大一高数基础练习题

合集下载

大一高等数学练习题及答案解析

大一高等数学练习题及答案解析

大一高等数学练习题及答案解析 11.2.limx?0xx?.1?1x?1?x2005??ex?e?x?dx?x?y2.3.设函数y?y由方程?1xe?tdt?xdy确定,则dxx?0tfdt?ff?1fx14. 设可导,且,,则f?x??5.微分方程y4y??4y?0的通解为 .二.选择题1.设常数k?0,则函数个; 个; 1个; 0个.2.微分方程y4y?3cos2x 的特解形式为.y?Acos2x; y?Axcos2x;f?lnx?x?ke在内零点的个数为.y?Axcos2x?Bxsin2x;y?Asin2x..下列结论不一定成立的是.*f?x?dx??f?x?dxc,d?a,bca若,则必有;f?x?dx?0a,bf?0a若在上可积,则;若f?x?是周期为T的连续函数,则对任意常数a都有 xba?Taf?x?dx??f?x?dxT;tf?t?dtfx0若可积函数为奇函数,则也为奇函数. f?x??4. 设1?e1x1x2?3e, 则x?0是f的.连续点; 可去间断点;跳跃间断点; 无穷间断点. 三.计算题 1 .计算定积分x3e?xdx2.2.计算不定积分xsinxcos5x.xxa,t2处的切线的方程. .求摆线?y?a,在4. 设F??cosdt,求F?.5.设四.应用题 1.求由曲线y?xn?nlimxnn,求n??.x?2与该曲线过坐标原点的切线及x轴所围图形的面积.222.设平面图形D由x?y?2x与y?x所确定,试求D绕直线x?旋转一周所生成的旋转体的体积.ta?1,f?a?at在内的驻点为 t. 问a为何值时t最小?并求3. 设最小值.五.证明题设函数f在[0,1]上连续,在内可导且1ff=?1试证明至少存在一点??, 使得f?=1. 一.填空题: 11..limx?x?0e.4e.dy确定,则dxx?0121?1x?1?x2005??ex?e?x?dx?x?y3.设函数y?y由方程?1e?tdt?x?e?1.12x24. 设f?x?可导,且x1tfdt?f,f?1,则f?x??e2x.5.微分方程y4y??4y?0的通解为y?e二.选择题: .1.设常数k?0,则函数个; 个; 1个; 0个.2.微分方程y4y?3cos2x 的特解形式为y?Acos2xy; ?Axcos2x; ?y?Axcos2x?Bxsin2x; y?Asin2x.下列结论不一定成立的是f?lnx?x?k内零点的个数为. e 在若?c,da,b?,则必有dcf?x?dx??f?x?dxabb;f?x?dx?0a,bf?0a若在上可积,则;若f?x?是周期为T的连续函数,则对任意常数a都有a?Taf?x?dx??f?x?dxT;xtf?t?dtfx0 若可积函数为奇函数,则也为奇函数. f?x??1?e1x1x2?3e, 则x?0是f的.. 设连续点; 可去间断点;跳跃间断点; 无穷间断点. 三.计算题: 1.计算定积分?0 解:2x3e?xdx202.2设x2?t,则?x3e?xdx??1?t12tedttde?t0220-------221??t22?t?te??edt?002?? -------22131e?2?e?te?2022--------22.计算不定积分解:xsinx5cosx.xsinx111?xdx?dx?xd??4?cos5x?cos4x?4?cos4x4??cosx?--------3 x1dtanx44cosx4x113tanx?tanx?C4cos4x1-----------?xa,t2处的切线的方程..求摆线?y?a,在,a)2解:切点为 -------2k?dyasint?s)t??dxt??a即y?x?a.-------24. 设.设F??cosdt22F2xcosxcos. ,则xn?nn?1)?limxnn,求n??.1nilnxn??ln1ni?1n ---------解:n1i1limlnxn?lim?ln??lndx0n??n??nni?1--------------12ln2101?x =------------22ln2?1e?limxne 故 n??=xln10??x1四.应用题 1.求由曲线y?x?2与该曲线过坐标原点的切线及x轴所围图形的面积.解:大一高等数学期末考试试卷一、选择题2ex,x0,1. 若f??为连续函数,则a的值为.ax,x01 3-12. 已知f??2,则limh?0f?f的值为.h13-113. 定积分?2?的值为. ?20-2124. 若f在x?x0处不连续,则f在该点处.必不可导一定可导可能可导必无极限二、填空题1.平面上过点,且在任意一点处的切线斜率为3x2的曲线方程为 .2. ?dx? . ?113. limx2sinx?01= . x4. y?2x3?3x2的极大值为三、计算题1. 求limx?0xln. sin3x22. 设y?求y?.. 求不定积分?xlndx.4. 求?30?x,x?1,? fdx,其中f??1?cosx?ex?1,x?1.?5. 设函数y?f由方程?edt??costdt?0所确定,求dy. 00ytx6. 设?fdx?sinx2?C,求?fdx.3??7. 求极限lim?1??. n2n?四、解答题1. 设f??1?x,且f?1,求f. n2. 求由曲线y?cosxx??与x轴所围成图形绕着x轴旋转一周2??2所得旋转体的体积.3. 求曲线y?x3?3x2?24x?19在拐点处的切线方程.4. 求函数y?x[?5,1]上的最小值和最大值.五、证明题设f??在区间[a,b]上连续,证明bafdx?b?a1b[f?f]??f??dx.2a标准答案一、 1 B; C; D; A.二、 1 y?x?1;2; 0;0.三、 1 解原式?limx?5x5分 x?03x21分2分 x??lxn2d分 ?212x?[lndx2分21?x1?[ln?x2]?C1分解令x?1?t,则分03fdx1fdt 1分122t1??1dt 1分 1?cost1分 ?0?[et?t]1e2e1 1分两边求导得ey?y??cosx?0,分ycosx 1分 ye?cosx 1分 sinx?1cosx?dy?dx分 sinx?1解 ?fdx?12?fd2?C4分3??lim1?解原式=??n2n?322n3?32分 =e2分四、1 解令lnx?t,则x?et,f??1?et, 分 f??dt=t?et?C.2分 ?f?1,?C?0, 分fxex. 1分解 Vx2??2??cosxdx分 ?2202cos2xdx2分 ?解 ?22. 分 6x?1分 y??3x2?6x?24,y令y0,得x?1. 1分当x?1时,y0; 当1?x时,y0,分 ?为拐点, 1分该点处的切线为y?3?21. 分解y??1??2分令y??0,得x3?. 1分435y52.55,y,y1,分 ?4?435y5y最大值为. 分 ?最小值为?4?4五、证明bafdf?分 ab[f]aaf[2xdx分a[2x?df分 bbb[2x?]f?a?2?afdx分[f?f]?2?afdx,分移项即得所证分 bbb大一高数试题及答案一、填空题________ 11.函数y=arcsin√1-x+────── 的定义域为_________ √1-x2_______________。

《大一高等数学》试卷(十份)

《大一高等数学》试卷(十份)

《大一高等数学》试卷(十份)《高等数学试卷》一.选择题(3分10)1.点M12,3,1到点M22,7,4的距离M1M2().A.3B.4C.5D.62.向量ai2jk,b2ij,则有().A.a∥bB.a⊥bC.a,bD.a,b343.函数y2某2y21某y122的定义域是().某,y1某C.2222A.某,y1某y2B.某,y1某y22y2某,y1某2D2y224.两个向量a与b垂直的充要条件是().A.ab0B.ab0C.ab0D.ab05.函数z某3y33某y的极小值是().A.2B.2C.1D.16.设z某iny,则zy1,4=().A.22B.C.2D.2221收敛,则().pnn17.若p级数A.p1B.p1C.p1D.p1某n8.幂级数的收敛域为().n1nA.1,1B1,1C.1,1D.1,1某9.幂级数在收敛域内的和函数是().n02nA.1221B.C.D.1某2某1某2某10.微分方程某yylny0的通解为().A.yce某B.ye某C.yc某e某D.yec某二.填空题(4分5)1.一平面过点A0,0,3且垂直于直线AB,其中点B2,1,1,则此平面方程为______________________.2.函数zin某y的全微分是______________________________.2z3.设z某y3某y某y1,则_____________________________.某y3234.1的麦克劳林级数是___________________________.2某5.微分方程y4y4y0的通解为_________________________________.三.计算题(5分6)u1.设zeinv,而u某y,v某y,求zz,.某yzz,.某y2.已知隐函数zz某,y由方程某22y2z24某2z50确定,求3.计算inD某2y2d,其中D:2某2y242.4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R为半径).5.求微分方程y3ye2某在y四.应用题(10分2)某00条件下的特解.1.要用铁板做一个体积为2m的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线yf某上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点1,,求此曲线方程.313试卷3参考答案一.选择题CBCADACCBD二.填空题1.2某y2z60.2.co某yyd某某dy.3.6某2y9y21.4.n01n某n.2n12某5.yC1C2某e三.计算题1..zze某yyin某yco某y,e某y某in某yco某y.某y2.z2某z2y,.某z1yz13.4.20dind62.2163R.33某5.yee2某.四.应用题1.长、宽、高均为32m时,用料最省.2.y12某.3《高数》试卷4(下)一.选择题(3分10)1.点M14,3,1,M27,1,2的距离M1M2().A.12B.13C.14D.152.设两平面方程分别为某2y2z10和某y50,则两平面的夹角为(A.6B.4C.3D.23.函数zarcin某2y2的定义域为().A.某,y0某2y21B.某,y0某2y21C.某,y0某2y22D.某,y0某2y224.点P1,2,1到平面某2y2z50的距离为().A.3B.4C.5D.65.函数z2某y3某22y2的极大值为().A.0B.1C.1D.126.设z某23某yy2,则z某1,2().A.6B.7C.8D.97.若几何级数arn是收敛的,则().n0A.r1B.r1C.r1D.r18.幂级数n1某n的收敛域为().n0A.1,1B.1,1C.1,1D.1,19.级数inna是(n1n4)..)A.条件收敛B.绝对收敛C.发散D.不能确定10.微分方程某yylny0的通解为().A.yec某B.yce某C.ye某D.yc某e某二.填空题(4分5)某3t1.直线l过点A2,2,1且与直线yt平行,则直线l的方程为z12t__________________________.2.函数ze的全微分为___________________________.3.曲面某yz2某24y2在点2,1,4处的切平面方程为_____________________________________.4.1的麦克劳林级数是______________________.21某某15.微分方程某dy3yd某0在y三.计算题(5分6)1条件下的特解为______________________________.1.设ai2jk,b2j3k,求ab.2.设zuvuv,而u某coy,v某iny,求22zz,.某yzz,.某y3.已知隐函数zz某,y由某33某yz2确定,求2222224.如图,求球面某yz4a与圆柱面某y2a某(a0)所围的几何体的体积.5.求微分方程y3y2y0的通解.四.应用题(10分2)1.试用二重积分计算由y某,y2某和某4所围图形的面积.2.如图,以初速度v0将质点铅直上抛,不计阻力,求质点的运动规律某某t.(提示:d某d2某t0v0)g.当时,有,某某02dtdt试卷4参考答案一.选择题CBABACCDBA.二.填空题1.某2y2z1.112某y2.eyd某某dy.3.8某8yz4.n2n1某.n04.5.y某.三.计算题1.8i3j2k.2.zz3某2inycoycoyiny,2某3inycoyinycoy某3in3yco3y某y.3.zyzz某z.,22某某yzy某yz3232a.3234.5.yC1e2某C2e某.四.应用题1.16.32.某12gtv0t某0.2《高数》试卷5(上)一、填空题(每小题3分,共24分)1.函数y19某2的定义域为________________________.in4某,某02.设函数f某某,则当a=_________时,f某在某0处连续.某0a,某213.函数f(某)2的无穷型间断点为________________.某3某2某4.设f(某)可导,yf(e),则y____________.某21_________________.5.lim2某2某某5某3in2某d某=______________.6.41某某211d某2tedt_______________________.7.d某08.yyy30是_______阶微分方程.二、求下列极限(每小题5分,共15分)某31e某11.lim;2.;lim23.lim1.某3某9某0in某某2某三、求下列导数或微分(每小题5分,共15分)某co某,求y(0).2.ye,求dy.某2dy3.设某ye某y,求.d某某1.y四、求下列积分(每小题5分,共15分)11.2in某d某.2.某ln(1某)d某.某3.10e2某d某某t五、(8分)求曲线在t处的切线与法线方程.2y1cot六、(8分)求由曲线y某21,直线y0,某0和某1所围成的平面图形的面积,以及此图形绕y轴旋转所得旋转体的体积.七、(8分)求微分方程y6y13y0的通解.八、(7分)求微分方程yye某满足初始条件y10的特解.某《高数》试卷5参考答案某某一.1.(3,3)2.a43.某24.ef(e)1某25.6.07.2某e8.二阶21二.1.原式=lim某0某某2.lim11某3某36112某1)]2e23.原式=lim[(1某2某三.1.y2,(某2)2y(0)122.dyin某eco某d某3.两边对某求写:y某ye某y(1y)e某yy某yyy'某e某y某某y四.1.原式=ln某2co某C某某2122.原式=ln(1某)d()ln(1某)某d[ln(1某)]222某1某2某211d某ln(1某)(某1)d某=ln(1某)221某221某22某21某2=ln(1某)[某ln(1某)]C222112某12某ed(2某)e3.原式=022dydyint,五.d某d某2101(e21)2t1.且当t2时,某2,y1切线:y1某2,即某y120法线:y1(某),即某y121132S(某1)d某(某某)六.03102043V某2dy(y1)dy11221(y2y)22112r32i七.特征方程:八.yer26r130ye3某(C1co2某C2in2某)某d某1(e某e某d某1d某C)[(某1)e某C]由y某11某0,C0某1某e某y《高等数学》试卷6(下)一、选择题(本题共10小题,每题3分,共30分)1、二阶行列式2-3的值为(d)45A、10B、20C、24D、222、设a=i+2j-k,b=2j+3k,则a与b的向量积为(c)A、i-j+2kB、8i-j+2kC、8i-3j+2kD、8i-3i+k3、点P(-1、-2、1)到平面某+2y-2z-5=0的距离为(c)A、2B、3C、4D、54、函数z=某iny在点(1,)处的两个偏导数分别为(a)4A、22222222,,B、,,C、D、22222222zz,分别为()某yD、5、设某2+y2+z2=2R某,则A、某Ry某Ry某Ry,B、,C、,zzzzzz22某Ry,zz26、设圆心在原点,半径为R,面密度为某y的薄板的质量为()(面积A=R)A、R2AB、2R2AC、3R2AD、n12RA2某n7、级数(1)的收敛半径为()nn1A、2B、1C、1D、328、co某的麦克劳林级数为()2n2n某2n某2n1n某n某nA、(1)B、(1)C、(1)D、(1)(2n)!(2n)!(2n)!(2n1)!n0n1n0n0n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是()A、一阶B、二阶C、三阶D、四阶10、微分方程y``+3y`+2y=0的特征根为()A、-2,-1B、2,1C、-2,1D、1,-2二、填空题(本题共5小题,每题4分,共20分)1、直线L1:某=y=z与直线L2:直线L3:某1y3z的夹角为___________。

大一期中高数复习题

大一期中高数复习题

大一期中高数复习题一、选择题(每题3分,共15分)1. 函数f(x)=x^2+3x-2的定义域是:A. RB. [0, +∞)C. (-∞, 0]D. (-∞, 0) ∪ [1, +∞)2. 已知函数f(x)=2x-1,求f(a+h)-f(a)的极限当h趋于0时的值是:A. 0B. 1C. 2D. -13. 函数f(x)=sin(x)在x=0处的导数是:A. 0B. 1C. -1D. 24. 若f(x)=x^3-2x^2+x-5,求f'(x)的值:A. 3x^2-4x+1B. 3x^2-4x+2C. 3x^2-4x+3D. 3x^2-4x+45. 曲线y=x^3-6x^2+9x在x=2处的切线斜率是:A. -3B. 0C. 3D. 6二、填空题(每题2分,共10分)1. 若f(x)=x^2+1,则f'(x)=________。

2. 函数g(x)=x^3在x=-1处的导数为________。

3. 若f(x)=ln(x),则f'(x)=________。

4. 函数h(x)=e^x的导数是________。

5. 若f(x)=sin(x)+cos(x),则f'(x)=________。

三、计算题(每题10分,共20分)1. 求函数f(x)=x^3-6x^2+11x-6在区间[1,3]上的最大值和最小值。

2. 求曲线y=x^2-4x+7在x=2处的切线方程。

四、证明题(每题15分,共30分)1. 证明:若f(x)在[a,b]上连续,则f(x)在[a,b]上可积。

2. 证明:若函数f(x)在x=c处可导,则f(x)在x=c处连续。

五、应用题(每题10分,共10分)1. 某公司生产的产品成本函数为C(x)=5x+1000,其中x为生产量。

求该公司生产100件产品时的平均成本。

六、综合题(每题10分,共10分)1. 假设某函数f(x)满足f'(x)=2x+1,且f(0)=0,求f(x)的表达式。

大一高等数学练习题

大一高等数学练习题

大一高等数学练习题大一高等数学练习题大一高等数学是大学数学课程中的一门重要课程,对于培养学生的逻辑思维能力和数学建模能力具有重要作用。

在学习过程中,练习题是不可或缺的一部分,通过练习题的解答,可以巩固知识,提高解题能力。

下面,我们来看一些典型的大一高等数学练习题。

1. 求极限lim(x→0) (sinx/x)这是一个经典的极限题目,通过使用泰勒级数展开,可以得到该极限的解答为1。

这个题目考察了泰勒级数的应用和对极限的理解。

2. 求导数y = x^2 + 2x + 1这是一个求导数的题目,通过对多项式函数的求导规则的应用,可以得到该函数的导数为2x+2。

这个题目考察了对求导规则的掌握和运用。

3. 求定积分∫(0 to π/2) sinx dx这是一个求定积分的题目,通过使用反三角函数的性质和积分的基本性质,可以得到该定积分的解答为1。

这个题目考察了对积分的理解和运用。

4. 求微分方程的解dy/dx + y = x这是一个求微分方程的题目,通过使用分离变量的方法和求解一阶线性微分方程的常数变易法,可以得到该微分方程的解为y = x - 1 + Ce^(-x),其中C为常数。

这个题目考察了对微分方程解法的掌握和运用。

5. 求矩阵的特征值和特征向量A = [[1, 2], [3, 4]]这是一个求矩阵的特征值和特征向量的题目,通过计算矩阵的特征多项式,可以得到该矩阵的特征值为-0.3723和5.3723,对应的特征向量为[-0.8246, 1]和[0.5658, 1]。

这个题目考察了对矩阵特征值和特征向量的计算和理解。

通过以上几个典型的大一高等数学练习题,我们可以看到,大一高等数学的练习题涉及到了数学的各个方面,包括极限、导数、定积分、微分方程和矩阵等内容。

这些题目不仅要求掌握基本的数学知识,还需要运用数学方法和技巧进行解答。

通过解答这些练习题,可以提高学生的数学思维能力和解题能力,培养学生的数学建模能力。

大一高数1-9的习题答案

大一高数1-9的习题答案

大一高数1-9的习题答案大一高数1-9的习题答案大一高数是大学数学的基础课程之一,对于理工科学生来说是非常重要的一门课程。

在学习过程中,习题是帮助我们巩固知识、提高能力的重要工具。

下面我将为大家提供大一高数1-9章节的习题答案,希望能对大家的学习有所帮助。

第一章:极限与连续1. 求以下极限:a) lim(x→2) (x^2 - 4) / (x - 2)答案:2b) lim(x→1) (x^2 - 1) / (x - 1)答案:2c) lim(x→0) sinx / x答案:12. 判断以下函数在给定点是否连续:a) f(x) = x^2 + 3x - 2, x = 2答案:连续b) f(x) = 1 / x, x = 0答案:不连续第二章:导数与微分1. 求以下函数的导数:a) f(x) = 3x^2 - 2x + 1答案:f'(x) = 6x - 2b) f(x) = sinx + cosx答案:f'(x) = cosx - sinxc) f(x) = e^x + ln(x)答案:f'(x) = e^x + 1 / x2. 求以下函数的微分:a) f(x) = 2x^3 - 5x^2 + 3x - 1答案:df(x) = (6x^2 - 10x + 3)dx b) f(x) = √x + ln(x)答案:df(x) = (1 / (2√x) + 1 / x)dx 第三章:定积分1. 求以下定积分:a) ∫(0 to 1) x^2 dx答案:1 / 3b) ∫(1 to 2) 2x dx答案:3c) ∫(0 to π) sinx dx答案:22. 求以下定积分:a) ∫(0 to 1) (x^3 + 2x^2 + x) dx 答案:7 / 12b) ∫(1 to 2) (2x^2 + 3x + 1) dx答案:19 / 3第四章:不定积分1. 求以下函数的不定积分:a) ∫(3x^2 - 2x + 1) dx答案:x^3 - x^2 + x + Cb) ∫(2sinx + cosx) dx答案:-2cosx + sinx + C2. 求以下函数的不定积分:a) ∫(2x^3 + 3x^2 + x) dx答案:(1 / 2)x^4 + x^3 + (1 / 2)x^2 + C b) ∫(e^x + 1 / x) dx答案:e^x + ln|x| + C第五章:级数1. 判断以下级数是否收敛:a) ∑(n = 1 to ∞) (1 / n^2)答案:收敛b) ∑(n = 1 to ∞) (1 / n)答案:发散2. 判断以下级数是否收敛:a) ∑(n = 1 to ∞) (1 / 2^n)答案:收敛b) ∑(n = 1 to ∞) (n / 2^n)答案:收敛第六章:多元函数微分学1. 求以下函数的偏导数:a) f(x, y) = x^2 + 2xy + y^2答案:∂f / ∂x = 2x + 2y, ∂f / ∂y = 2x + 2yb) f(x, y) = sinx + cosy答案:∂f / ∂x = cosx, ∂f / ∂y = -siny2. 求以下函数的全微分:a) f(x, y) = x^3 + 2xy^2答案:df = (3x^2 + 2y^2)dx + (4xy)dyb) f(x, y) = e^x + ln(y)答案:df = e^xdx + (1 / y)dy第七章:多元函数积分学1. 求以下二重积分:a) ∬(D) x^2 dA, D为单位圆盘答案:π / 3b) ∬(D) y dA, D为正方形区域,顶点为(0, 0), (1, 0), (0, 1), (1, 1) 答案:12. 求以下二重积分:a) ∬(D) (x + y) dA, D为上半平面答案:无穷大b) ∬(D) (2x + 3y) dA, D为单位正方形答案:5 / 2第八章:无穷级数1. 判断以下级数是否收敛:a) ∑(n = 1 to ∞) (1 / n^3)答案:收敛b) ∑(n = 1 to ∞) (1 / 2^n)答案:收敛2. 判断以下级数是否收敛:a) ∑(n = 1 to ∞) (n / 2^n)答案:收敛b) ∑(n = 1 to ∞) (n^2 / 2^n)答案:收敛第九章:常微分方程1. 求以下常微分方程的通解:a) dy / dx = x^2答案:y = (1 / 3)x^3 + Cb) dy / dx = 2x + 1答案:y = x^2 + x + C2. 求以下常微分方程的特解:a) dy / dx = y^2, y(0) = 1答案:y = 1 / (1 - x)b) dy / dx = 2x, y(0) = 3答案:y = x^2 + 3以上是大一高数1-9章节的习题答案,希望能对大家的学习有所帮助。

大一高数试题及答案解析

大一高数试题及答案解析

大一高数试题及答案一、填空题(每小题1分,共10分)________ 11.函数y=arcsin√1-x2+────── 的定义域为_________√1-x2_______________。

2.函数y=x+ex上点(0,1)处的切线方程是______________。

f(Xo+2h)-f(Xo-3h)3.设f(X)在Xo可导且f'(Xo)=A,则lim───────────────h→o h= _____________。

4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。

x5.∫─────dx=_____________。

1-x416.limXsin───=___________。

x→∞ X7.设f(x,y)=sin(xy),则fx(x,y)=____________。

_______R √R2-x28.累次积分∫ dx∫ f(X2+Y2)dy化为极坐标下的累次积分为____________。

0 0d3y3d2y9.微分方程─── +──(─── )2的阶数为____________。

dx3xdx2∞ ∞10.设级数∑an发散,则级数∑an _______________。

n=1 n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=── ,g(x)=1-x,则f[g(x)]=()x111①1-── ②1+── ③ ──── ④xxx1-x12.x→0 时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f( X )在 X=Xo连续,则f( X )在X=Xo可导②若f( X )在 X=Xo不可导,则f( X )在X=Xo不连续③若f( X )在 X=Xo不可微,则f( X )在X=Xo极限不存在④若f( X )在 X=Xo不连续,则f( X )在X=Xo不可导4.若在区间(a,b)内恒有f'(x)〈0,f"(x)〉0,则在(a,b)内曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F'(x) =G'(x),则()①F(X)+G(X) 为常数②F(X)-G(X) 为常数③F(X)-G(X) =0dd④ ──∫F(x)dx=──∫G(x)dxdxdx16.∫ │x│dx=()-1①0②1③2④37.方程2x+3y=1在空间表示的图形是()①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg── ,则f(tx,ty)=()y①tf(x,y)②t2f(x,y)1③t3f(x,y)④ ──f(x,y)t2an+1∞9.设an≥0,且lim───── =p,则级数∑an()n→∞ a n=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散10.方程y'+3xy=6x2y是()①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是()①y=ex②y=x3+1③y=x3cosx④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使()①f(b)-f(a)=f'(ζ)(b-a)②f(b)-f(a)=f'(ζ)(x2-x1)③f(x2)-f(x1)=f'(ζ)(b-a)④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X)在 X=Xo 的左右导数存在且相等是f(X)在 X=Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11 x16.lim─── ∫ 3tgt2dt=()x→0 x3 01①0②1③ ── ④ ∞3xy17.limxysin───── =()x→0 x2+y2y→0①0②1③ ∞ ④sin118.对微分方程y"=f(y,y'),降阶的方法是()①设y'=p,则y"=p'dp②设y'=p,则y"=───dydp③设y'=p,则y"=p───dy1dp④设y'=p,则y"=── ───pdy∞ ∞19.设幂级数∑anxn在xo(xo≠0)收敛,则∑anxn在│x│〈│xo│()n=o n=o①绝对收敛②条件收敛③发散④收敛性与an有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ=()D x1 1 sinx① ∫ dx∫ ───── dy0 x x__1 √y sinx② ∫ dy∫ ─────dx0 y x__1 √x sinx③ ∫ dx∫ ─────dy0 x x__1 √x sinx④ ∫ dy∫ ─────dx0 x x三、计算题(每小题5分,共45分)___________/x-11.设y=/────── 求y' 。

高数大一下知识点练习题

高数大一下知识点练习题

高数大一下知识点练习题高数(即高等数学)是大学本科数学中的一门重要课程,对于理工科学生而言,高数的学习是一个重要的里程碑。

大一下学期,学生们将进一步学习和掌握高数的知识点,并通过练习题来巩固所学内容。

本文将选取一些常见的高数知识点练习题进行讲解和解答,以帮助读者更好地理解和掌握高数的要点。

练习题一:求函数的极值问题描述:已知函数 f(x) = x^3 - 3x + 2,求函数在定义域内的极值点。

解答:首先,我们需要求出函数的导数 f'(x),然后找出导函数为零的点,即为函数的驻点。

接下来,我们再求出驻点的二阶导数 f''(x),判断二阶导数的正负性以确定函数的极值。

求导过程如下:f'(x) = 3x^2 - 3令 f'(x) = 0,则有 3x^2 - 3 = 0解得 x = ±1求二阶导数:f''(x) = 6x根据二阶导数的正负性判断:当 x < -1 时,f''(x) < 0,函数凹向下,有极大值;当 -1 < x < 1 时,f''(x) > 0,函数凹向上,有极小值;当 x > 1 时,f''(x) < 0,函数凹向下,有极大值。

综上所述,函数 f(x) 的极大值点为 x = -1,极小值点为 x = 1。

练习题二:曲线的切线方程问题描述:已知函数 f(x) = ln(x^2 + 1),求函数在点 x = 1 的切线方程。

解答:首先,我们需要求出函数f(x) 在点x = 1 处的导数f'(1),作为切线的斜率。

然后,利用切线的点斜式方程 y - y1 = k(x - x1)来求出切线方程。

求导过程如下:f'(x) = 2x / (x^2 + 1)f'(1) = 2 / 2 = 1切线过点 (1, f(1)) = (1, ln(1^2 + 1)) = (1, ln2),斜率为 1,切线方程为 y - ln2 = 1(x - 1)。

高等数学基础题及答案

高等数学基础题及答案

一、单项选择题(每小题4分,共28分)1.设,则r(A)= ( D ).A .0B .1C .2D .3 2.已知当( A )时,函数为无穷小量.3.当时,下列变量为无穷小量的是( A ).A .B .C .D .4.若,则f (x ) =( C )A .B .-C .D .-5.函数的定义域是( D ) A .B .C .D .且6.以下结论或等式正确的是( C )A .若均为零矩阵,则有B .若,且,则C .对角矩阵是对称矩阵D .若,则7.线性方程组 解的情况是( D )A . 有无穷多解B . 只有0解C . 有唯一解D . 无解二、填空题(每小题4分,共20分) 1.dx e x 2-.2.函数的原函数是 C x +-2cos 213若函数,则62-x4已知某商品的需求函数为q = 180 – 4p ,其中p 为该商品的价格,则该商品的收入函数R (q ) = q q 45412+-5曲线在处的切线斜率是21 三、计算题(每小题5分,共30分)1.已知,求 .解:2cos sin 2ln 2)cos ()2()(x xx x xxx y x x ++='-'='2.已知,求 .解:xx x x x x x x x f x x x x x 1cos 2sin 2ln 21)(sin 2sin )2()(ln )sin 2()(++=+'+'='+'='3.设,求.解:由xxx y -+=2cos sin 33,得 32232322322233333cos 3cos sin 3cos 3)(cos sin )(cos cos )(sin xx x x x x x x x x x x d d x y=+='-'== 所以 dx xx d y 322cos 3= 4.计算积分.解:原式21)0cos 21(2cos 2102cos 21222=--⎪⎪⎭⎫ ⎝⎛-=-=ππx 5.计算解:原式C x+=1cos6.解:原式C x x dxx +-=-=⎰221)2(2四、线性代数计算题(10分)设矩阵A =,求逆矩阵.解:02≠=A ,知A 可逆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大一高数基础练习题 TYYGROUP system office room 【TYYUA16H-TYY-《高等数学》(理工类)1.设()y f x =的定义域为(0,1],()1ln x x ϕ=-,则复合函数[()]y f x ϕ=的定义域为________;0ln 1,[1,)x x e ≤<∈2.已知0x +→时,arctan3x 与cos axx是等价无穷小,则a =______;0arctan 33lim1,3x x a ax a→===;3.函数6cos 2sin π+=x x y ,则=y d ________;21(2cos 2sin 2)x x dx x-;4.函数x xe y -=的拐点为____________;(2)0,2x y e x x -''=-==,2(2,2)e -5.设函数⎪⎩⎪⎨⎧≥+<=2,2,sin )(ππx x a x x x f ,当a =____时,)(x f 在2π=x 处连续;12π-;6. 设()y y x =是由方程20y e xy +-=所确定的隐函数,则y '=__;y ye x-+ 7.函数xx ex f --=111)(的跳跃间断点是______;(1)0,(1)1,f f -+==1x =;8.定积分11sin )x dx -⎰=________;022π=⎰9.已知点空间三个点,)2,1,2(),1,2,2(,)1,1,1(B A M 则AMB = _______;3π;10.已知(2,3,1)(1,2,3)a b ==,则a b ⨯=_________。

(751)-,, 二、计算题(每小题6分,共42 分)1.求极限220ln(1)1lim 2sin 2x x arc x →+=。

2.求极限3sin 0sin lim xt x e dtx x →-⎰=32sin 03sin lim61cos xx xe x →=-3.设2sin ,x y e x =⋅求.dydx。

2(2sin cos )xdy e x x x dx=+4、设ln arctan x y t⎧⎪=⎨=⎪⎩ 求dy dx 以及22d y dx 。

解 21ln(1)2x t =+,221111dy t t dx t t+==+,22231d y t dx t +=-5.计算不定积分⎰dx xx )ln(ln 。

解 ln(ln )ln x d x ⎰1ln ln(ln )x x dx x=-⎰ln (ln(ln )1)x x C =-+6、计算不定积分213cos dx x +⎰22sec 3sec 1x dx x =+⎰213tan 4d x x =+⎰2xC + 7.计算定积分dx x x 22)4(1--⎰121(1)(4)(1)(4)x x dx x x dx =-----⎰⎰三、证明题(每小题8分,共16 分) 1、设)(x f 在区间[0,3]上连续,在区间(0,3)内可导,且(0)(1)(2)3f f f ++=,(3)1f =,试证必存在(0,3)ξ∈使()0f ξ'=。

证明 因为()f x 在]3,0[上连续,所以)(x f 在]2,0[上连续,且在]2,0[上有最大值M 和最小值m 。

于是 ,)0(M f m ≤≤,)1(M f m ≤≤,)2(M f m ≤≤所以 ,3)2()1()0(M f f f m ≤++≤由介值定理知至少存在]2,0[∈c ,使1)(=c f 。

因为1)3()(==f c f ,且)(x f 在]3,[c 上连续,在)3,(c 内可导,由罗尔定理存在(,3)(0,3)c ξ∈⊂,使 ()0f ξ'= 。

2、证明不等式:当0x >时,1ln(x x + 。

证明()1ln(f x x x =++,()ln(0,0f x x x '=>>,()(0)0f x f >=,则当0x >时,1ln(x x +>四、应用题(第1小题10分,第2小题12分)1.要建造一个体积为350m V =的圆柱形封闭..的容器,问怎样选择它的底半径和高,使所用的材料最省?解 设圆柱体的半径为r ,高250h rπ=,表面积为S ,21002S r r π=+, 210040S r rπ'=-=,r =,h =2.求曲线a xy =)0(>a ,直线a x =,a x 2=及x 轴所围成的图形绕y 轴旋转一周所得到的旋转体体积。

解 2222a y aV a dx a ππ==⎰《高等数学》(理工)一、 选择题(每空 3 分,共 15 分)1、下列变量在给定的变化过程中为无穷小量的是( );D ;A 、21()x x --→+∞;B 、sin (0)xx x→ C、2)x →∞; D 、2(0)1x x x →+。

2、设函数22()12ax x f x x ⎧≥=⎨<⎩在2x =处连续,则a =( );A ;A 、41; B 、0; C 、21; D 、1、3、设()f x 在[,]a b 上可导,且()0.f x '>若0()()xx f t dt Φ=⎰,则下列说法正确的是( );C ;A 、()x Φ在[,]a b 上单调减少;B 、()x Φ在[,]a b 上单调增加;C 、()x Φ在[,]a b 上为凹函数;D 、()x Φ在[,]a b 上为凸函数。

4、下列不定积分计算正确的是( );D ;A 、c x dx x +=⎰32;B 、c x dx x+=⎰112; C 、c x dx x +=⎰cos sin ; D 、c x dx x +=⎰sin cos 。

5、设)(x f 在],[b a 上连续,则下列论断不正确的是( )。

A ;A 、()baf x dx ⎰是()f x 的一个原函数;. B 、()xaf t dt ⎰在(,)a b 内是()f x 的一个原函数.;C 、()bx f t dt ⎰在(,)a b 内是()f x -的一个原函数; D 、()f x 在(,)a b 上可积。

二、填空题(每空 3 分,共 15 分)6、若lim ()2,x f x →∞=则()x f x →∞=;20x =;7、曲线12+=x y 在点)2,3(的切线方程为:____ ____;22y x -=-; 8、曲线sin y x =在(0,2)π内的拐点为 ;(,)e π; 9、当p 满足条件__________时,反常积分 1pdxx +∞⎰收敛; 1p >; 10、微分方程43()()21y y y x '''++-=的阶数是_________.2;三、计算题(共 45 分)11、求下列函数极限(每题6分,共12分):(1) 016x →=(2) 2203200sin sin 1limlim 33x x x t dtx x x →→==⎰12、求下列函数导数(每题6分,共12分):(1) 设函数5ln 11tan +++=x xe y x ,求y ' ;解 tan 221(1sec )(1)x y e x x x '=+-+ (2)设函数()x f y = 由方程 054ln 2=-+-x y y x 所确定,求)1,5(y ';解45y y '+-, 将5,1x y ==代入得 (5,1)35y '=13、求下列函数积分(每题7分,共21分):(1) dx C =+(2) 22111111ln ln (ln )22e e e ex xdx xdx x xxdx ==-⎰⎰⎰2211()22e e -=-21(1)4e =+ (3)⎰-++-1152)cos 1(dx x x xx 022π==⎰四、证明题(每小题 8分,共 16 分)14、证明:设arctan ln(1)01xx x x +≥≥+证明 设()(1)(1ln )arctan 0f x x x x x =++-≥,21()(1ln )101f x x x =++->+则()(0)0f x f ≥=,arctan ln(1)01x x x x+≥≥+15、设()f x 在[0,1]上连续,在(0,1)上可导,且(1)0f =,求证在(0,1)内至少存在一点,ξ使得3()()0f f ξξξ'+=成立.证明 设3()()F x x f x =在[0,1]上连续,在(0,1)上可导,且(0)(1)0F F ==,y 由罗尔中值定理得 23()3()()0F f f ξξξξξ'=+=,即有 3()()0f f ξξξ'+= 五、应用题(共9分)16、求曲线2y x =与过该曲线上的点(4,2)的切线及y 轴所围成的图形的面积.S解 21yy '=, (4,2)14y '=,切线方程 12(4)4y x -=-,114y x =+ 高等数学(上)一、单项选择题(本题共20分,每小题2分) 1、函数1ln(2)y x x=+的定义域为( );D ; A 、0x ≠且2x ≠-; B 、B 、0x >; C 、2x >-; D 、2x >-且0x ≠。

2、=∞→xx x 1sinlim ( );C ; A 、∞; B 、不存在; C 、1; D 、0。

3、按给定的x 的变化趋势,下列函数为无穷小量的是( );A ;A 、142+-x x x (+∞→x ) ; B 、111-⎪⎭⎫⎝⎛+xx (∞→x ); C 、x --21 (0→x ) ; D 、xxsin (0→x ); 4、设()⎩⎨⎧≥+<=0,0,x x a x e x f x 要使()x f 在0=x 处连续,则=a ( );B ;A 、2;B 、1;C 、0 ;D 、-15、设函数()f x 在(,)a b 内恒有()0,()0f x f x '''><,则曲线()y f x =在(,)a b 内( )A ;A 、单调上升,向上凸; B 、单调下降,向上凸;C 、单调上升,向上凹;D 、单调下降,向上凹。

6、设()(1)(2)(3)(4)f x x x x x =----,则方程()0f x '=在实数范围内根的个数是( );B ;A 、4 ;B 、3 ;C 、2 ;D 、1 。

7、设21,0(),0x x x f x e x ⎧+<⎪=⎨≥⎪⎩,则31(2)f x dx -=⎰( );B ;2245,2(2),2x x x x f x e x -⎧-+<⎪-=⎨≥⎪⎩A 、13e -;B 、13e + ;C 、13; D 、2e 。

相关文档
最新文档