线代基本复习题

合集下载

线性代数基本复习题

线性代数基本复习题

1.1计算行列式 行列式的求法法一利用定义展开计算:1122111nnni i i i ni ni i i i A a A a A a A =======∑∑∑法二化为三角型行列式:11221122***0**0*0nn nnb b A b b b b ==2323342141344324241332131020102010201020143604560609010330253025301030150311015001523102001033311(5)(3)450053003r r r r r r r r r r r r r r r r r r ↔+↔+-----===+-----=+=⋅⋅⋅-⋅-=---1.2求逆矩阵 逆矩阵的求法法一行变换:()()1A I I A -−−−→ 行变换 法二行列式的方法:*1A A A-=利用初等行变换求下列矩阵的逆矩阵: (1)122212221⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦32322121232313213219221210203312210012210021212010036210012033221001033011009221122100999212010999221001999r r r r r r r r r r r r r r ------+⎡⎤--⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-→---→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦-⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥→-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦1122999122212,212999221221999-⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥∴-=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎢⎥⎣⎦利用行列式的方法求下列矩阵的逆矩阵:*1A A A-=(1)套用公式()10ab d b ad bc cd c a ad bc -⎡⎤⎡⎤=-≠⎢⎥⎢⎥--⎣⎦⎣⎦, 得12525212521211522--⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥--⋅-⋅⎣⎦⎣⎦⎣⎦.(2)套用上述公式, 得22cos sin cos sin cos sin 1sin cos sin cos sin cos cos sin θθθθθθθθθθθθθθ-⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦⎣⎦1.3利用逆矩阵定义证明 逆矩阵的定义1,AB BA I AB-==⇒=1.6设方阵A 满足矩阵方程220I --=AA , 证明A 及2I +A 都可逆, 并求1-A 及()12I -+A .由220I --=A A 得()12I I -=A A , 故A 可逆, 且()112I -=-AA . 由220I --=A A 也可得(2)(3)I I I+-=-A A 或1(2)(3)4I I I⎡⎤+--=⎢⎥⎣⎦A A , 故2I+A 可逆, 且()12I -+A 1(3)4I =--A . 1.4行列式与逆矩阵的关系 行列式,逆矩阵的关系**AA A A A I==*1*1A A A A AA--=⇔=*111,n A A A A--==1.21设3阶方阵A 的转置伴随矩阵为adj A 且1det 2=A , 求()1det 32(adj )A A -⎡⎤-⎣⎦.()()()()1*11*1*11133111111323232321222116323212333272A A A A I A A A I A E A A IAA A A --------------=-=-=-⎛⎫⎛⎫⎛⎫⎛⎫=-=-⋅⋅=-=-=-=-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 或 ()321****1243222...333A A A A A A A -⎛⎫⎛⎫-=-=-=-= ⎪ ⎪⎝⎭⎝⎭1.5矩阵的运算和运算律 矩阵的运算包括1*,,,,,,T B kA AB A A A A -+A注意特殊的运算律()()111TT Tn AB B A AB B A AB A B kA k A---====以下运算率不成立:00AB BAAB A ==⇒=或B=0所以,下面的公式也不成立:()()222222222()()AB A B A B A AB B A B A B A B =+=++-=+-(2)[]123321⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=35649⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,(3)213⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦[]12-=241236-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦1.4讨论下列命题是否正确: (1)若2=A , 则0=A ; (2)若2=AA, 则0=A 或=A E ;(3)若=AB AC 且0≠A , 则=B C .(1)不对. 反例:01000000⎛⎫⎛⎫=≠⎪ ⎪⎝⎭⎝⎭A ,但20000⎛⎫= ⎪⎝⎭A.(2)不对. 反例: 设1000⎛⎫= ⎪⎝⎭A , 则0≠A 且≠A E , 但2=AA.(3)不对. 反例: 设1000⎛⎫=⎪⎝⎭A ,0002⎛⎫= ⎪⎝⎭B ,0003⎛⎫= ⎪⎝⎭C , 则有=AB AC 且0≠A , 但=B C(1)1101n⎛⎫⎪⎝⎭, (2)100100nλλλ⎛⎫ ⎪ ⎪ ⎪⎝⎭,2311111112,0101010111111213,010101011111111.01010101n n n ⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭分块对角矩阵计算AB,1,A A-11112222A O B O A B O OA OB OA B ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭1122A OA A OA =1111122A O A O O A OA ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭2.1判断线性无关或相关方法1:利用线性无关和线性相关的定义 方法2:利用秩和行列式判断 方法3:利用定理证明(1) 123(2,1,0),(1,1,3),(1,0,3)=-=-=ααα(2) 12(1,3,4),(2,0,1)=-=αα (1)()12123131212333211011110,,110110011033000000r r r r T T Tr r r r +↔----⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-→-→ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ααα 可见{}123,,23R m =<=ααα, 故向量组线性相关.总结:计算秩来判断线性关系,证明题的时候才考虑用定义和定理 (2)()21312321312412020010,3010100141010100r r r T Tr r r r -+--⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=→→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭αα可见{}12,22R m ===αα, 故向量组线性无关.当A 是方阵的时候用行列式来判断线性关系(1) 12123131212333*********,,1101100110033000000r r r r T T Tr r r r A +↔----==-=-=-=ααα可见0A =, 故向量组线性相关(1)设向量组123,,ααα线性无关, 则下列向量组线性相关的是 C . (A)11213,,++ααααα (B)112123,,+++αααααα (C)123123,,+++αααααα (D)121331,,++-αααααα(B)不是线性相关的, 因为()()()()11212312312312323300k k k k k k k k k +++++=+++++=ααααααααα123123233000000k k k k k k k k k ++==⎧⎧⎪⎪⇒+=⇒=⎨⎨⎪⎪==⎩⎩(C)是线性相关的, 因为()()()112233123131232233()0()0k k k k k k k k k +++++=+++++=ααααααααα131232323010110k k k k k k k k k +==⎧⎧⎪⎪⇒+=⇒=⎨⎨⎪⎪=-+=⎩⎩(B)112123,,+++αααααα []112323111,,011001αβββαα⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ ()3R =A(C)123123,,+++αααααα[]112323101101,,011011011000αβββαα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()2R =A2.2求秩定义法和行阶梯形阵方法 2.3方程组有解的条件1111221211222211220(1)0(2)0()n n n n m m mn n a x a x a x a x a x a x a x a x a x m ++=⎧⎪++=⎪⎨⎪⎪++=⎩ 线性方程组齐次方程组有唯一零解()R n ⇔=A当A 是方阵时,0A A ⇔≠⇔可逆A ⇔行向量或者列向量线性无关有无穷多解()R n ⇔<A当A 是方阵时,0A A ⇔=⇔不可逆A ⇔行向量或者列向量线性相关 非齐次方程组有唯一解()()R R B n ⇔==A当A 是方阵时,0()()A R R B n ⇔≠==且A有无穷多解()R(B)R n ⇔<=A 当A 是方阵时,0()()A R R B n ⇔===且A无解()R(B)R ⇔≠A2.4**求最大无关组与线性表示----找出最大无关组,包括利用最大无关组进行线性表示方法:利用列向量组成矩阵进行行变换,目标是行最简形矩阵 例题2.7求下列向量组的最大无关组,并把其他向量用此无关组线性表示。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,线性无关的向量集合的最小维度是:A. 1B. 2C. 3D. 向量的数量答案:D2. 矩阵A的行列式为0,这意味着:A. A是可逆矩阵B. A不是可逆矩阵C. A的所有行向量线性相关D. A的所有列向量线性无关答案:B3. 线性变换T: R^3 → R^3,由矩阵[1 2 3; 4 5 6; 7 8 9]表示,其特征值是:A. 1, 2, 3B. 0, 1, 2C. -1, 1, 2D. 0, 3, 6答案:D4. 矩阵A与矩阵B相乘,结果矩阵的秩最多是:A. A的秩B. B的秩C. A和B的秩之和D. A的秩和B的列数中较小的一个答案:D5. 给定两个向量v1和v2,它们的点积v1·v2 > 0,这意味着:A. v1和v2垂直B. v1和v2平行或共线C. v1和v2的夹角小于90度D. v1和v2的夹角大于90度答案:C6. 对于任意矩阵A,下列哪个矩阵总是存在的:A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 特征矩阵答案:C7. 线性方程组AX=B有唯一解的充分必要条件是:A. A是方阵B. A的行列式不为0C. B是零向量D. A是可逆矩阵答案:D8. 矩阵的特征值和特征向量之间的关系是:A. 特征向量对应于特征值B. 特征值对应于特征向量C. 特征向量是矩阵的行向量D. 特征值是矩阵的对角元素答案:A9. 一个矩阵的迹(trace)是:A. 所有元素的和B. 主对角线上元素的和C. 所有行的和D. 所有列的和答案:B10. 矩阵的范数有很多种,其中最常见的是:A. L1范数B. L2范数C. 无穷范数D. 所有上述范数答案:D二、简答题(每题10分,共20分)1. 请解释什么是基(Basis)以及它在向量空间中的作用是什么?答:基是向量空间中的一组线性无关的向量,它们通过线性组合可以表示空间中的任何向量。

线性代数考试试题

线性代数考试试题

线性代数考试试题一、选择题(每题3分,共30分)1. 下列矩阵中,哪个是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [0, 1; 1, 0]2. 向量空间V的一组基具有n个向量,那么V的维数是:A. 0B. nC. 1D. 不确定3. 如果A和B是两个n阶方阵,那么AB和BA的行列式的值:A. 总是相等B. 只有在A和B可交换时相等C. 只有在A和B都是对角矩阵时相等D. 无法确定是否相等4. 对于任意的n维向量x,下列哪个选项是正确的?A. x^T * x是一个标量B. x^T * x是一个矩阵C. x * x^T是一个矩阵D. x + x^T是一个向量5. 特征值和特征向量的定义是什么?A. 对于矩阵A,如果存在标量λ和非零向量v,使得Av=λv,则λ是A的特征值,v是A的特征向量B. 对于矩阵A,如果存在标量λ和非零向量v,使得vA=λv,则λ是A的特征值,v是A的特征向量C. 对于矩阵A,如果存在标量λ和非零向量v,使得A^2v=λv,则λ是A的特征值,v是A的特征向量D. 以上都不是6. 下列哪个矩阵是对称矩阵?A. [1, 0; 0, -1]B. [0, 1; 1, 0]C. [1, 2; 2, 1]D. [2, 3; 3, 2]7. 对于矩阵A,其迹(trace)是:A. A的对角线元素之和B. A的行列式C. A的逆矩阵的对角线元素之和D. A的秩8. 如果矩阵A是正交矩阵,那么下列哪个陈述是正确的?A. A的行列式为1B. A的行列式为-1C. A的逆矩阵等于A的转置D. A的逆矩阵等于A本身9. 对于任意矩阵A,下列哪个选项是正确的?A. |A| 是 A 的行列式B. A^T 是 A 的转置C. A^-1 是 A 的逆矩阵D. A^* 是 A 的共轭转置10. 在线性代数中,线性无关的向量集合可以:A. 构成一个向量空间B. 构成一个基C. 确定一个唯一的解D. 以上都是二、填空题(每题4分,共20分)11. 矩阵的秩是指__________________________。

线性代数考前必做50题

线性代数考前必做50题
二、小题部分
2 1 0 * * * 27、(公式考查)设矩阵 A 1 2 0 ,矩阵 B 满足 ABA 2 BA E ,其中 A 为 A 的伴随矩阵, E 是单位矩阵, 0 0 1
则B 28、 (概念考查)设 A, B 为满足 AB 0 的任意两个非零矩阵,则必有 ( )
线性代数考前必做 50 题
一、解答题部分:
1 2 3 1、设矩阵 A 1 4 3 的特征方程有一个二重根,求 a 的值,并讨论 A 是否可相似对角化. 1 a 5
2、已知二次型 f ( x1 , x 2 , x3 ) (1 a ) x1 (1 a ) x 2 2 x3 2(1 a ) x1 x 2 的秩为 2. (I) 求 a 的值; (II) 求正交变换 x Qy ,把 f ( x1 , x 2 , x3 ) 化成标准形; (III) 求方程 f ( x1 , x 2 , x3 ) =0 的解.
(A) A 的列向量组线性相关, B 的行向量组线性相关.(B) A 的列向量组线性相关, B 的列向量组线性相关. (C) A 的行向量组线性相关, B 的行向量组线性相关. (D) A 的行向量组线性相关, B 的列向量组线性相关. 29、(向量组与行列式考查) 设 1 , 2 , 3 均为 3 维列向量,记矩阵 A ( 1 , 2 , 3 ) , B ( 1 2 3 , 1 2 2 4 3 , 1 3 2 9 3 ) , 如果 A 1 ,那么 B . )
20、设行列式|A|=
唯一解 、无
解 时时求其通解
2 2 1 1
2 2 3 1 3 4 1 5 M 31 M 32 M 33 M 34 2

线性代数大学试题及答案

线性代数大学试题及答案

线性代数大学试题及答案一、选择题(每题2分,共20分)1. 向量空间的基是该空间的一组向量,它们满足以下哪些条件?A. 线性无关B. 向量空间中的任何向量都可以由基向量线性组合得到C. 向量空间中的任何向量都可以由基向量线性表示D. 所有选项答案:D2. 矩阵A的秩是指:A. A的行向量组的秩B. A的列向量组的秩C. A的转置矩阵的秩D. 所有选项答案:D3. 下列哪个矩阵是可逆的?A. 零矩阵B. 任何2x2的对角矩阵,对角线上的元素不全为零C. 任何3x3的单位矩阵D. 任何4x4的对称矩阵答案:B4. 线性变换可以用矩阵表示,当且仅当:A. 该变换是线性的B. 该变换是可逆的C. 变换的基向量线性无关D. 变换的输出空间是有限维的答案:C5. 特征值和特征向量是线性变换的基本概念,其中特征向量是指:A. 变换后长度不变的向量B. 变换后方向不变的向量C. 变换后保持不变的向量D. 变换后与原向量成比例的向量答案:D6. 矩阵的迹是:A. 矩阵主对角线上元素的和B. 矩阵的行列式的值C. 矩阵的秩D. 矩阵的逆的转置答案:A7. 以下哪个矩阵是正交矩阵?A. 单位矩阵B. 任何对称矩阵C. 任何对角矩阵D. 任何行列式为1的方阵答案:A8. 矩阵的行列式可以用于判断矩阵的:A. 可逆性B. 秩C. 特征值D. 迹答案:A9. 线性方程组有唯一解的条件是:A. 系数矩阵是可逆的B. 系数矩阵的秩等于增广矩阵的秩C. 方程的个数等于未知数的个数D. 所有选项答案:B10. 以下哪个矩阵是对称矩阵?A. 单位矩阵B. 对角矩阵C. 任何方阵的转置D. 任何方阵与其转置的乘积答案:D二、填空题(每题2分,共10分)1. 矩阵的______是矩阵中所有行(或列)向量生成的子空间的维数。

答案:秩2. 如果矩阵A和B可交换,即AB=BA,则称矩阵A和B是______的。

答案:可交换3. 一个向量空间的维数是指该空间的______的个数。

线性代数试题及答案

线性代数试题及答案

线性代数试题及答案一、选择题(每题2分,共20分)1. 以下哪个矩阵是可逆的?A. [1 0; 0 0]B. [1 2; 3 4]C. [1 0; 0 1]D. [0 1; 1 0]2. 矩阵的秩是指什么?A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关的行或列的最大数目D. 矩阵的对角线元素的个数3. 线性方程组有唯一解的条件是什么?A. 方程个数等于未知数个数B. 方程组是齐次的C. 方程组的系数矩阵是可逆的D. 方程组的系数矩阵的秩等于增广矩阵的秩4. 向量空间的基具有什么性质?A. 基向量的数量必须为1B. 基向量必须是正交的C. 基向量必须是线性无关的D. 基向量必须是单位向量5. 特征值和特征向量的定义是什么?A. 对于矩阵A,如果存在非零向量v,使得Av=λv,则λ是A的特征值,v是A的特征向量B. 对于矩阵A,如果存在非零向量v,使得A^Tv=λv,则λ是A 的特征值,v是A的特征向量C. 对于矩阵A,如果存在非零向量v,使得A^-1v=λv,则λ是A 的特征值,v是A的特征向量D. 对于矩阵A,如果存在非零向量v,使得Av=v,则λ是A的特征值,v是A的特征向量6. 线性变换的矩阵表示是什么?A. 线性变换的逆矩阵B. 线性变换的转置矩阵C. 线性变换的雅可比矩阵D. 线性变换的对角矩阵7. 以下哪个不是线性代数中的基本概念?A. 向量B. 矩阵C. 行列式D. 微积分8. 什么是线性方程组的齐次解?A. 方程组的所有解B. 方程组的特解C. 方程组的零解D. 方程组的非平凡解9. 矩阵的迹是什么?A. 矩阵的对角线元素的和B. 矩阵的行列式C. 矩阵的秩D. 矩阵的逆10. 什么是正交矩阵?A. 矩阵的转置等于其逆矩阵B. 矩阵的所有行向量都是单位向量C. 矩阵的所有列向量都是单位向量D. 矩阵的所有行向量都是正交的答案:1-5 C C C C A;6-10 D D C A A二、简答题(每题10分,共20分)11. 请简述线性代数中的向量空间(Vector Space)的定义。

线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

线代复习题

线代复习题

线代复习题
1. 矩阵的基本概念
- 定义矩阵及其元素
- 矩阵的阶数
- 矩阵的表示方法
2. 矩阵的运算
- 矩阵的加法和减法
- 矩阵的数乘
- 矩阵的乘法
- 矩阵的转置
- 矩阵的逆
3. 特殊矩阵
- 零矩阵
- 单位矩阵
- 对角矩阵
- 斜对角矩阵
- 正交矩阵
4. 行列式
- 行列式的定义
- 行列式的计算方法
- 行列式的性质
5. 线性方程组
- 线性方程组的表示
- 高斯消元法
- 线性方程组的解的存在性
- 齐次线性方程组的解
6. 向量空间
- 向量空间的定义
- 基和维数
- 向量的线性组合
- 向量的线性相关性
7. 特征值和特征向量
- 特征值和特征向量的定义
- 特征值和特征向量的计算方法 - 特征多项式
8. 二次型
- 二次型的定义
- 二次型的矩阵表示
- 正定二次型
9. 线性变换
- 线性变换的定义
- 线性变换的矩阵表示
- 线性变换的性质
10. 矩阵分解
- 矩阵的对角化
- 矩阵的谱分解
- 矩阵的QR分解
11. 应用题
- 利用矩阵解决实际问题
- 矩阵在不同领域的应用案例分析
请根据以上复习题进行复习,确保掌握线性代数的基本概念和运算法则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线代基本复习题2010年度第二学期《线性代数》期末考试安排预计考试时间:2011年5月7日期末答疑安排答疑时间:2011.04.27 答疑地点: 平时上课的课若干公式|A*|=|A|n-1, A*A=| A|I ,|A T |=|A|,|λA|=λn |A|,ϕ(A)的特征值ϕ(λ)11a b d b c d c a ad bc --⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭基本问题● Ch1计算行列式, 求逆矩阵● Ch2判断线性相关性, 求秩, 求最大无关组 ● Ch2解线性方程组(齐次的和非齐次的) ● Ch3求矩阵(方阵)特征值和特征向量 ● Ch3矩阵的对角化 ● Ch4向量组的正交化 ● Ch4二次型的正交标准化 ● Ch4二次型正定性的判断一、 Ch1计算行列式()()()()()()()()()()1232131223322211121112021212.0r r r r yr r x y r x y x y x y x y x y y x y x y x y x x y y x y x x yx y x yx yx yxyx x y x y xx y x y x y x xy y x y y xyx++--++++++=+=+++++-=+-=+⋅⋅=+⋅⋅-+-=------二、 求逆矩阵1.7(P34)利用初等行变换求下列矩阵的逆矩阵:(1) 122212221⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦32322121232313213219221210203312210012210021212010036210012033221001033011009221122100999212010999221001999r r r r r r r r r r r r r r ------+⎡⎤--⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-→---→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦-⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥→-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦1122999122212,212999*********-⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥∴-=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎢⎥⎣⎦三、 Ch2判断线性相关性2.1 (P63)讨论下列向量组的线性相关性 (3) 1234(1,2,1,2),(3,1,0,1),(2,1,3,2),(1,0,3,1)=-=-=-=--αααα ()13422332421234232132103521033211001560156,,,10331033035221210231023110331033015601010020200001313r r T T T Tr r r r r r r r +-+++---⎛⎫⎛⎫⎛⎫⎪⎪⎪------⎪ ⎪ ⎪=→→⎪ ⎪ ⎪----- ⎪⎪⎪---⎝⎭⎝⎭⎝⎭----⎛⎫ ⎪---- ⎪→→⎪- ⎪-⎝⎭αααα0110000⎛⎫⎪ ⎪ ⎪-⎪⎝⎭四、 Ch2求秩, 求最大无关组2.2 (P63)求下列矩阵的秩(3)210312123115-⎛⎫ ⎪- ⎪ ⎪-⎝⎭32232213212210321032103511212010521,222311500000521r r r r r r r R -+--⎛⎫--⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-→-→-= ⎪ ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭--⎝⎭五、 Ch2解线性方程组(齐次的)2.3 求解下列齐次线性方程组(1) 1234123412342202020x x x x x x x x x x x x +-+=⎧⎪-+-=⎨⎪+++=⎩;(1) 对方程组的系数矩阵作行初等变换3221313121232121212121010112103330111211103330000r r r r r rr r r -------⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--→--→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭得简化行阶梯形(Reduced row echelon form, RREF). 对应的同解方程组为1323400x x x x x +=⎧⎨-+=⎩, 方程组的解为()1121212121011,1001k k k k k k k k k --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-- ⎪ ⎪ ⎪==+∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭x ¡.六、 Ch2解线性方程组(非齐次的)2.5 求下列非齐次线性方程组的通解(1)1234123412342212223x x x x x x x x x x x x -+-=⎧⎪-+-+=⎨⎪+++=⎩对方程组的增广矩阵作行初等变换, 将之化为简化行阶梯形2233113321213241010212110303511113312122030350303550101311113111130000000000r r r r r r r r r r r +↔-+-⎛⎫ ⎪-----⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪--→→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎝⎭立刻得到方程组的解()12124103015,3100010k k k k ⎛⎫⎪-⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪⎪ ⎪=++∈ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭x ¡七、 Ch3求特征值和特征向量3.1(P80)求下列矩阵的特征值和特征向量(3)1111111111111111⎡⎤⎢⎥--⎢⎥⎢⎥--⎢⎥--⎣⎦(3)解特征方程()()()()213143123433311111111111122001111202011112002111120001100110022221010101010011001r r r r r r r r r r I λλλλλλλλλλλλλλλλλλ++-+++-------------==------------+=-=-=-+A得特征值2,2,2,2λ=-.对于特征值2λ=-, 解齐次线性方程组()0I x λ-=A . 其系数矩阵21311234413111311131110000131144001100110011314040101010101113400410011001r r r r r r r r r r I λ++++++------------⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪----⎪ ⎪ ⎪ ⎪-=→→→ ⎪ ⎪ ⎪ ⎪---- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭A ,可见特征向量为()11111111011k k x k k k k ⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪==≠ ⎪ ⎪-- ⎪ ⎪ ⎪--⎝⎭⎝⎭.对于特征值2,2,2λ=, 11111111111100001111000011110000I λ------⎛⎫⎛⎫ ⎪ ⎪-⎪ ⎪-=→ ⎪ ⎪- ⎪ ⎪-⎝⎭⎝⎭A .可见特征向量为234223434111100010001k k k k x k k k k k ++⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(234,,k k k 不全为0). 八、 Ch3矩阵的对角化3.10将下列矩阵对角化, 并求P , 使1-=P AP Λ(Λ为对角阵)(1)460350361⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦A 解特征方程()21312464604603501101110361101101r r r rI λλλλλλλλλλλ++-------=+=--=----A ()()212λλ=-+得特征值1232,1λλλ=-==.对于12λ=-,660101330011363000I λ--⎡⎤⎡⎤⎢⎥⎢⎥-=→-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦A , 得特征向量()111101k k -⎛⎫ ⎪≠ ⎪ ⎪⎝⎭. 选1111-⎛⎫⎪= ⎪ ⎪⎝⎭α.对于231λλ==,360120360000360000I λ--⎡⎤⎡⎤⎢⎥⎢⎥-=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A , 得特征向量23201001k k ⎛⎫⎛⎫ ⎪ ⎪-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ (k 2, k 3不全为0). 选2210⎛⎫ ⎪=- ⎪ ⎪⎝⎭α.3001⎛⎫⎪= ⎪ ⎪⎝⎭α.令()123120,,110101-⎛⎫ ⎪==- ⎪ ⎪⎝⎭P ααα, 则有1211--⎛⎫ ⎪== ⎪ ⎪⎝⎭P AP Λ.九、 Ch4向量组的正交化4.5(P107)设[][][]1231,2,1,1,3,1,4,1,0,TTT=-=-=-ααα试用施密特正交化方法把这组向量正交规范化. 正交化:[][][][][][]11212211131323312112212,1111,45321,,631114111,,2512120.,,630111⎛⎫ ⎪== ⎪ ⎪-⎝⎭--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪=--=---= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭βααββαβββαβαββαββββββ单位化:111222333112,1111,1110.1⎛⎫⎪==⎪⎪-⎭-⎛⎫⎪==⎪⎪⎭⎛⎫⎪==⎪⎪⎭ηββηββηββ十、 Ch4二次型的正交标准化4.20(P108) 用正交变换化下列二次型为标准形 (2)2221231213233662f x x x x x x x x x =++---二次型f 的矩阵为333311311--⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭A . 解特征方程3333110311I λλλλ--=-=-A ,得A 的特征值13λ=-,22λ=,36λ=.对于特征值13λ=-, 633101341011314000I λ--⎛⎫⎛⎫ ⎪ ⎪-=-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A , 取特征向量1111⎛⎫ ⎪= ⎪ ⎪⎝⎭α.对于特征值22λ=, 133100311011311000I λ-⎛⎫⎛⎫ ⎪ ⎪-=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A . 取特征向量2011⎛⎫ ⎪= ⎪ ⎪-⎝⎭α.对于特征值36λ=, 333102351011315000I λ⎛⎫⎛⎫ ⎪ ⎪-=→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A . 取特征向量3211-⎛⎫ ⎪= ⎪ ⎪⎝⎭α.123,,ααα是正交的. 令3121230,,⎛⎫⎪== ⎪⎪ ⎪⎝⎭⎪ ⎪⎪⎭αααP ααα, 则P 是正交的. 作正交变换=x Py , 则给出的二次型化为标准形222123326f y y y =-++.十一、 Ch4二次型正定性的判断4.23判别下列二次型的正定性:(1)222123121326422f x x x x x x x =---++(2)2222123412131424343919242612f x x x x x x x x x x x x x x =+++-++--(1)二次型的矩阵211160104-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A 的各阶主子式依次为1232112120,110,1603801614--=-<==>=-=-<--ΔΔΔ. 故二次型是负定的.(2) 二次型的矩阵11211303209613619-⎛⎫ ⎪--⎪= ⎪- ⎪--⎝⎭A 的各阶主子式依次为 12341121110,20,13060,24013209--=>==>=-=>==>-ΔΔΔΔA .故二次型是正定的.若干联系向量组{}12,,n =L A ααα构成矩阵()12,,n =L A ααα线性组合()12112212,,n n n n x x x x x x ⎛⎫ ⎪ ⎪+++== ⎪ ⎪ ⎪⎝⎭L L M ααααααAx向量b 能由向量组A 线性表示⇔=Ax b 有解⇔()(),R R =A b A向量组A 线性相关⇔=Ax b 有非零解⇔()R n <A (n =向量个数=未知数个数) 基础解系含n r -个解向量.部分定理定理2.1 若12,,m αααL 线性无关, 而12,,,m αααβL 线性相关. 则β可以由12,,m αααL 线性表示. 定理2.2 12,,m αααL (2≥m )线性相关的充要条件是至少有一个向量是其余向量的线性组合.定理2.3 线性相关的向量组添加向量后仍线性相关;线性无关的向量组的子向量组必线性无关;线性无关的向量组中的每个向量扩大同样的维数,得到的新向量组仍然线性无关。

相关文档
最新文档