2014-2015学年度金乡县期末(抽考)考试九年级数学试题
2014--2015学年第一学期教学质量检测试题卷九年级数学

2014—2015学年第一学期教学质量检测试题卷九年级数学注意事项:满分100分,时间是100分钟一、选择题(每小题3分,共24分)下列标志既是轴对称图形又是中心对称图形的是( )2.下列说法中正确的是 ( )A.“明天降雨的概率是90%”表示明天有90%的时间降雨B.某次抽奖活动中奖的概率为1100,说明每买100张奖券,一定有一次中奖 C.“打开电视,正在播放《新闻联播》”是必然事件D.口袋中装有2个红球和1个白球,从中摸出2个球其中必有红球3.已知关于x 的一元二次方程2(m 1)210x x -+-=有两个不相等的实数根,则m 的取值范围是( )A. m>0B. m<0C. m>0且m ≠1D. m ≥0,且m ≠1 4.关于反比例函数6y x=,下列说法错误的是( ) A.(-2,-3)在函数图象上 B.当x >0时,y 随x 的增大而减小 C.图象位于二四象限 D.P (-1,a ),Q (2,b )在函数图象上,则a<b5.将二次函数22(1)1y x =--的图象向左平移2个单位,再向下平移3个单位,平移后的二次函数解析式为( )A. 22(3)4y x =--B. 22(1)4y x =+-C. 22(3)2y x =-+D. 22(2)3y x =--6.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,若∠ABD=58°,则∠BCD 的度数是( )A. 40°B. 58°C. 32°D. 42°7.如图在平行四边形ABCD 中,∠ABC 的平分线BF 分别与AC 、AD 交于点E 、F,AB=3,BC=5, AE EC 的值为 ( ) A . 3:5 B. 2:3 C. 5:8 D. 3:88.二次函数()20y ax bx c a =++≠的图象如图所示,则下列说法:①a>0 ;②2a+b=0;③ a+b+c>0;④当-1<x<3时,y>0;⑤240b ac ->,q 其中正确的个数是( ).A. 1B. 2C. 3D. 4二、填空题(每小题2分,共14分)9.方程20x x +=的根是 .10.如图,以点O 为圆心的两个同心圆,大圆的弦AB 是小圆的切线,点P 为切点,小圆的半径为3cm,AB=8cm ,则大圆的半径为 (cm).11.如图,把一个圆形转盘按1:2:3:4的比例分成A 、B 、C 、D 四个扇形区域,自由转动转盘,停止后 落在B 区域(指针落在分界线时重转)的概率为 . 12.已知A (-2,1y ),B (1,2y ),C (2,3y )是抛物线()m x y ++-=21上的三点,则321,y y y ,的大小关系为 .13.如图,在平面直角坐标系中,Rt △OAB 中,∠ABO=90°,点A 的坐标为(3,1),若将△OAB 绕点O 逆时针旋转90°后,A 点到达/A 点,则/A 的坐标是 .14.如图,菱形OABC 中,点C 的坐标为(3,4),点A 在x 轴的正半轴上,反比例函数xk y =()0>x 的图象经过点B ,则k 的值为 . 15.Rt △AOB 在平面直角坐标系内的位置如图所示,点O 为原点,点A (0,8),点B (6,0),点P 在线段AB 上,且AP=6.在x 轴上存在点Q ,使得以B 、P 、Q 为顶点的三角形与△AOB 相似,则点Q 的坐标为 .三、解答题(本大题共8个题目,满分62分)16.(6分)解方程:01322=--x x17.(6分)一个不透明的袋子里装有分别标注2、4、6的3个小球(小球除数字外,其余都相同),另有3张背面完全一样,正面分别写有数字6、7、8的卡片,先从袋子中任意摸出一个球,再从这3张背面朝上的卡片中任意摸出一张,记录两次得到的数字.(1)请你用列表或画树状图的方法,表示出所有可能出现的结果.(2)小红和小莉做游戏,制定了两个游戏规则:规则1:若两次摸出的数字,至少有一个是“6”,小红赢;否则,小莉赢.规则2:若摸出的卡片上的数字是球上数字的整数倍时,小红赢;否则,小莉赢.18. (7分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上,请按要求完成下列问题:(1)画出将△ABC 绕点B 按逆时针方向选择90°后所得到的△11BC A ;(2)求线段BC 旋转到B 1C 的过程中,点C 所经过的路径长.(结果保留π)19. (8分)学校去年年底的绿化面积为5000平方米,预计到明年年底增加到7200平方米,求学校这两年绿化面积的年平均增长率.20. (8分)如图,直线MN 交⊙O 于A 、B 两点,AD 平分∠OAM交⊙O 于D ,过D 作DE ⊥MN 于点E.求证:DE 是⊙O 的切线.21. (8分)如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,点A 、C 分别在坐标轴上,点B 的坐标为(8,4),反比例函数()016>=x xy 的图象分别与AB 、BC 相交于点M 、N.若点P 在y 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标.22. (9分)如图,在平行四边形ABCD 中,DE 交BC 于F ,交AB 的延长线于E ,且∠EDB=∠C.(1)求证:△ADE ∽△DBE ;(2)若DE=9cm,AE=12cm,求DC 的长.23. (10分)如图,一次函数221+-=x y 分别交y 轴、x 轴于A 、B 两点,抛物线c bx x y ++-=2过A 、B 两点.(1)求这条抛物线的解析式;(2)作垂直于x 轴的直线x=t ,在第一象限内交直线AB 于点M ,交这条抛物线于点N.当t 取何值时,MN 有最大值.(3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,直接写出第四个顶点D 的坐标.。
山东省济宁市金乡县九年级数学上学期期末试卷(含解析)新人教版

九年级(上)期末数学试卷、选择题(本大题共10小题,每小题3分,共30 分)1.下列图案中,既是中心对称又是轴对称图形的个数有(小红在观察由一些相同小立方块搭成的几何体时,发现它的主视图、俯视图、左视图均7.把一张圆形纸片和一张含45°角的扇形纸片如图所示的方式分别剪得一个正方形,如果所剪得的两个正方形边长都是1,那么圆形纸片和扇形纸片的面积比是(A.1个B.2个C. 3个D. 4个2. 已知关于x的元二次方程(kA.± 1B.1C. - 1D. 03. 已知粉笔盒里有4支红色粉笔和2 2-1) x +3x+k - 1=0有一根为0,贝y k=( )n支白色粉笔,每支粉笔除颜色外均相同,现从中任取〔,则n的值是(A. 4B. 6C. 8D. 104. F列计算正确的是(A. sin30 ° +sin45 ° =sin75 °B. cos30° +cos45° =cos75°c. sin60 ° - cos30° =cos30°■ :l -tan45 ° =0cos30^1,则下列图中的三角形(阴影部分)与厶ABC相似的是(支粉笔,取出红色粉笔的概率是5.A. 3个B. 4个C. 5个D. 6个C.D.&在直角坐标系中,以原点为圆心,4为半径作圆,该圆上到直线■;:•的距离等于的点共有()A. 1个B. 2个C. 3个D. 4个9. 如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1 ,正方形ABCD勺边分别平行于x轴、y轴.若双曲线y='与正方形ABCD有公共点,则k的取y10. 如图,在正方形ABCD中, AB=3cm动点M自A点出发沿AB方向以每秒1cm 的速度运动,同时动点N自A点出发沿折线AD- DC- CB以每秒3cm的速度运动,到达B点时运动同时停止•设△ AMN勺面积为y (cm?).运动时间为x (秒),则下列图象中能大致反映y与x之间函数关系的是()、填空题(本大题共5小题,每小题3分,共15分)K k w 16 D . 4< k v 1611. ________________________________________________________________ 已知点P (a, - 3)关于原点的对称点P' (- 2, b),贝U a+b的值是____________________________ .12. 已知,如图,AB是O O的直径,CA与O O相切于点A,连接CO交O O于点D, CO的延长线交O O于点E,连接BE、BD, / ABD=35,则/ C= 度.13. 如图,在直角三角形ABC中(/C=90 ),放置边长分别3, 4, x的三个正方形,则x的值为14. 如图,在函数y=—(x>0)的图象上有点P1、巳、P3…、R、P n+1,点P1的横坐标为3, 且后面每个点的横坐标与它前面相邻点的横坐标的差都是3,过点P1、P2、P3…、P n、R+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S、S、Q…、S,则S= _______ .(用含n的代数式表示)0[ 2 4 6 S x15. 如图,是二次函数y=ax2+bx+c (a* 0)的图象的一部分, 给出下列命题:①abc v 0;②b>2a;③a+b+c=0④ax2+bx+c=0的两根分别为-3和1;⑤8a+c > 0.其中正确的命题是_____ .三、解答题(本大题8小题,共55 分)216. 解方程:x - 3x+1=0.17. 如图,放置在水平桌面上的台灯的灯臂AB长为30cm,灯罩BC长为20cm,底座厚度为2cm,灯臂与底座构成的/ BAD=60 •使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?(结果精确到0.1cm,参考数据:二~ 1.732 )平分/ PAE过C作CDL PA垂足为D.(1)求证:CD为O O的切线;(2 )若CD=2AD O O的直径为20,求线段AC AB的长.图象上,当等边厶OAB的顶点B在坐标轴上时,求等边厶OAB顶点A的坐标和厶OAB的面积. 18.如图,已知直线PA交O O于A、B两点, AE是O O的直径,点C为O O上一点,且AC 19•如图,在平面直角坐标系中,已知等边△OAB的顶点A在反比例函数20. 进入冬季,我市空气质量下降,多次出现雾霾天气•商场根据市民健康需要,代理销售 一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为 30元/包时,每周可售出200包,每涨价1元,就少售出5包•若供货厂家规定市场价不得低于 30元/包,且商场每周完成不少于150包的销售任务.(1 )试确定周销售量 y (包)与售价x (元/包)之间的函数关系式; (2) 试确定商场每周销售这种防尘口罩所获得的利润 w (元)与售价x (元/包)之间的函 数关系式,并直接写出售价 x 的范围;(3) 当售价x (元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润 w (元)最大?最大利润是多少?21. 如图1,在Rt △ ABC 中,/ B=90° , BC=2AB=8点 D E 分别是边 BG AC 的中点,连接(3 )问题解决 当厶EDC 旋转至A , D, E 三点共线时,直接写出线段 BD 的长.22.在平面直角坐标系中,已知点 B 的坐标是(-1 , 0),点A 的坐标是(4, 0),点C 的坐标是(0, 4),抛物线过 A B 、C 三点. (1) 求抛物线的解析式.(2) 点N 事抛物线上的一点(点 N 在直线AC 上方),过点N 作NGLx 轴,垂足为 G,交AC 于点H,当线段ON 与CH 互相平分时,求出点 N 的坐标.DE 将厶EDC 绕点C 按顺时针方向旋转,记旋转角为备用图试判断:当0°W aV 360°时,AE BD的大小有无变化?请仅就图2的情形给出证明.(2 )拓展探究(X•(3)设抛物线的对称轴为直线L,顶点为K,点C关于L的对称点J, x轴上是否存在一点KJQR的周长最小?若存在,请求出周长的最小值;若不存在,参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1. 下列图案中,既是中心对称又是轴对称图形的个数有()A. 1个B. 2个C. 3个D. 4个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【解答】解:第一个图形是轴对称图形,又是中心对称图形,第二个图形既是轴对称图形,不是中心对称图形,第三个图形是中心对称图形,不是轴对称图形,第四个图形是轴对称图形,又是中心对称图形,综上所述,既是轴对称图形又是中心对称图形的是第二个图形共2个.故选B.2. 已知关于x的一元二次方程(k - 1)x2+3x+k2- 1=0有一根为0,贝U k=()A. ± 1B. 1C. - 1D. 0Q y轴上是否一点R使四边形【考点】一元二次方程的解.【分析】一元二次方程的根就是能够使方程左右两边相等的未知数的值, 知数所得式子仍然成立;将 x=0代入原方程即可求得 k 的值.【解答】 解:把x=0代入一元二次方程(k - 1) x 2+3x+k 2-仁0, 得 k 2 - 1= 0, 解得k= - 1或1; 又k - 1工0, 即2 1 ; 所以k= - 1. 故选C.3. 已知粉笔盒里有 4支红色粉笔和n 支白色粉笔,每支粉笔除颜色外均相同,现从中任取 一支粉笔,取出红色粉笔的概率是 ’•,则n 的值是()5A. 4B. 6C. 8D. 10【考点】概率公式.【分析】根据红色粉笔的支数除以粉笔的总数即为取出红色粉笔的概率即可算出 【解答】解:由题意得: =',4+n 5解得:n=6, 故选B.4.下列计算正确的是( )【考点】 特殊角的三角函数值.【分析】根据特殊角的三角函数值即可判断.o逅【解答】解:T 〔.. 1.1!': '- 1=1 -仁0,故选D,即用这个数代替未 n 的值.A. sin30 ° +sin 45° =sin75B . cos30° +cos45° =cos75°C. sin60 ° - cos30° =cos30°-tan45=0cos30&-tan45 =05•小红在观察由一些相同小立方块搭成的几何体时,发现它的主视图、俯视图、左视图均A. 3个B. 4个C. 5个D. 6个【考点】由三视图判断几何体.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形. 【解答】解:从俯视图发现有3个立方体,从左视图发现第二层最多有1个立方块, 则构成该几何体的小立方块的个数有4个;故选B.6.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与厶ABC相似的是()【考点】相似三角形的判定.【分析】根据网格中的数据求出AB AC, BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB= 「= •—, AC=~, BC=2••• AC: BC: AB=「:2: — =1 :一:一,A、三边之比为 1 : 7: 2 .二,图中的三角形(阴影部分)与厶ABC不相似;B三边之比为7:7':3,图中的三角形(阴影部分)与厶ABC不相似;C三边之比为 1 : 7:三,图中的三角形(阴影部分)与厶ABC相似;D三边之比为2:丘:―,图中的三角形(阴影部分)与厶ABC不相似.故选C.7.把一张圆形纸片和一张含45°角的扇形纸片如图所示的方式分别剪得一个正方形,如果所剪得的两个正方形边长都是 1那么圆形纸片和扇形纸片的面积比是(【考点】正多边形和圆.【分析】 首先分别求出扇形和圆的半径,再根据面积公式求出面积,最后求出比值即可.【解答】解:如图1连接0D •••四边形ABCD 是正方形, •••/ DCB 2 ABO=90 , AB=BC=CD=,1 •••/ AOB=45 , •••0B=AB=1由勾股定理得:0D= •——= 一,•扇形的面积是--」n ;3608如图2,连接MB MC•••四边形ABCD 是O M 的内接四边形,四边形 ABCD 是正方形, •••/ BMC=90 , MB=MC•••/ MCB M MBC=45 , •/ BC=1 ,故选A.•O“的面积是八」 •扇形和圆形纸板的面积比是 2_ -=—n n,5nn)_4,即圆形纸片和扇形纸片的面积比是 4: 5.&在直角坐标系中,以原点为圆心,4为半径作圆,该圆上到直线:二的距离等于2的点共有()A. 1个B. 2个C. 3个D. 4个【考点】垂径定理;坐标与图形性质;三角形内角和定理;勾股定理;直线与圆的位置关系. 【分析】过0作OH L AB,求出0到直线的距离,和圆的半径比较得出圆于直线相交,且圆心到直线的距离是1,画出图形,得出在直线的两旁到直线的距离等于2的点有4个点,即可得出答案.y=—x+ '■,•••当x=0 时,y=",当y=0 时,x= . 7,••• AO=OB= '7,由勾股定理得:AB=「「f iilf i • =2,由三角形的面积公式得:ABX OH=AOC OB即2OH=二X 二=2 ,解得:OH=* 4,即直线与圆相交,如图:9. 如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1 , 正方形ABCD的边分别平行于x轴、y轴.若双曲线y=':与正方形ABCD有公共点,则k的取A. 1 v k v 9B. 2< k w 34 C . K k< 16 D . 4< k v 16【考点】反比例函数与一次函数的交点问题;正方形的性质.【分析】根据题意求出点A的坐标,根据正方形的性质求出点C的坐标,根据反比例函数图象上点的坐标特征解答即可.【解答】解:T点A在直线y=x上,横坐标为1,•••点A的坐标为(1, 1),•••正方形ABCD勺边长为3,••点C的坐标为(4, 4),当双曲线y= '■经过点A时,k=1 X仁1,y当双曲线目=二经过点C时,k=4 X 4=16,y•双曲线y= '与正方形ABCD公共点,则k的取值范围是1w k< 16,y故选C.在直线的两旁到直线的距离等于故选D.2的点有4个点(E、F、G N),10.如图,在正方形ABCD中, AB=3cm动点M自A点出发沿AB方向以每秒1cm的速度运动, 同时动点N自A点出发沿折线AD F DC- CB以每秒3cm的速度运动,到达B点时运动同时停止•设△ AMN的面积为y ( cm?).运动时间为x (秒),则下列图象中能大致反映y与x之间函数关系的是( )D C【分析】当点N在AD上时,易得S AAM N的关系式;当点N在CD上时,高不变,但底边在增大,所以S A AMN的面积关系式为一个一次函数;当N在BC上时,表示出S A AMN的关系式,根据开口方向判断出相应的图象即可.故选:B.二、填空题(本大题共5小题,每小题3分,共15分)11. 已知点P (a, —3)关于原点的对称点P' (- 2, b),贝U a+b的值是5 .【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得a、b的值,进而得到答案.【解答】解:•••点P (a, —3)关于原点的对称点P' (- 2, b), --a=2, b=3,••• a+b=5,【解答】解:当点点N在CD上时,即当N在BC上时,即N在AD上时,即0 w x w 1, AM= X x X 3x=—x ,1 g1 w x w 2, $△ AM=,X x X 3==x, y随x的增大而增大,所以排除A、D;1 32 w x w 3, $△ AM=X x X( 9 —3x)=—十,开口方向向故答案为:5.12. 已知,如图,AB是O O的直径,CA与O O相切于点A,连接CO交O O于点D, CO的延长线交O O于点E,连接BE、BD, / ABD=35,则/ C= 20 度.【考点】切线的性质.【分析】欲求/ C,只要求出/ AOC即可,根据/ AOC2 OBD# ODB可以解决问题.【解答】解:I OB=OD•••/ OBD# ODB=35 ,•••/ AOC# OBD# ODB=70 ,•••CA是O O切线,•••# OAC=90 ,•••# C=9C° -Z AOC=20 ,故答案为20;13. 如图,在直角三角形ABC中(Z C=90°),放置边长分别3, 4, x的三个正方形,则x 的值为7 .【考点】相似三角形的判定与性质;正方形的性质.【分析】根据已知条件可以推出厶 CE3A OMEo ^ PFN 然后把它们的直角边用含 x的表达式 表示出来,禾U 用对应边的比相等,即可推出x 的值答题【解答】 解:如图•••在 Rt △ ABC 中/C=90,放置边长分别 3, 4, x 的三个正方形, •••△ CE3A 0M» PFN •••OE PN=OM PF ,•/ EF=x , MO=3 PN=4, • OE=x- 3, PF=x - 4, ••( x - 3): 4=3: (x - 4), •••( x - 3) ( x - 4) =12, •-X i =0 (不符合题意,舍去),X 2=7. 故答案为:7.14. 如图,在函数 y= (x > 0)的图象上有点 P i 、巳、P 3…、R 、P n+i ,点P i 的横坐标为3, 且后面每个点的横坐标与它前面相邻点的横坐标的差都是3,过点P i 、P 2、P 3…、P n 、R+1分别作x 轴、y 轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依【考点】反比例函数系数k 的几何意义.【分析】根据反比例函数图象上点的坐标特征得到 P 的坐标为(i , 6), P 2的坐标为(2, 3),F 3的坐标为(3,二),R 的坐标为(n , ), P n+i 的坐标为(n+i , ),则每个阴影部分S,则 S=(用含n 的代数式表示)次记为S i 、S 、S 3…、3 n n+1都是一边为i,另一边为相邻两点的纵坐标之差,所以$=('-• ) x i,然后通分即可.n n+1【解答】解:••• P l 的坐标为(1 , 6), P 2的坐标为(2, 3), P 3的坐标为(3, §), P n 的坐标3为(n , §) , P n+1的坐标为(n +1,」J ,nn+1••• S i = (6 - 3)x 1, S 2= (3 - ' )x 1,3•—-「1=-15. 如图,是二次函数 y=ax 2+bx+c (0)的图象的一部分, 给出下列命题:①abc v 0;② b >2a ;③ a+b+c=02④ax +bx+c=0的两根分别为-3和1;【考点】二次函数图象与系数的关系;二次函数的性质; 抛物线与x 轴的交点;二次函数与 不等式(组)【分析】由抛物线的开口方向判断 a 的符号;然后结合对称轴判断 b 的符号;根据抛物线的 对称轴、抛物线与x 的一个交点可以推知与 x 的另一个交点的坐标;由二次函数图象上点的 坐标特征可以推知 x=1满足该抛物线的解析式.【解答】解:①根据抛物线是开口方向向上可以判定a > 0;T 对称轴X=—一 = - 1 ,2a• b=2a > 0;•••该抛物线与y 轴交于负半轴,• abc v 0;故本选项正确; ② 由①知,b=2a ; 故本选项错误;故答案为:6n(n+l)①③④⑤(答对一个得 1分,答错一个倒扣一分)③•••该抛物线与x轴交于点(1, 0),••• x=1满足该抛物线方程,••• a+b+c=O;故本选项正确;④设该抛物线与x轴交于点(x, 0)), 则由对称轴x= - 1,得手=-1, 解得,x= - 3; • ax2+bx+c=0的两根分别为-3和1;故本选项正确;⑤根据图示知,当x=- 4时,y>0,•16a - 4b+c> 0,由①知,b=2a,•8a+c > 0;故本选项正确;综合①②③④⑤,上述正确的①③④⑤;三、解答题(本大题8小题,共55 分)216. 解方程:x - 3x+1=0.【考点】解一元二次方程-公式法.【分析】先观察再确定方法解方程,此题采用公式法求解即可.【解答】解:••• a=1, b=- 3, c=117. 如图,放置在水平桌面上的台灯的灯臂AB长为30cm,灯罩BC长为20cm,底座厚度为2cm,灯臂与底座构成的/ BAD=60 •使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?(结果精确到0.1cm,参考数据:二~ 1.732 )【分析】首先过点B作BF丄CD于点F,作BGLAD于点G进而求出FC的长,再求出BG的长,即可得出答案.【解答】解:过点B作BF丄CD于点F,作BGLAD于点G.•四边形BFDG矩形,• BG=FD在Rt△ BCF中,/ CBF=30 ,•CF=BC?s in30 =20X 一=10,在Rt△ ABG中,/ BAG=60 ,•BG=AB?si n60 =30X•CE=CF+FD+DE=10+15_+2=12+15 —37.98 38.0 (cm).答:此时灯罩顶端C到桌面的高度CE约是38.0cm.••• b2-4ac=5【考点】解直角三角形的应18. 如图,已知直线PA交O O于A、B两点,AE是O O的直径,点C为O O上一点,且AC 平分/ PAE过C作CDL PA垂足为D.(1)求证:CD为O O的切线;(2 )若CD=2AD O O的直径为20,求线段AC AB的长.【考点】切线的判定;角平分线的性质;勾股定理.【分析】(1)连结0C先依据角平分线的定义和等腰三角形的性质证明/ 0CA2 PAC依据内错角相等两直线平行可证明OC/ PA结合条件DCL PC可得到CDL OC(2)连结OG CE过点0作OI L AB,垂足为F.先证明△ CDM A ECA从而得到CE=2AC 设AC=x则CE=2x,在Rt △ ACE中,依据勾股定理列出关于x的方程可求得AC的长,同理在Rt△ ADC中,可求得AD=4 CD=8然后证明四边形CDOF为矩形,从而可求得DF=1Q由AF=DF- AD可求得AF的长,最后依据垂径定理可求得AB的长.•/ OC=OA•••/ OCA2 OAC•/ AC平分/ PAE•••/ PAC玄OAC•••/ OCA=/ PAC•••OC// PA•••CD丄PA•CD丄OC•CD是O O的切线.•/ AE为O O的直径,•••/ ACE=90 .•••/ ACE玄CDA=90 .•△ CDA^ ECA.CE CD .…—AC AD设AC=x则CE=2x,在Rt △ ACe中,由勾股定理得:A W=A C+C E=5X2=400,解得:•AC=4 7 .设AD=a 贝y CD=2a 在Rt △ ACD中,由勾股定理得:A C=A D+C D=5A2=80,解得:• AD=4.• CD=8.•••/ CDF玄DCO M OFD=90 ,•四边形CDOF为矩形.垂足为F .a=4 .•••/ E=DCAO作OF丄AB,• DF=OC=10 CD=OF=8在Rt△ OFA中,J「=6・••• AB=2AF=1219. 如图,在平面直角坐标系中,已知等边△OAB的顶点A在反比例函数y=二二(x>0)x根据等边三角形的性质和反比例系数k的几何意义即可求得A的在以及三角形AOC的面积,进而求得三角形AOB的面积.【解答】解:当点B在x轴上时,如图1,作AC丄OB于C,•/△ AOB是等边三角形,设OC=x• A (x, : x ),•••顶点A在反比例函数• x?「x=4 _,•x=2,• A (2, 2 一);当点B在y轴上时,如图2, 作AC丄y轴于C,•/△ AOB是等边三角形,(x > 0)图象上,【分OAB的面积.设OC=y• AC= -y,• A ( -y, y),•••顶点A在反比例函数••• -y?y=4 ",••• y=2,•-A(2二,2);20. 进入冬季,我市空气质量下降,多次出现雾霾天气•商场根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包•若供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务.(1 )试确定周销售量y (包)与售价x (元/包)之间的函数关系式;(2)试确定商场每周销售这种防尘口罩所获得的利润w (元)与售价x (元/包)之间的函数关系式,并直接写出售价x的范围;(3)当售价x (元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w (元)最大?最大利润是多少?【考点】二次函数的应用.图象上,y=(x > 0)X【分析】(1)根据题意可以直接写出y与x之间的函数关系式;(2 )根据题意可以直接写出w与x之间的函数关系式,由供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务可以确定x的取值范围;(3)根据第(2)问中的函数解析式和x的取值范围,可以解答本题.【解答】解:(1)由题意可得,y=200 -( x - 30)X 5= - 5x+350即周销售量y (包)与售价x (元/包)之间的函数关系式是:y= - 5x+350;(2)由题意可得,2w= ( x- 20)X( - 5x+350) =- 5x +450x - 7000 ( 30< x< 40),即商场每周销售这种防尘口罩所获得的利润w (元)与售价x(元/包)之间的函数关系式是:2w=- 5x +450x - 7000 (30 < x < 40);(3)T w=- 5x2+450x - 7000的二次项系数-5v 0,顶点的横坐标为:x= • -------------- p2X (-5)z 30< x< 40•••当X V 45时,w随x的增大而增大,2• x=40 时,w 取得最大值,w=- 5 X 40 +450 X 40 - 7000=3000,即当售价x (元/包)定为40元时,商场每周销售这种防尘口罩所获得的利润w (元)最大, 最大利润是3000元.AE…的大小有无变化?请仅就图2的情形给出证明.(3 )问题解决当厶EDC旋转至A, D, E三点共线时,直接写出线段BD的长.【考点】几何变换综合题.【分析】(1)①当a =0°时,在Rt△ ABC中,由勾股定理,求出AC的值是多少;然后根据点D E 21.如图1,在Rt△ ABC中,/ B=90°, BC=2AB=8 点D E分别是边BC AC的中点,连接(1)①当 a =0°时,②当a =180°时,(2) 拓展探究试判断:当0°w a V 360°时,DE将厶EDC绕点C按顺时针方向旋转,记旋转角为问题发现(X.分别是边BC AC的中点,分别求出AE、BD的大小,即可求出璧的值是多少.BD②a =180。
2014---2015学年九年级质量抽测数学试题附答案

2014---2015学年九年级质量抽测数学试题(总分120分 考试时间120分钟)注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共6页.2. 数学试题答案卡共8页.答题前,考生务必将自己的姓名、考号、考试科目等涂写在试题和答题卡上,考试结束,试题和答题卡一并收回.3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用0.5mm 碳素笔答在答题卡的相应位置上.4. 考试时,不允许使用科学计算器.第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1. |﹣|的相反数是( )A .2B .C . ﹣2D .﹣3. 用矩形纸片折出直角的平分线,下列折法正确的是( ) ....4. 下列运算中,正确的是( )A .39±=B .236(a )a =C .3a 2a 6a ⋅=D .632-=-5. 如下图,△ABC 经过位似变换得到△DEF ,点O 是位似中心且OA=AD ,则△ABC 与△DEF 的面积比是( )A .1:6B . 1:5C .1:4D .1:2 6. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩(m ) 1.50 1.60 1.65 1.70 1.75 1.80 人数 1 2 4 3 3 2这些运动员跳高成绩的中位数和众数分别是( )A . 1.65,1.70B .1.70,1.65C . 1.70,1.70D . 3,47. 如下图,半径为5的⊙P 与y 轴相交于M (0,-4),N (0,-10)两点,则圆心P 的坐标为( )A .(5,-4)B .(4,-5)C .(4,-7)D .(5,-7)8. 二次函数y=ax 2+bx+c 的图象如图所示,则一次函数y=ax+b 与反比例函数y=xc在同一平面直角坐标系中的大致图象为( )9. 一次数学课上,老师请同学们在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其他两个顶点在矩形的边上,则剪下的等腰三角形的面积为( )平方厘米A .50B .50或40C .50或40或30D .50或30或2010. 如图,正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于G ,下列结论:①BE=DF , ②∠DAF=15°, ③AC 垂直平分EF , ④BE+DF=EF , ⑤S △CEF =2S △ABE . 其中正确结论有( )个.第5题图 第7题图 第10题图第Ⅱ卷(非选择题 共90分)A .B .C .D .二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要13.甲、乙两人玩猜数字游戏,甲猜一个数字记为x,乙猜一个数字记为y,且x,y分别取1,2,3,4,则点(x,y)在反比例函数y4=的图像上的概率为___________.DC'B'CB A第12题图第15题图第16题图15.如图,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是_________(结果保留π).16.如图,在边长相同的小正方形组成的网格中,点A,B,C,D都在这些小正方形的顶点上,AB,CD相交于点P,则tan∠APD的值是___________.17.我们把按照一定顺序排列的一列数称为数列,如1,3,9,19,33,…就是一个数列,如果一个数列从第二个数起,每一个数与它前一个数的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做这个等差数列的公差.如2,4,6,8,10就是一个等差数列,它的公差为2.如果一个数列的后一个数与前一个数的差组成的新数列是等差数列,则称这个数列为二阶等差数列.例如数列1,3,9,19,33,…,它的后一个数与前一个数的差组成的新数列是2,6,10,14,…,这是一个公差为4的等差数列,所以,数列1,3,9,19,33,…是一个二阶等差数列.那么,请问二阶等差数列1,3,7,13,…的第五个数应是_________.第18题图18. 如图,已知点A (0,0),B ( 3 ,0),C (0,1),在△ABC 内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个△AA 1B 1,第2个△B1A 2B 2,第3个△B 2A 3B 3,…,则第n 个等边三角形的面积等于 .三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤. 19. (本题满分7分,第⑴题3分,第⑵题4分)(1)计算:(2) 先化简,再求值:(a+)÷(1+).其中a 是不等式组⎩⎨⎧<-≤-81302a a 的整数解.20.(本题满分8分) 为了解中考体育科目训练情况,改进训练方法,减轻学生负担,某县教育局从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是 ;(2)图1中∠α的度数是 ,并把图2条形统计图补充完整;(3)全县九年级共有学生8500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为 .21.(本题满分8分)如图,为了缓解交通拥堵,方便行人,在济南路计划修建一座横断面为梯形ABCD的过街天桥,若天桥斜坡AB的坡角 BAD为35゜,斜坡CD的坡度为i=1:1.2(垂直高度CE 与水平宽度DE的比),上底BC=10m,天桥高度CE=5m,求天桥下底AD的长度?(结果精确到0.1m,参考数据:sin35゜≈ 0.57,cos 35゜≈ 0.82,tan35゜≈ 0.70)22.(本题满分8分) 如图,直线PQ与⊙O相交于点A、B,BC是⊙O的直径,BD平分∠CBQ交⊙O于点D,过点D作DE⊥PQ,垂足为E.(1)求证:DE与⊙O相切;(2)连结AD,已知BC=10,BE=2,求BD的长.23. (本题满分8分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.24.(本题满分11分) 已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.25.(本题满分12分) 如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y 轴交于点C(0,3),与x轴交于A、B两点(点A在点B的右侧),点P是该抛物线上一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.数学试题参考答案及评分标准一.二、填空题: 11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果. 11.()()b a b a a -+ 12. 33013.16314. 5,1≠≥a a 且15.4π16. 2 17. 21 18.三、解答题:19. (本题满分7分,第⑴题3分,第⑵题4分)(1)解:原式=0.5+1+32-1=0.5+32 ……………………3分(2) 解:原式=()()112222122122-=--∙--=-+-÷-+-a a a a a a a a a a . ………………2分解不等式组得2,1,0,30=<≤a a 所以………………3分只有当a =0时,原式有意义,原式=-1.(因为分式的分母不为0,除数不为0,所以本题中的a 不能取1和2) …………………………4分20.解:(1)40 ……………………2分(2) 540……………………4分 图略,为14人. ………………6分 (3)1700.……………………8分 21.……………… 2分……………… 4分…………… 6分…………………7分…………………8分22.证明:(1)连结OD ,则OD=OB, ∴∠OBD=∠ODB. ………………… 1分 ∵BD 平分∠CBQ , ∴∠OBD=∠DBQ.∵ DE ⊥PQ , ∴∠BED=90°. ………… 2分 ∴ ∠EBD + ∠BDE = 90°. ∴ ∠EDB + ∠BDO = 90°. 即:∠ODE = 90°.………………………… 3分 ∴ DE ⊥OD , ∴DE 是⊙O 的切线. ………… 4分(2)连结CD , 则∠CDB = 90°=∠BED, ……………… 5分∵ ∠CBD =∠DBE.∴ △CBD ∽△DBE.……………………………6分∴BD BC =BEBD. …………7分 即:BD 2=BC ·BE=10×2=20, ∴ BD=25, …………………8分23. 解:⑴设购进A 种树苗x 棵,则购进B 种树苗(17-x )棵,根据题意得: 80x +60(17- x )=1220 …………………2分 解得x =10 …………………3分 ∴ 17- x =7答:购进A 种树苗10棵,B 种树苗7棵 …………………4分 ⑵设购进A 种树苗x 棵,则购进B 种树苗(17-x )棵,根据题意得:17-x < x 解得x > …………………5分购进A 、B 两种树苗所需费用为80x +60(17- x )=20 x +1020…………………6分则费用最省需x 取最小整数9,此时17- x =8,费用为20×9+1020=1200(元). …………7分 答:费用最省方案为:购进A 种树苗9棵,B 种树苗8棵. 这时所需费用为1200元.……8分24.证明:(1)∵∠BAC=90°,∠ABC=45°, ∴∠ACB=∠ABC=45°, ∴AB=AC ,…………………1分 ∵四边形ADEF 是正方形, ∴AD=AF ,∠DAF=90°, ∵∠BAD=90°﹣∠DAC , ∠CAF=90°﹣∠DAC ,∴∠BAD=∠CAF , …………………2分 在△BAD 和△CAF 中,,∴△BAD ≌△CAF (SAS ),…………3分∴BD=CF ,∵BD+CD=BC ,∴CF+CD=BC ;…………………4分(2)CF ﹣CD=BC ;…………………6分(3)①CD ﹣CF=BC …………………8分 ②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC , ∵四边形ADEF 是正方形,∴AD=AF ,∠DAF=90°, ∵∠BAD=90°﹣∠BAF ,∠CAF=90°﹣∠BAF ,∴∠BAD=∠CAF ,∵在△BAD 和△CAF 中,∴△BAD ≌△CAF (SAS ),…………9分 ∴∠ACF=∠ABD , ∵∠ABC=45°, ∴∠ABD=135°, ∴∠ACF=∠ABD=135°, ∴∠FCD=90°,∴△FCD 是直角三角形. …………………10分 ∵正方形ADEF 的边长为2且对角线AE 、DF 相交于点O . ∴DF=AD=4,∵O 为斜边DF 中点.∴OC=DF=2.…………………11分25.解:(1)∵抛物线的顶点为Q (2,-1)设………………… 1分 将C (0,3)代入上式,得………………… 2分∴即。
2015届九年级上期末考试数学试题

九年级期末质量监测一、选择题(本题有12小题,每小题4分,共48分)每小题只有一个答案是准确,请将准确答案的代号填入下面的表格里1.一元二次方程240x -=的解为( ) A .12x =,22x =-B .2x =-C . 2x =D .12x =,20x =2.抛物线1)3(22+-=x y 的顶点坐标是( )A.(3, 1)B.(3,-1)C.(-3, 1)D.(-3, -1) 3.点M (2,-3)关于原点对称的点N 的坐标是: ( ) A.(-2,-3) B.(-2, 3) C.(2, 3) D.(-3, 2) 4.已知圆的半径为3,一点到圆心的距离是5,则这点在( )A .圆内B .圆上C .圆外D .都有可能 5.用配方法解方程2420x x -+=,下列配方准确的是( ) A .2(2)6x -= B .2(2)2x +=C .2(2)2x -=-D .2(2)2x -=6.下列平面图形中,既是轴对称图形,又是中心对称图形的是 ( )7.抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. 23(1)2y x =++ B. 23(1)2y x =+- C. 23(1)2y x =-- D. 23(1)2y x =-+8.某品牌服装原价173元,连续两次降价x%后售价为127元,下面所列方程中准确的是( )A . 173(1+x%)2=127 B .173(1-2x%)=127C . 127(1+x%)2=173D .173(1-x%)2=127 9.一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为( )A.21B.51 C. 31 D.3210.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是( )A .10πB .20πC .50πD .100π11.三角形两边长分别为2和4,第三边是方程x 2-6x+8=0的解,•则这个三角形的周长是( ) A .10 B .8或10 C .8 D .8和1012.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出四个结论:①b 2> 4ac ;②2a+b=0;③a-b +c=0;④5a < b .其中准确结论有( )A .1个B .2个C .3个D .4个二、填空题(本题有6小题,每小题4分,共分24分)13.二次函数2)1(2+-=x y 的最小值是 .14.已知关于x 方程x 2-3x +m =0的一个根是1,则它的另一个根是______.15.如图,A 、B 、C 为⊙O 上三点,且∠OAB=55°,则∠ACB 的度数是_______度.16.⊙O 的直径为10,弦AB=6,P 是弦AB 上一动点,则OP 的取值范围是 . 17.现有6张正面分别标有数字—1,0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使得关于x 的一元二次方程2220x x a -+-=有实数根,且关于x 的分式方程11222ax x x-+=--有解的概率为 .18.如图,△ABC 绕点A 顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=22,则图中阴影部分的面积等于 . 三、解答题:19.解方程:02632=--x xBO AC15题图18题图20题图OPCBA20.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC △的顶点都在格点上,点C 的坐标为(41)-,. (1)把ABC △向上平移5个单位后得到对应的111A B C △, 画出111A B C △,并写出1C 的坐标;(2)以原点O 为对称中心,再画出ABC △关于原点O 对称的222A B C △,并写出点2C 的坐标.21.先化简,再求值:)211(1222x x xx x ++÷--,其中3-=x22.如图,AC 是⊙O 的直径,BC 是⊙O 的弦,点P 是⊙O 外一点,连接PB 、AB ,PBA C ∠=∠. 求证:PB 是O ⊙的切线;23.已知点A (3,3)在抛物线21433y x x =-+的图象上,设点A 关于抛物线对称轴对称的点为B .(1)求点B 的坐标; (2)求AOB ∠度数.24.某商场服装部销售一种名牌衬衫,平均每天可售出40件,每件盈利50元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件. (1)若商场要求该服装部每天盈利2400元,尽量减少库存,每件衬衫应降价多少元? (2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.25.如图,抛物线y=-x 2+bx+c 与x 轴交于A (2,0),B (-4,0)两点. (1) 求该抛物线的解析式;(2) 若抛物线交y 轴于C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.(3) 在抛物线的第二象限图像上是否存在一点P ,使得△PBC 的面积最大?,若存在,求出点P 的坐标及△PBC 的面积最大值;若不存,请说明理由.备用图九年级期末质量监测数 学 试 卷参考答案一、选择题(本题有12小题,每小题4分,共48分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案AABCDBCDDCAB二、填空题(本题有6小题,每小题4分,共分24分)13、2 14、x=2 15、35 16、54≤≤OP 17、2118、424—三、解答题:(本大题共2个小题,每小题7分,共14分) 19、解: 3224366⨯+±=x -----------------------------3分61526±=3151±=----------------------------------7分 20、(1)图略,C 1(4, 4)------------------------------3分 (2)图略,C 2(-4,1)------------------------------7分四、解答题:(本大题共个4小题,每小题10分,共40分)21、解:原式=xx x x x x x 212)1()1)(1(2++÷--+-----------------3分=2)1(2)1()1)(1(+⋅--+x xx x x x --------------------5分=12+x ----------------------------------8分当3-=x 时,原式=—1------------------------10分22、(1) 20 ,图略----------------------------------2分(2) 126 ---------------------------------------4分(3)树状图或列表法略 ----------------------------8分21=p ------------------------------------10分 23、解:(1)设每件衬衫应降价x 元,由题意得:(50-x )(40+2x)=2400 解得:x 1=10 ,x 2=20因为尽量减少库存,x 1=10舍去答:每件衬衫应降价20元。
金乡一模初三数学试卷

一、选择题(本大题共10小题,每小题3分,共30分)1. 下列数中,是偶数的是()A. 0.5B. -3C. 7D. 102. 若方程2x-3=5的解为x,则x的值为()A. 2B. 3C. 4D. 53. 下列函数中,是正比例函数的是()A. y=2x+1B. y=3x^2C. y=kx(k为常数)D. y=x^34. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数为()A. 60°B. 75°C.90°D. 120°5. 已知等腰三角形ABC中,AB=AC,若AB=10cm,则底边BC的长度为()A. 5cmB. 10cmC. 15cmD. 20cm6. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 梯形7. 若|a|=5,则a的值为()A. 5B. -5C. ±5D. 无法确定8. 在平面直角坐标系中,点P(2,3)关于x轴的对称点为()A. (2,-3)B. (-2,3)C. (2,-3)和(-2,3)D. (-2,-3)9. 下列等式中,正确的是()A. a^2+b^2=c^2(a,b,c为任意实数)B. a^2+b^2=c^2(a,b,c为正实数)C. a^2+b^2=c^2(a,b,c为非负实数)D. a^2+b^2=c^2(a,b,c为任意非零实数)10. 下列函数中,是二次函数的是()A. y=x^3+2B. y=2x^2-3x+1C. y=3x+2D. y=2x^2+3x+4二、填空题(本大题共10小题,每小题3分,共30分)11. 已知x+2=5,则x=__________。
12. 若a=3,b=-2,则a^2+b^2=__________。
13. 下列等式中,正确的是__________。
14. 在△ABC中,∠A=70°,∠B=40°,则∠C的度数为__________。
2014-2015年第一学期九年级数学试题答案

2014---2015学年度第一学期期末质量检测九年级数学试题 (答案)一、选择题(请把选择题答案填在下列表格中,每题3分,满分36分)二、填空题(本大题共8小题,每小题3分,共24分.) 13.1414. 24π 15. 35︒ 16. 80 17. 10 18. 2 三、解答题19.解: 1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………5分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………9分 20. 解:设小明的身高为x 米,则CD=EF=x 米. 在Rt △ACD 中,∠ADC=90°,tan ∠CAD=AD CD ,即tan30°=xAD,AD=3x --2分 在Rt △BEF 中,∠BFE=90°,tan ∠EBF=EF BF ,即tan60°=x BF ,BF=x 33 ---4分 由题意得DF=2,∴BD=DF-BF=2-x 33,∵AB=AD+BD=4,∴3x+2-x 33=4 --7分即x=3.答:小明的身高为3米.------------------------------------------------------------------------9分21. 解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b═4,解得k=4,b=3,反比例函数的解析式是y=,一次函数解析式是y=x+3;…………4分(每个解析式2分)(2)如图,当x=﹣4时,y=﹣1,B(﹣4,﹣1),当y=0时,x+3=0,x=﹣3,C(﹣3,0)S△AOB=S△AOC+S△BOC==;…………8分(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.…………12分22.解:(1)∵x%+15%+10%+45%=1,∴x=30;…………1分∵调查的总人数=90÷45%=200(人),…………2分∴B等级人数=200×30%=60(人);C等级人数=200×10%=20(人),…………4分(求出1个1分)如图:…………5分(2)2500×(10%+30%)=1000(人),所以估计每周课外阅读时间量满足2≤t<4的人数为1000人;…………7分(3)3人学习组的3个人用甲表示,2人学习组的2个人用乙表示,画树状图为:,共有20种等可能的结果数,其中选出的2人来自不同小组占12种,…………10分所以选出的2人来自不同小组的概率==.…………12分23.(1)证明:∵AB是⊙O的切直径,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切线;…………6分(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴=,即BC2=AC•CD=(AD+CD)•CD=10,∴BC=.…………12分22.………………1分………………6分∴P 点的坐标为(5,2)………………12分………………7分………10分………………11分。
2014-2015九年级数学试题答案及评分标准

2014-2015学年度第二学期九年级摸底考试数学试题答案及评分标准二、填空题:17、33 18、5 19、70和120 20. -2014 三、解答题:21、(1)△=)1(4)}1(2{422--+-=-m m m ac b …………1分∵该方程有两个实数根 ∴△》0 (3)1-≥m 3分 解得:m ≥131≠-m 且…………4分(2)当m=2时,上述方程有实数根…………5分当m=2时,原方程可化为0262=+-x x ………6分 配方得:7)3(2=-x ………8分731+=x ………9分 732-=x ………10分22、(l )144: ……………………………………………………………………………2分 (2)300×40%=120 120-27-33-20=40人………………………4分(“篮球”选项的频数为40.正确补全条形统计图):………………………5分 (3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为 1200×40300=160(人):………………………………………………………8分 (4)这种说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人。
………10分(注:只要解释合理即可) 23、(1)证明:在△ABC 和△ADC 中∴△ABC ≌△ADC (SSS ),………………2分∴∠1=∠2,………………3分 在△ABF 和△ADF 中∴△ABF ≌△ADF (SAS )………………5分(2)证明:∵AB ∥CD ,∴∠1=∠3,………………6分又∵∠1=∠2,∴∠2=∠3,∴AD=CD ,………………7分∵AB=AD ,CB=CD ,∴AB=CB=CD=AD ,………………8分 ∴四边形ABCD 是菱形;………………9分(3)由(2)可得:BE ⊥CD 或∠BEC=∠BED=90°或△BEC ∽△DEF 或∠EFD=∠BAD ,写出其中一个.………………11分 24、(1)∵ 函数2y x bx c =++(x ≥0)满足当x =1时,1y =-, 且当x = 0与x =4时的函数值相等,∴ 11,2.2b c b ++=-⎧⎪⎨-=⎪⎩。
初中数学山东省济宁市金乡县九年级上期末数学考试卷(1)含答案解析 .docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:抛物线y=2x2﹣4的顶点坐标是()A.(1,﹣2) B.(0,﹣2) C.(1,﹣3) D.(0,﹣4)试题2:不在函数y=图象上的点是()A.(2,6) B.(﹣2,﹣6) C.(3,4) D.(﹣3,4)试题3:若抛物线y=x2﹣x﹣1与x轴的交点坐标为(m,0),则代数式m2﹣m+2012的值为()A.2012 B.2013 C.2014 D.2015试题4:如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为()A.40° B.30° C.45° D.50°试题5:如图,∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,则CD的长为()A. B. C.2 D.3试题6:如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变 B.俯视图不变,左视图不变C.俯视图改变,左视图改变 D.主视图改变,左视图不变试题7:如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分图形的面积为()A.4π B.2π C.π D.试题8:已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2,其中正确结论的个数是()A.0 B.1 C.2 D.3试题9:如图,在平面直角坐标系中,⊙M与y轴相切于原点O,平行于x轴的直线交⊙M于P,Q两点,点P在点Q的右方,若点P的坐标是(﹣1,2),则点Q的坐标是()A.(﹣4,2) B.(﹣4.5,2) C.(﹣5,2) D.(﹣5.5,2)试题10:如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之间函数关系的是()A. B. C. D.试题11:方程x2﹣2x=0的根是.试题12:设有反比例函数,(x1,y1)(x2,y2)为其图象上两点,若x1<0<x2,y1>y2,则k的取值范围是.试题13:如图,△ABC中,DE∥BC,AE:EB=2:3,则△AED的面积与四边形DEBC的面积之比为.试题14:如右图,四个边长为1的小正方形拼成一个大正方形,A、B、O是小正方形顶点,⊙O的半径为1,P是⊙O上的点,且位于右上方的小正方形内,则sin∠APB等于.试题15:如图,直线l是经过点(1,0)且与y轴平行的直线.Rt△ABC中直角边AC=4,BC=3.将BC边在直线l上滑动,使A,B 在函数的图象上.那么k的值是.试题16:已知关于x的一元二次方程x2﹣mx﹣2=0(1)若x=﹣1是这个方程的一个根,求m的值和方程的另一根;(2)对于任意的实数m,判断方程的根的情况,并说明理由.试题17:如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为;(2)连接AD、CD,求⊙D的半径及扇形DAC的圆心角度数;(3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.试题18:在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.试题19:小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.(结果保留整数)(参考数据:sin35°≈,cos35°≈,tan35°≈)试题20:如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.(1)求证:AB=BE;(2)若PA=2,cosB=,求⊙O半径的长.试题21:某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)试题22:如图,直线y=﹣x+3与x轴,y轴分别相交于点B、点C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一交点为A,点A在点B的左边,顶点为P,且线段AB的长为2.(1)求点A的坐标;(2)求该抛物线的函数表达式;(3)在抛物线的对称轴上是否存在点G,使|GC﹣GB|最大?若存在,求G点坐标;若不存在说明理由.(3)连结AC,请问在x轴上是否存在点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.试题1答案:D【考点】二次函数的性质.【分析】形如y=ax2+k的顶点坐标为(0,k),据此可以直接求顶点坐标.【解答】解:抛物线y=x2﹣4的顶点坐标为(0,﹣4).故选D.【点评】本题考查了二次函数的性质.二次函数的顶点式方程y=a(x﹣k)2+h的顶点坐标是(k,h),对称轴方程是x=k.试题2答案:D【考点】反比例函数图象上点的坐标特征.【分析】根据得k=xy=12,所以只要点的横坐标与纵坐标的积等于12,就在函数图象上.【解答】解:A、2×6=12,不符合题意;B、﹣2×(﹣6)=12,不符合题意;C、3×4=12,不符合题意;D、﹣3×4=﹣12≠12,符合题意;故选D.【点评】本题主要考查反比例函数图象上点的坐标特征.所有在反比例函数上的点的横纵坐标的积应等于比例系数.试题3答案:B【考点】抛物线与x轴的交点.【专题】计算题.【分析】先根据抛物线与x轴的交点问题可判断m为方程x2﹣x﹣1=0的解,路一元二次方程解的定义得到m2﹣m=1,然后利用整体代入的方法计算代数式m2﹣m+2012的值.【解答】解:∵抛物线y=x2﹣x﹣1与x轴的交点坐标为(m,0),∴m为方程x2﹣x﹣1=0的解,∴m2﹣m﹣1=0,即m2﹣m=1,∴m2﹣m+2012=1+2012=2013.故选B.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.试题4答案:A【考点】圆周角定理.【分析】首先根据等腰三角形的性质及三角形内角和定理求出∠AOB的度数,再利用圆周角与圆心角的关系求出∠ACB的度数.【解答】解:△AOB中,OA=OB,∠ABO=50°,∴∠AOB=180°﹣2∠ABO=80°,∴∠ACB=∠AOB=40°,故选A.【点评】本题主要考查了圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.试题5答案:B【考点】相似三角形的判定与性质.【专题】探究型.【分析】先根据题意判断出△ABD∽△BDC,再根据相似三角形的对应边成比例即可得出CD的长.【解答】解:∵∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,∴△ABD∽△BDC,∴=,即=,解得CD=.故选B.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.试题6答案:D【考点】简单组合体的三视图.【分析】分别得到将正方体①移走前后的三视图,依此即可作出判断.【解答】解:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.【点评】考查三视图中的知识,得到从几何体的正面,左面,上面看的平面图形中正方形的列数及每列正方形的个数是解决本题的关键.试题7答案:D【考点】扇形面积的计算;勾股定理;垂径定理.【分析】根据垂径定理求得CE=ED=,然后由圆周角定理知∠COE=60°,然后通过解直角三角形求得线段OC、OE的长度,最后将相关线段的长度代入S阴影=S扇形OCB﹣S△COE+S△BED.【解答】解:如图,假设线段CD、AB交于点E,∵AB是⊙O的直径,弦CD⊥AB,∴CE=ED=,又∵∠CDB=30°,∴∠COE=2∠CDB=60°,∠OCE=30°,∴OE=CE•cot60°=×=1,OC=2OE=2,∴S阴影=S扇形OCB﹣S△COE+S△BED=﹣OE×EC+BE•ED=﹣+=.故选D.【点评】本题考查了垂径定理、扇形面积的计算,通过解直角三角形得到相关线段的长度是解答本题的关键.试题8答案:D【考点】二次函数图象与系数的关系.【分析】根据抛物线与x轴的交点个数对①进行判断;由抛物线开口方向得a<0,由抛物线的对称轴在y轴的右侧得b >0,由抛物线与y轴的交点在x轴上方得c>0,则可对②进行判断;由ax2+bx+c﹣m=0没有实数根得到抛物线y=ax2+bx+c 与直线y=m没有公共点,加上二次函数的最大值为2,则m>2,于是可对③进行判断.【解答】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②正确;∵ax2+bx+c﹣m=0没有实数根,即抛物线y=ax2+bx+c与直线y=m没有公共点,∵二次函数的最大值为2,∴m>2,所以③正确.故选D.【点评】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b 同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.试题9答案:A【考点】坐标与图形性质;勾股定理;垂径定理.【专题】压轴题.【分析】因为⊙M与y轴相切于原点O,平行于x轴的直线交⊙M于P,Q两点,点P在点Q的右方,若点P的坐标是(﹣1,2),则点Q的坐纵标是2,设PQ=2x,作MA⊥PQ,利用垂径定理可求QA=PA=x,连接MP,则MP=MO=x+1,在Rt△AMP 中,利用勾股定理即可求出x的值,从而求出Q的横坐标=﹣(2x+1).【解答】解:∵⊙M与y轴相切于原点O,平行于x轴的直线交⊙M于P,Q两点,点P在点Q的右方,点P的坐标是(﹣1,2)∴点Q的纵坐标是2设PQ=2x,作MA⊥PQ,利用垂径定理可知QA=PA=x,连接MP,则MP=MO=x+1,在Rt△AMP中,MA2+AP2=MP2∴22+x2=(x+1)2∴x=1.5∴PQ=3,Q的横坐标=﹣(1+3)=﹣4∴Q(﹣4,2)故选:A.【点评】本题需仔细分析题意,结合图形,利用垂径定理与勾股定理即可解决问题.试题10答案:C【考点】动点问题的函数图象.【专题】动点型.【分析】通过相似三角形△EFB∽△EDC的对应边成比例列出比例式=,从而得到y与x之间函数关系式,从而推知该函数图象.【解答】解:根据题意知,BF=1﹣x,BE=y﹣1,且△EFB∽△EDC,则=,即=,所以y=(0.2≤x≤0.8),该函数图象是位于第一象限的双曲线的一部分.A、D的图象都是直线的一部分,B的图象是抛物线的一部分,C的图象是双曲线的一部分.故选:C.【点评】本题考查了动点问题的函数图象.解题时,注意自变量x的取值范围.试题11答案:x1=0,x2=2 .【考点】解一元二次方程-因式分解法.【分析】因为x2﹣2x可提取公因式,故用因式分解法解较简便.【解答】解:因式分解得x(x﹣2)=0,解得x1=0,x2=2.故答案为x1=0,x2=2.【点评】本题考查了因式分解法解一元二次方程,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.试题12答案:k<﹣2 .【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】先根据x1<0<x2,y1>y2判断出k+2的符号,求出k的取值范围即可.【解答】解:∵(x1,y1)(x2,y2)为反比例函数图象上两点,x1<0<x2,y1>y2,∴k+2<0,解得k<﹣2.故答案为:k<﹣2.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数的图象在二、四象限是解答此题的关键.试题13答案:4:21 .【考点】相似三角形的判定与性质.【分析】由已知条件得到AE:AB=2:5,根据DE∥BC,得到△ADE∽△ABC,根据相似三角形的性质得到=()2=,即可得到结论.【解答】解:∵AE:EB=2:3,∴AE:AB=2:5,∵DE∥BC,∴△ADE∽△ABC,∴=()2=,∴△AED的面积与四边形DEBC的面积之比=4:21,故答案为:4:21.【点评】本题考查了相似三角形的判定及性质,比例的基本性质的运用,相似三角形的面积与相似比的关系,熟练掌握相似三角形的判定定理是解题的关键.试题14答案:.【考点】圆周角定理;特殊角的三角函数值.【专题】网格型.【分析】由题意可得∠AOB=90°,然后由圆周角定理,可求得∠APB=45°,继而求得sin∠APB的值.【解答】解:∵四个边长为1的小正方形拼成一个大正方形,A、B、O是小正方形顶点,∴∠AOB=90°,∴∠APB=∠AOB=45°,∴sin∠APB=sin45°=.故答案为:.【点评】此题考查了圆周角定理以及特殊角的三角函数值.此题难度不大,注意掌握数形结合思想的应用.试题15答案:.【考点】反比例函数综合题.【分析】过点B作BM⊥y轴于点M,过点A作AN⊥x轴于点N,延长AC交y轴于点D,设点C的坐标为(1,y),根据反比例函数上的点向x轴y轴引垂线形成的矩形面积等于反比例函数的k值是个定值作为相等关系求得y值后再求算k值.【解答】解:过点B作BM⊥y轴于点M,过点A作AN⊥x轴于点N,延长AC交y轴于点D,设点C的坐标为(1,y),则∵AC=4,BC=3∴OM=3+y,ON=5,∴B(1,3+y),A(5,y),∴,∴5y=3+y,解得,y=,∴OM=3+=,∴k=OM×1=.故答案为:.【点评】此题综合考查了反比例函数与一次函数的性质,此题难度稍大,综合性比较强,注意反比例函数上的点向x轴y 轴引垂线形成的矩形面积等于反比例函数的k值.试题16答案:【考点】根的判别式;一元二次方程的解.【分析】(1)把x=﹣1代入已知方程,得到关于m的一元一次方程,通过解该方程来求m的值;(2)由根的判别式的符号来判定原方程的根的情况.【解答】解:(1)将x=﹣1代入方程x2﹣mx﹣2=0,得1+m﹣2=0,解得m=1,解方程x2﹣x﹣2=0,解得x1=﹣1,x2=2;(2)∵△=m2+8>0,∴对于任意的实数m,方程有两个不相等的实数根.【点评】本题考查了根的判别式和方程的解的定义.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.试题17答案:【考点】圆锥的计算;坐标与图形性质;勾股定理;垂径定理.【专题】压轴题;网格型.【分析】(1)找到AB,BC的垂直平分线的交点即为圆心坐标;(2)利用勾股定理可求得圆的半径;易得△AOD≌△DEC,那么∠OAD=∠CDE,即可得到圆心角的度数为90°;(3)求得弧长,除以2π即为圆锥的底面半径.【解答】解:(1)如图;D(2,0)(2)如图;;作CE⊥x轴,垂足为E.∵△AOD≌△DEC,∴∠OAD=∠CDE,又∵∠OAD+∠ADO=90°,∴∠CDE+∠ADO=90°,∴扇形DAC的圆心角为90度;(3)∵弧AC的长度即为圆锥底面圆的周长.l弧=,设圆锥底面圆半径为r,则,∴.【点评】本题用到的知识点为:非直径的弦的垂直平分线经过圆心;圆锥的弧长等于底面周长.试题18答案:【考点】列表法与树状图法;概率公式.【专题】计算题.【分析】(1)由小亮打第一场,再从其余三人中随机选取一人打第一场,求出恰好选中大刚的概率即可;(2)画树状图得出所有等可能的情况数,找出小莹和小芳伸“手心”或“手背”恰好相同的情况数,即可求出所求的概率.【解答】解:(1)∵确定小亮打第一场,∴再从小莹,小芳和大刚中随机选取一人打第一场,恰好选中大刚的概率为;(2)列表如下:所有等可能的情况有8种,其中小莹和小芳伸“手心”或“手背”恰好相同且与大刚不同的结果有2个,则小莹与小芳打第一场的概率为=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.试题19答案:【考点】解直角三角形的应用-仰角俯角问题.【分析】作AD⊥BC交CB的延长线于D,设AD为x,表示出DB和DC,根据正切的概念求出x的值即可.【解答】解:作AD⊥BC交CB的延长线于D,设AD为x,由题意得,∠ABD=45°,∠ACD=35°,在Rt△ADB中,∠ABD=45°,∴DB=x,在Rt△ADC中,∠ACD=35°,∴tan∠ACD=,∴=,解得,x≈233m.【点评】本题考查的是解直角三角形的应用,理解仰角和俯角的概念、掌握锐角三角函数的概念是解题的关键,解答时,注意正确作出辅助线构造直角三角形.试题20答案:【考点】切线的性质;解直角三角形.【分析】(1)本题可连接OD,由PD切⊙O于点D,得到OD⊥PD,由于BE⊥PC,得到OD∥BE,得出∠ADO=∠E,根据等腰三角形的性质和等量代换可得结果;(2)由(1)知,OD∥BE,得到∠POD=∠B,根据三角函数的定义即可得到结果.【解答】(1)证明:连接OD,∵PD切⊙O于点D,∴OD⊥PD,∵BE⊥PC,∴OD∥BE,∴ADO=∠E,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠E,∴AB=BE;(2)解:有(1)知,OD∥BE,∴∠POD=∠B,∴cos∠POD=cosB=,在Rt△POD中,cos∠POD==,∵OD=OA,PO=PA+OA=2+OA,∴,∴OA=3,∴⊙O半径=3.【点评】本题考查了切线的性质,等腰三角形性质以及等边三角形的判定等知识点,正确的画出辅助线是解题的关键.试题21答案:【专题】销售问题.【分析】(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值;然后由“每天的总成本不超过7000元”列出关于x的不等式50(﹣5x+550)≤7000,通过解不等式来求x的取值范围.【解答】解:(1)y=(x﹣50)[50+5]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得50(﹣5x+550)≤7000,解得x≥82.∴82≤x≤90,∵50≤x≤100,∴销售单价应该控制在82元至90元之间.【点评】本题考查二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.试题22答案:【考点】二次函数综合题.【分析】(1)求值直线y=﹣x+3与x轴的交点B,然后根据AB的长,即可求得OA的长,则A的坐标即可求得;(2)利用待定系数法求得二次函数的解析式;(3)由于A、B两点关于抛物线的对称轴即直线x=2对称,所以G点为直线CA与直线x=2的交点,先运用待定系数法求出直线AC的解析式,再令x=2,求出y的值,进而得出G点坐标;(4)分成=,∠PBQ=∠ABC=45°和=,∠QBP=∠ABC=45°两种情况求得QB的长,据此即可求解.【解答】解:(1)当y=0时,﹣x+3=0,解得x=3,即B(3,0),由AB=2,得3﹣2=1,A的坐标为(1,0);(2)根据题意得:,解得:,则抛物线的解析式是:y=x2﹣4x+3;(3)延长CA,交对称轴于点G,连接GB,则|GC﹣GB|=GC﹣GA=AC最大.∵抛物线y=x2﹣4x+3与x轴交于点A、点B(3,0),且对称轴为直线x=2,∴点A的坐标为(1,0).设直线AC的解析式为y=kx+m,∵A(1,0),C(0,3),∴,解得,∴y=﹣3x+3,当x=2时,y=﹣3×2+3=﹣3,∴G点坐标为(2,﹣3);(4)①当=,∠PBQ=∠ABC=45°时,△PBQ∽△ABC.即=∴BQ=3,又∵BO=3,∴点Q与点O重合,∴Q1的坐标是(0,0).②当=,∠QBP=∠ABC=45°时,△QBP∽△ABC.即=,QB=.∵OB=3,∴OQ=OB﹣QB=3﹣=∴Q2的坐标是(,0).∵∠PBx=180°﹣45°=135°,∠BAC<135°,∴∠PBx≠∠BAC.∴点Q不可能在B点右侧的x轴上综上所述,在x轴上存在两点Q1(0,0),Q2(,0)【点评】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数的解析式,相似三角形的判定与性质,正确进行分类求得QB的长是关键.。