叶绿素荧光参数及意义

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节 叶绿素荧光参数及其意义

韩志国,吕中贤(泽泉开放实验室,上海泽泉科技有限公司,上海,200333)

叶绿素荧光技术作为光合作用的经典测量方法,已经成为藻类生理生态研究领域功能最强大、使用最

广泛的技术之一。由于常温常压下叶绿素荧光主要来源于光系统II 的叶绿素a ,而光系统II 处于整个光合

作用过程的最上游,因此包括光反应和暗反应在内的多数光合过程的变化都会反馈给光系统II ,进而引起

叶绿素a 荧光的变化,也就是说几乎所有光合作用过程的变化都可通过叶绿素荧光反映出来。与其它测量

方法相比,叶绿素荧光技术还具有不需破碎细胞、简便、快捷、可靠等特性,因此在国际上得到了广泛的

应用。

1 叶绿素荧光的来源

藻细胞内的叶绿素分子既可以直接捕获光能,也可以间接获取其它捕光色素(如类胡萝卜素)传递来

的能量。叶绿素分子得到能量后,会从基态(低能态)跃迁到激发态(高能态)。根据吸收的能量多少,

叶绿素分子可以跃迁到不同能级的激发态。若叶绿素分子吸收蓝光,则跃迁到较高激发态;若叶绿素分析

吸收红光,则跃迁到最低激发态。处于较高激发态的叶绿素分子很不稳定,会在几百飞秒(fs ,1 fs=10-15

s )内通过振动弛豫向周围环境辐射热量,回到最低激发态(图1)。而最低激发态的叶绿素分子可以稳定

存在几纳秒(ns ,1 ns=10-9 s )。

波长吸收荧光红

B

荧光

热耗散

最低激发态较高激发态基态吸收蓝光吸收红光能量A

图1 叶绿素吸收光能后能级变化(A )和对应的吸收光谱(B )(引自韩博平 et al., 2003)

处于最低激发态的叶绿素分子可以通过几种途径(图2)释放能量回到基态(韩博平 et al., 2003;

Schreiber, 2004):1)将能量在一系列叶绿素分子之间传递,最后传递给反应中心叶绿素a ,用于进行光化

学反应;2)以热的形式将能量耗散掉,即非辐射能量耗散(热耗散);3)放出荧光。这三个途径相互竞

争、此消彼长,往往是具有最大速率的途径处于支配地位。一般而言,叶绿素荧光发生在纳秒级,而光化

学反应发射在皮秒级(ps ,1 ps=10-12 s ),因此在正常生理状态下(室温下),捕光色素吸收的能量主要用

于进行光化学反应,荧光只占约3%~5%(Krause and Weis, 1991; 林世青 et al., 1992)。

在活体细胞内,由于激发能从叶绿素b 到叶绿素a 的传递几乎达到100%的效率,因此基本检测不到

叶绿素b 荧光。在常温常压下,光系统I 的叶绿素a 发出的荧光很弱,基本可以忽略不计,对光系统I 叶

绿素a 荧光的研究要在77 K 的低温下进行。因此,当我们谈到活体叶绿素荧光时,其实指的是来自光系

统II 的叶绿素a 发出的荧光。

图2 激发能的三种去激途径(引自韩博平et al., 2003)

LHC,捕光色素蛋白复合体。

2 叶绿素荧光的研究历史

在19世纪就有了关于叶绿素荧光现象的记载。最初是在1834年由欧洲传教士Brewster发现,当强光穿过月桂叶子的乙醇提取液时,溶液的颜色由绿色变成了红色。1852年Stokes认识到这是一种光发射现象,并创造了“fluorescence”一词。

1931年,德国科学家Kautsky和Hirsch用肉眼观察并记录了叶绿素荧光诱导现象,明确指出暗适应处理的叶片照光后的诱导过程中,叶绿素荧光强度的变化与CO2固定呈相反的关系(Kautsky and Hirsch, 1931; Govindjee, 1995),此后的10余年中,Kautsky和他的学生Franck就这一现象作了系统的研究(Kautsky and Franck, 1943)。在Kautsky研究的基础上,后人进一步对叶绿素荧光诱导现象进行了广泛而深入的研究,并逐步形成了光合作用荧光诱导理论,被广泛应用于光合作用研究。由于Kautsky的杰出贡献,叶绿素荧光诱导现象也被称为Kautsky效应(Kautsky Effect)。

从1960年代到1980年代早期,叶绿素荧光这一生物物理学的技术被广泛用于光合作用基础研究,很多重要发现都与这一技术有关,如光合作用存在两个光反应的提出(Duysens and Sweers, 1963)就是采用的这一技术应用的典型代表。但在那个年代,所有的叶绿素荧光测量都只能在完全遮蔽环境光的“黑匣子”里进行,这大大限制了叶绿素荧光技术在植物胁迫生理学、生理生态学和植物病理学等领域的应用。因此在很长一段时间中,叶绿素荧光技术在基础研究和应用研究的使用中存在一个鸿沟。尽管如此,情况还是在逐步好转。这是因为虽然叶绿素荧光信号虽然复杂,但确实提供了可靠的、定量的信息,并且可以由越来越小型化的仪器来进行测量。

1980年代中期,德国乌兹堡大学的Schreiber提出了叶绿素荧光测量的饱和脉冲理论,并发明了脉冲-振幅-调制(Pulse-Amplitude-Modulation)叶绿素荧光仪(Schreiber, 1986; Schreiber et al., 1986),也就是今天大名鼎鼎的调制叶绿素荧光仪PAM。Schreiber早年师从Kautsky的学生Franck,在后者的指导下很早就开始进行叶绿素荧光研究(Schreiber et al., 1971; Gielen et al., 2007),并在1975年就设计出了科研界第一款便携式叶绿素荧光仪(Schreiber et al., 1975)。但受限于光电技术的发展,当时这款荧光仪只能测量叶绿素荧光诱导曲线,不能进行深入的淬灭分析,直到PAM的出现才解决了这个问题。

调制叶绿素荧光仪PAM和调制叶绿素荧光测量技术在叶绿素荧光的研究历史上具有里程碑意义。它采用了调制技术进行测量,从而可以在有环境光照(甚至是很强的太阳光)的情况下记录叶绿素荧光信号;

相关文档
最新文档