一密度对数曲线(大密度)
7.2 速度—密度的关系
指数模型
当交通密度小时,Underwood提出的指数模型比较 符合实际:
? Kj
V ? Vf (1? e ) Km
Km ——为最大交通量时的密度,辆/km; E ——自然对数的底数;
此模型的缺点是当 K ? K j 时,V≠0。
7.2 速度—密度的关系
速度一密度对数曲线(小密度)
7.2 速度—密度的关系
广义速度—密度模型
V
?
Vf
(1 ?
K Kj
)n
n——大于零的实数 当n=1时,该式变为直线关系式
7.3 交通量—密度的关系
数学模型
Q ? KV
V
?
Vf
?
Vf Kj
K
?
Vf
(1?
K Kj
)
Q
?
KV
?
KVf
(1 ?
K Kj
C


Qm =KmVm
D
Km=62
0.93m) 11..8264间(min/k

3.73驶
E行
31 62 93 Kj=124
密度(辆/km)
速度—密度的直线关系
7.2 速度—密度的关系
对数关系模型
当车流密度大时,Grenberg提出的对数模型较符合实 际:
V
?
Vm
ln(
Kj K
)
Vm ——对应最大交通量的速度,km/h
Km 交通流密量度—K密(辆度/km曲)线图
7.3 交通量—密度的关系
当车流密度值为零时,交通量为零,密度增大时, 交通量增加,密度到最佳密度 Km时,交通量取最大值 Qm。密度再增大,到阻塞密度 Kj时,交通量为零。
Q
?
KV
?
KVf
(1?
K Kj
)
?
Vf
(K
?
K2 )
Kj
K
?
Km
?
1 2
Kj
V
? Vm
?
1 2
Vt
Qm
?
1 4
Vf
K
j
7.3 交通量—密度的关系
上图中由坐标原点 A向曲线上任一点画矢径,矢 径的斜率表示区段平均车速。而其切线的斜率则表示 交通量微小变化时速度的变化:
?v?Leabharlann QK?v? ?Q ?K
同时,上图中在 A点的斜率最大,表示车速最高, 交通量与车流密度均很小,车辆以自由流速度 Vf行驶。
7.2 速度—密度的关系
直线关系模型 1933年,Greenshields提出了KV单段式直线关
系模型:
V ? a ? bK
当车流密度很大或很小时不适宜使用此模型。
7.2 速度—密度的关系
车头间距hd (m)
A Vf =77.4
60
30
15 12 9
0.78
m/h) 64.4
B Vm=38.7
(k 32.2
K
?
K j (1 ?
V Vf
)
Q
?
K j (V
?
V2) Vf
7.4 交通量—速度的关系
流量—速度曲线图
7.4 交通量—速度的关系
算例2
已知某公路上畅行速度 Vf ? 80 km h ,阻塞密度 Kj ? 100辆 / km, 速度—密度关系为直线关系。试问:
(1)该路段上期望得到的最大交通量是多少? (2)此时所对应的车速是多少?
(1)最大交通量:Qm
?
Vf K j 4
Qm
?
80 ?100 4
?
2000 辆
h
(2)交通量最大时,对应的车速:
Vm
?
Vf 2
Vm
?
80 2
?
40 km
h
7.4 交通量—速度的关系
算例3
对某路上的交通流进行观测,发现速度与密度的关 系是对数关系:V ? 40ln180/ K ,式中车速单位为 km/h, 密度单位为:辆 /km。试问该路段阻塞密度是多少?车 速为何值时交通流量最大?
7.3 交通量—密度的关系
对于车流密度比 Km小的点,表示不拥挤情况;而 车流密度比 Km大的点,表示拥挤情况
7.3 交通量—密度的关系
算例1
假定车辆平均长度为 6.1m,在阻塞密度时,单车道车
辆间的平均距离为 1.95m,因此车头间距
?
hd
?
8.05m ,试
说明流量与密度的关系。
E点
?
hd ? 1000 K
第七章 交通流量、速度和密度 之间的关系
7.1 三参数之间的关系
假设交通流为自由流。在长度为L的路段上有连续行 进的N辆车,其速度V,如下图。由三个参数的定义可 知:
V
A1
2
NB
K? N L
t? L V
Q? N t
Q? N ? N tL V
Q? NV L
Q ? KV
7.1 三参数之间的关系
交通流量、速度、密度三参数关系图
V
?
Vm
ln(
Kj K
)
V ? 40ln180/ K
K j ? 180 辆 km
Vm ? 40 km h 时通过的交通量最大
)
?
Vf
(K
?
K2 Kj
)
7.3 交通量—密度的关系
特征描述
Qm=2400
/h) 辆
2000 1600
( Q
1200
量 800

400
A
车头间距hd(m)
60 30 B
15 12 C
9 1.5 1.8 (s)ht
Vt VB Vc=Vm
D

3.0 时
VD

4.5车
不拥挤 拥挤
9.0
E
31
62 93 Kj=124
阻塞密度值Kj
?
K j ? 1000 hd ? 1000 8.05 ? 124 辆 km
B点
由图上可知点B的交通量为1800辆,密度为30辆/ km,
速度为60km/h。
D点
D点表示拥挤情况,D点流量为1224辆/h,密度为106.6
辆/h,速度为11.6km/h。
7.4 交通量—速度的关系
不同的速度—密度关系式将产生不同的速度—交通量关系式
相关文档
最新文档