数控高速加工与工艺

合集下载

高速加工工艺与数控编程研究

高速加工工艺与数控编程研究
中图分类号 :G3 文 献标识 码 : 文 章编 号 :63—48(070 03一(3 T A 17 5020)3—04 0)
前 言
径; 径向切削深度 的选择和加工材料有关 , 于铝 对 合金之类的轻合金为提高加工效率可 以采用较大 的径 向铣削深度 , 对于钢及其他加工性稍差的材料 宜选择较小的径向铣削深度 , 减缓刀具磨损。 I2工艺参数选择 . 由于球头铣刀的实 际参与切削部分的 自径和 加工方式有关 , 在选择切削用量时必须考虑其有效 直径和有效线速度( I 。 图 ) 球头铣刀 的有效直径计
高, 导致快速磨损。 在工艺允许 的条件下 , 尽量采用 刀尖圆弧半径较大的刀具进行高速铣削。 随着立铣刀刀尖圆弧半径的增加 , 平均切削厚
度和主偏角均下降, 同时刀具轴向受力增加 , 以 可 充分利用机床的轴向刚度 , 减小刀具变形和切削振 动。 在高速铣削加工时通常采用刀尖圆弧半径较大
算公 式 :
高速加工( S H M或 H C 是二十世纪九十年代 S) 迅速走 向实际应用的先进加工技术 , 通常指高主轴
转速和高进给速度下的加工 , 国际上在航空航天制 造业 、 模具加工业、 汽车零件加工 、 以及精密零件加
工等得到广 泛的应用。 高速加工削是一项 系统技 术, 从刀具材料、 刀柄 、 机床 、 控制系统、 加工工艺技 术 、A / A C D C M等, 均与常规加工有很大区别。 本文 从高速加工 的应用出发 , 对高速加工的刀具选择、 数控工艺及数控编程均做了一些有益的研究 和探
和加 工对象参 考刀具 厂商 提供 的加 工用 量选 择 。 一
能因为过切而产生拉刀或在外 拐角处 咬边。 尤其在
3 D型面的加工过程中, 要注意一些复杂细节或拐 角处切削形貌的产生, 而不是仅仅设法采用平行之 字形切削、 向切削或其他的普通切削等方式来生 单

高速切削加工的计算机数控技术

高速切削加工的计算机数控技术

高速切削加工的计算机数控技术史毅(江西现代学院机械学院,江西南昌330029)应用科技脯要]棵器高速切哥唾加工计算机兹艘系统速度与精度的影响,分析了树嚎括补与直线插朴的优缺点。

介绍了高速教控系统的速度预控常J、误差补偿等其他动自匕目蝴】高速切削;插补;计算机数控对高速切削加工的主要要求是能够加工复杂曲面,加工质量和切削效率、速度要高。

计算机数控(C N C)系统的基本任务,是根据已编制的零件加工程序,计算出沿机床各坐标轴的进给指令,驱动各轴运动,从而获得所需的运动轨迹。

其中需要进行插补处理。

1计算初.姑蓝寸甭补1.1直线插补直线与圆弧是构成零件轮廓的最基本线条,通常计算机数控系统均具有圆弧与直线插补功能。

目前占主导地位的直线插补计算简单,但存在一些问题需要克服。

常规的计算机数控系统在直线插补时,必需采用高精度的表面描述来近似。

零件曲线曲率变化较大、表面轮廓复杂时,需要增加中间计算点的数量,这样就导致了数控程序执行时间延长。

C N C系统具有一定的插补周期,它与最大进给速度F,(m/m i n)的关系是F。

F60(L m。

选T定后,由于加工精度要求选取短的插补直线长度L,不仅会使计算数据扩大,还会直接限制最大进给速度,也就是插补周期问题。

这与高速切削加工所要求的轨迹进给速度发生矛盾。

降低了加工精度与速度。

此外,直线插补还会使工件表面产生棱面。

12样条插补相对于直线插补,样条插补更为精确,其中以圆弧插补最为常用。

直接处理样条程序段的N U RB S插补方法优点很多。

多边形的编程,将为直线从C A M系统传递样条轨迹描述的方式,或通过几何转换即压缩直线程序段代替。

建立在三次B样条函数基础上的N U R B S函数有可调参数∞,可以精确、灵活地控制逼近曲面或曲线的形状,可以精确地表示所有二次曲面与曲线。

样条曲线数据必须减少数据总量,同时为流畅的加工提供必需的曲率和切线连续的程序髓立渡。

要求计算机数控系统能够通过制定精修多边形程序段的途径,自动光滑处理运动轨迹从而获得较为光滑的零件表面。

高速加工介绍

高速加工介绍

高速加工一、高速加工概述新一代的机床性能大大改进,主轴转速可以轻松达到20 000r/min以上,进给速度可以达到30 000mm/min,大大提高了加工效率以及设备的利用率,这更需要使用者研究规划工艺、优化程序、选择合适的刀具。

高速加工的概念是伴随着机床设备的发展不断更新的。

一般采用高的主轴转速、高的进给速度、较小的背吃刀量,其切削速度伴随刀具材料的超硬耐磨性的发展而不断提高。

通过了解高速加工的特点,虽然不一定能达到高速加工的要求,但在实际生产中采用高速加工的概念指导加工,还是可以取得一定效果的。

二、高速加工工艺1.高速加工程序特点:(1)全程无空刀路、无抬刀,都是在有效切削零件。

(2)所有刀路流畅,都是圆滑过渡,无拐点。

(3)刀路步距均匀、梳密一致,效率高。

(4)路径最短。

这符合优质刀路的特点,因此该加工程序很好。

2.发动机缸体高速铣削工艺发动机缸体高速铣削工艺的要求。

除了发动机缸体高速铣削工艺对精度、计算稳度的要求极高之外,其在使用中还有一些特殊的要求,主要集中在以下几点:首先发动机缸体高速铣削工艺在使用中不能和任何工装及工件发生碰撞;其次加工刀具在轨迹上必须保障绝对的平滑,以及十分均匀的切削深度;最后在发动机缸体高速铣削工艺使用中,其导致的设备振动必须控制在一定范围内。

3.发动机缸体高速镗孔工艺发动机缸体高速调头镗孔工艺的优势。

高速调头镗孔工艺的优势主要几种在三个方面,其一为在镗孔中镗杆较短,因此在切削速度上有所提升;其二为因为镗轴伸长较短,因此在精度方面更有保障;其三为切削设备占用空间较小,因此工作人员的工作活动空间更大,工作更为直观、安全。

三、高速加工刀具1.刀具的要求:高硬度、高耐磨、高强度和韧性、高耐热性、良好的工艺性。

(1)硬质合金涂层刀具最常用(2)TiC(TiN)基硬质合金金属陶瓷(3)陶瓷刀具耐热耐磨但强度韧性差(4)立方氮化硼刀具CBN 一般用来精加工高硬度淬火钢、高温合金、工具钢、高速钢,耐热耐磨但脆性大、韧性差(5)聚晶金刚石刀具PCD 不宜加工铁及其合金高速加工刀具刀柄:采用1:10 短锥柄代替传统的7:24 长锥柄成为发展趋势。

高速加工与超高速加工

高速加工与超高速加工
度低,离心力小;弹性模量高, 刚度大;摩擦系数低;抗腐蚀性 能好。
轴承润滑:油脂润滑、油雾 润滑、油气润滑等。
1.2 超高速切削加工关键技术
2.超高速切削的主轴系统
主轴轴承: 气浮轴承--高回转精度、高转速、低温升,承载能力低。
1.2 超高速切削加工关键技术
2.超高速切削的主轴系统
主轴轴承: 液体静压轴承--运动精度高,动态刚度大,有油升影响。
1.3 超高速磨削技术
超高速磨削砂轮 砂轮基体--必须考虑高速离心力作用; 砂轮磨粒--立方氮化硼、金刚石。
高速砂轮典型结构 变截面等力矩腹板结构,无中心法兰孔, 通过多个小螺孔与主轴安装固定,以降低法兰孔应力。
1.3 超高速磨削技术
超高速磨床结构 具有高动态精度、
高阻尼、高抗振性和 热稳定性。
时,刀具的主要失效形式为刀尖破损,设计时应 着重考虑提高刀尖的抗冲击强度。 超高速铣削刀具材料:有整体硬质合金、涂层硬 质合金、陶瓷、硬质合金和立方氮化硼等。
思考与练习
1. 在怎样的速度范围下加工属于高速加工?分析 高速切削加工所要解决的关键技术。 2. 超高速切削包含哪些相关技术? 3. 简述超高速磨削特点及关键技术。 4. 简述超高速铣削特点及关键技术。
1. 高速与超高速加工技术
1.1 高速与超高速切削技术概述 1.2 超高速切削加工关键技术 1.3 超高速磨削技术 1.4 超高速铣削技术
1.1 高速与超高速切削技术概述
“高速加工”的起源
Salomon切削理论: 工件材料均有一个
临界切削速度,在该速 度下有最高切削温度。
为什么要进行高速加工?
萨洛蒙曲线
常用结构有龙门式、并联式机床结构。
1.2 超高速切削加工关键技术

高速加工技术

高速加工技术

高速加工技术一.起源1931年,德国切削物理学家萨洛蒙(Carl.J.Salomon)博士提出了一个假设,即同年申请了德国专利的所罗门原理:被加工材料都有一个临界切削速度V0,在切削速度达到临界速度之前,切削温度和刀具磨损随着切削速度增大而增大,当切削速度达到普通切削速度的5~6倍时,切削刃口的温度开始随切削速度增大而降低,刀具磨损随切削速度增大而减小。

切削塑性材料时,传统的加工方式为“重切削”,每一刀切削的排屑量都很大,即吃刀大,但进给速度低,切削力大。

实践证明随着切削速度的提高,切屑形态从带状、片状到碎屑状演化,所需单位切削力在初期呈上升趋势,而后急剧下降,这说明高速切削比常规切削轻快,两者的机理也不同。

通过长期的研究,从上世纪90年代中期起,高速加工进入实用化阶段。

用户可以享受高速加工的高效率,高精度和成本优势。

德国OPS-INGERSOLL公司是目前世界上最好的高速加工中心制造商之一。

二.高速加工的定义高速加工是指转速在30,000RPM以上,实际加工切削进给保持8-12m/min的恒定进给。

我们从定义中看出,高速加工的一个关键要素是高速恒定进给。

由于高速加工时,转速上万转,特别在加工高硬度材料时,瞬间产生大量热量,所以必须保持高速进给,使产生的85%以上的热量被铁屑带走。

但在模具加工过程中,硬度通常在HRC50以上,且为复杂的曲面或拐角,所以高速机床必须做到在加工曲面或拐角时仍能高速进给。

另外实际加工中,刀具都有一个最佳切削参数,如能保持恒定进给,对刀具寿命,切削精度和加工表面质量都有提高。

由此看出,高速加工不仅是高速主轴,而且也是机床伺服系统的综合。

事实上,高速切削技术是一个非常庞大而复杂的系统工程,它涵盖了机床材料的研究及选用技术,机床结构设计和制造技术,高性能C NC控制系统、通讯系统,高速、高效冷却、高精度和大功率主轴系统,高精度快速进给系统,高性能刀具夹持系统,高性能刀具材料、刀具结构设计和制造技术,高效高精度测试测量技术,高速切削机理,高速切削工艺,适合高速加工的编程软件与编程策略等等诸多相关的硬件和软件技术。

数控技术第四章 高速切削与五轴联动加工编程基础

数控技术第四章 高速切削与五轴联动加工编程基础

第一节 高速切削编程方法
(1)恒定的金属切除率 在高速切削的粗加工过程中,保持恒定的 金属切除率,可以获得以下的加工效果:①保持稳定的切削力; ②保持切屑尺寸的恒定;③没有必要去熟练操作进给量和主轴转 速;④较好的热转移,使刀具和工件均保持在较冷的温度状态; ⑤延长刀具的寿命;⑥较好的加工质量等。 (2)恒定的切削条件 为保持恒定的切削条件,一般主要采用层切 法、顺铣方式加工,或采用在实际加工点计算加工条件等方式进 行粗加工,如图4-7所示。
图4-4 尖角处刀具轨迹比较示意图 a)不好 b)好 c)很好 d)拐角处圆弧连接
第一节 高速切削编程方法
(2)保证工件的高精度 保证工件的高精度,重要的方法是尽量减 少刀具的切入次数,如图4-5所示。
图4-5 减少刀具切入次数示意图
第一节 高速切削编程方法
(3)保证工件的优质表面 1)在高速切削过程中,过小的进给量会影响实际的进给速率,造 成切削力的不稳定,产生切削振动,从而影响工件表面的质量, 故高速切削过程应采用合适的进给量平滑加工,如图4-6所示。
第四章 高速切削与五轴联动加工编程基础
第四章 高速切削与五轴联动加工编程基础
第一节 第二节 第三节 第四节
高速切削编程方法 多轴数控加工的工艺 五轴机床工件坐标系的建立 五轴数控加工刀具的补偿
第一节 高速切削编程方法
一、高速加工编程与普通加工编程的区别 高速切削中的数控编程代码并不仅仅在切削速度、切削深度和进 给量上不同于普通加工,而且还必须是全新的加工策略,以创建 有效、精确、安全的刀具路径,从而达到预期的加工要求。 1.高速加工中数控编程的特点 1)由于高速切削的特殊性和控制的复杂性,编程要注意加工方法 的安全性和有效 2)要尽一切可能保证刀具轨迹光滑平稳,这会直接影响加工质量 和机床主轴等零件的寿命。 3)要尽量使刀具所受载荷均匀,这会直接影响刀具的寿命。 2.对CAM编程软件的功能要求

数控加工工艺与编程习题答案完整版

数控加工工艺与编程习题答案完整版

第1章数控机床基础知识1-1数控机床具有哪些特点?1、具有柔性化和灵活性。

当改变加工工件时,只要改变数控程序即可,所以合适产品更新换代快的要求。

2、可以采用较高的切削速度和进给速度(或进给量)。

3、加工精度高,质量稳定。

数控机床本身精度高,此外还可以利用参数的修改进行。

精度校正和补偿。

1-2数控机床由哪几部分组成?1、程序及程序载体。

数控装置由数控机床自动加工工件的工作指令组成。

包括切靴过程中所需要的机械运动,工件,轮廓,尺寸。

工艺参数等加工信息。

2、输入装置。

输入装置的作用是将程序载体上的数控代码信息转化成相映的电脉冲信号。

并传送至数控装置的储存器。

3、数控装置。

数控装置是数控机床的核心。

包括微型计算机,各种接口电路,显示器。

和硬件及相应软件。

4、强电控制装置。

5、伺服控制装置。

6、机床的机械部件。

1-3伺服控制装置的主要作用是什么?伺服控制装置主要完成机床的运动,其运动控制。

包括进给运动主轴,运动位置控制等。

1-4先进制造技术包括哪些内容?1-5数控机床按伺服控制系统和加工运动轨迹方式分为哪几类,各有什么特点?一、按控制方式分最常用的数控机床可分为以下三类:1、开环数控机床,这类机床通常为经济型、中小型数控机床。

具有结构简单,价格低廉,调试方便等优点。

但通常输出的转距大小受到限制,而且当输入的频率较高时,容易湿不男女,实现运动部件的控制,因此已不能完全满足数控机床提高功率。

运动速度和加工精度的要求。

2、闭环数控机床,相比开环数控机床,闭环数控机床的精度更高。

速度更快,驱动功率更大,但是这类机床价格昂贵,对机床结构及传动链依然提出了严格的要求。

3、半闭环数控机床。

半闭环数控机床可以获得比开环系统更高的加工精度。

但由于机械传动链的误差无法得到消除或校正。

因此它的位移精度比闭环系统低,大多数数控机床采用半闭环控制系统。

二、按机械加工运动轨迹方式分类1、点位控制数控机床(孔加工)点位控制数控机床的要求点在空间的位置准确。

模具数控高速切削加工的工艺分析与工艺处理

模具数控高速切削加工的工艺分析与工艺处理
坯表 面 的多余 材料 ,基 本形 成半 精加工 所要 求 的几
2 半精加工工艺分析
半 精 加 工强 调 加 工效 率 与 质量 要 求 的统 一性 , 半 精加 工 后的零 件应 表面 光 洁 、余量 均 匀 ,模具 半
何轮 廓 。一般 可 采用 大直径 刀具 ,以大切 削 间距 与 较大 的公 差值 进行 切削 加工 。例 如 :使 用端 面铣 刀 和平头 铣 刀及配 合 21 主 轴 的加工 方 式 , 分发 挥 / 2 充 机 床主 轴 的额定 功 率。 分 析粗 加工 的切 削特 征 , 入 时刀具 载 荷显著 切 增 大 ,切 出时 突 然变小 ,趋于 零 。切削过 程 中,切
弧式 )切 入与切 出方式 ,避 免 垂直切 入 与切 出 。如
加工模 具 型腔 时 ,应避 免 刀具 垂直切 入 零件 ,而 应 采用倾 斜 式下 刀方 式 ( 斜 角一般 为 2 。 ~3 。) 倾 0 0 。 有条件 的 话可 采用 螺旋 式下 刀 方式 ,以减小 刀具 载
清角 加工— — 精加 工等 工序 。对于 精度 要求 高
削内侧 拐角 时刀 具载 荷显 著增 大 ,切 削外 侧拐 角时
刀具 载荷 显著 减小 , 致 刀具承 受 的载荷 发生变 化 , 导 造 成切 削过程 不 稳定 ,刀具磨 损快 ,加工 表面 质量 下降 。因 此 ,为 保持切 削 条件 相对 稳定 ,可采用 相 应 措施 改善 切 削状 况 。 1 ( )恒 定 的 切 削 载荷 。通 过 C AM 软件 计 算获 得 恒定 的切 削层 面积 和 材料 切 除 率 ,使切 削载 荷 与刀具 磨损 率保 持均 衡 ,有利 于 提 高加工质量 和延长 刀具寿命 。 ) 斜式切 入与切 出。 ( 倾 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江机电
高速粗、精加工的编程策略 高速加工精加工编程策略
3、控制残余高度
浙江机电
高速粗、精加工的编程策略 高速加工精加工编程策略
4、采用每齿的横向进给量也要与径向进给量相当工艺,来达到高速高精度 工件表面。在高速铣削过程中,最好采用f=P的铣削方式。
浙江机电
高速粗、精加工的编程策略 高速加工精加工编程策略
浙江机电
高速粗、精加工的编程策略 粗加工考虑因素
3.走刀。高速加工中应能提供各种不同的加工方法以满足不同形状和 类别的零件加工要求,同时加工方法也应具有智能、简便、快捷、准 确等特点,走刀方法要丰富。高速加工走刀方式应满足一些基本原则, 如应避免刀具轨迹中走刀方向的突然变化,以免因局部过切而造成刀 具或设备的损坏;走刀速度要平稳,避免突然加速或减速;避免多走 空刀;应采用光滑的转弯走刀,采用光滑的转弯走刀与进行光滑的移 刀一样,对保证高速加工的平稳与效率同样重要。
浙江机电
5、采用不同的精加工方法
浙江机电
高速粗、精加工的编程策略 高速加工精加工编程策略
6、应用边界识别功能
浙江机电
高速粗、精加工的编程策略 高速加工精加工编程策略
浙江机电
高速粗、精加工的编程策略 选用CAM软件不同策略进行高速加工
1.PowerMILL 高效粗加工
浙江机电
高速粗、精加工的编程策略 选用CAM软件不同策略进行高速加工
1、保持恒定的切削载荷 随着高速加工的进行,保持恒定的切削载荷非常重要。而保持恒定的切削 载荷则必须注意以下几个方面: 首先保持金属去除量的恒定。如图4.1所示,在高速切削过程中,分层切 削要优于仿形加工。
浙江机电
高速粗、精加工的编程策略 高速切削对数控编程的要求
浙江机电
高速粗、精加工的编程策略 高速切削对数控编程的要求
浙江机电
高速粗、精加工的编程策略 高速切削对数控编程的要求
浙江机电
高速粗、精加工的编程策略 高速切削对数控编程的要求
浙江机电
高速粗、精加工的编程策略 高速切削对数控编程的要求
浙江机电
高速粗、精加工的编程策略 粗加工考虑因素
1、恒定的切削条件 铣刀旋转产生的切线方向与工件进给方向相同称为顺铣;铣刀旋转产生 的切线方向与工件进给方向相反称为逆铣。
浙江机电
高速粗、精加工的编程策略 粗加工考虑因素
2、恒定的金属去除率 在高速切削的粗加工过程中,保持恒定的金属去 除率,可以获得以下的加工效果: (1)保持的恒定切削负载; (2)保持切屑尺寸的恒定; (3)较好的热转移; (4)刀具和工件均保持在较冷的状态; (5)没有必要去熟练操作进给量和主轴转速; (6)延长刀具的寿命; (7)较好的加工质量等。
数控高速加工与工艺
第四章 高速加工编程策略
数控高速加工与工艺
书名:数控高速加工 与工艺 书号:978-7-11140499-6 作者:高永祥
1
高速粗、精加工的编程策略 不同CAM软件的高速加工策略
2
浙江机电
高速粗、精加工的编程策略 高速切削对数控编程的要求
浙江机电
高速粗、精加工的编程策略 高速加工精加工编程策略
2、余量加工 余量铣削类似于笔式铣削,但是其又可以应用于精加工操作。其采用的加 工思想与笔式铣削相同,余量铣削能够发现并非同一把刀具加工出的三维 工件所有的区域,并能采用一把较小的刀具加工所有的这些区域。余量铣 削与笔式铣削的不同之处在于,余量铣削加工的是大尺寸铣刀加工之后的 整个区域,而笔式铣削仅仅针对拐角处的加工。
2.PowerMILL 高速精加工
浙江机电
高速粗、精加工的编程策略 选用CAM软件不同策略进行高速加工
3.UG 高速加工策略
浙江机电
高速粗、精加工的编程策略 选用CAM软件不同策略进行高速加工
3.UG 高速加工策略
浙江机电
高速粗、精加工的编程策略 选用CAM软件不同策略进行高速加工
3.UG 高速加工策略
浙江机电
高速粗、精加工的编程策略 粗加工考虑因素
4.采用光滑进、退刀方法
浙江机电
高速粗、精加工的编程策略 高速加工精加工编程策略
1、笔式加工
笔式加工是在内部圆角和小的圆弧拐角处创建刀路的加工策略,该策略能够 去除其他方式不能到达残余坯料。笔式加工常用来清理角落或者前次加工剩 余的角落,是零件曲面的内部圆角和刀具具有相等值的理想加工策略。
相关文档
最新文档