天然气水合物资源开采方法研究(一)
天然气水合物资源评价及开发技术研究

天然气水合物资源评价及开发技术研究天然气水合物 (Methane Hydrate) 是一种在高压和低温环境下自然形成的亚稳定物质,其主要成分为甲烷和水。
由于其丰富的储量和广泛的分布,天然气水合物在全球范围内备受关注。
然而,开发利用天然气水合物的技术和风险评估仍然是一个挑战性的研究领域。
一、天然气水合物资源评价天然气水合物储量极为丰富。
据估计,全球天然气水合物储量达到 100,000 亿立方米以上(当量于 10,000 亿吨标煤),其中大概有 35,000 亿立方米可以开采。
而我国境内天然气水合物资源储量不仅占了全球的份额,而且以南海为中心,还处在区域集中和高品质分布的优势。
在天然气水合物资源评价中,最为关键的是确定天然气水合物储层是否具有商业开发价值。
评价方法可以主要分为实验室评价和现场勘探,具体方法包括储层抽取、样品分析、实验模拟、建模计算等。
现场勘探中,钻井是目前最主要的评价方法之一。
利用钻井记录解释结合获取的地震资料,结合潜在储层特征,包括钻井测井和地震反演,可以快速获得储层信息,确定探测区域的勘探价值和发展潜力。
此外,海底振荡探查法、测井、地震等方法也可以用于天然气水合物资源勘探与评价中。
二、天然气水合物开发技术研究目前,天然气水合物的常规开采技术主要为钻孔挖掘或热力学法开采。
其中,热力学法开采是指利用热力作用来改变天然气水合物的相态,从而使之解离并释放出天然气。
目前还存在一些问题,例如储层条件复杂、开采成本高、环境风险大等。
为了解决这些问题,需要研究和开发新的天然气水合物开采技术。
其中,最为引人注目的是微生物技术。
与常规开采技术相比,微生物技术解决了不需要破坏水合物层结构就能够提高开采效率、降低环境风险、并同时降低能源消耗等问题。
微生物技术的原理是通过资源细菌和微型生物的种类去解离天然气水合物,这样不但不会破坏水合物层结构,而且可以获得海水中的微生物能够消耗甲烷,保证了开采过程中的环保性。
天然气水合物研究进展与开发技术概述

未来发展方向
未来发展方向
随着科技的不断进步,天然气水合物的研究和开发将迎来更多的发展机遇。 未来,天然气水合物的研究将更加深入,涉及的领域将更加广泛。在开发技术方 面,将会发展更加环保、高效、低成本的技术,如微生物法、化学试剂法和纳米 技术等。同时,加强天然气水合物全产业链的研发和优化,推动其在能源、化工、 制冷、航空航天等领域的应用。
研究进展
研究进展
天然气水合物是指在一定条件下,甲烷等气体分子与水分子形成的笼形化合 物。其形成和稳定主要受温度、压力、气体成分和盐度等多种因素影响。近年来, 随着地球科学、地质工程、能源工程等领域的发展,人们对天然气水合物的研究 逐步深入。
研究进展
目前,全球范围内天然气水合物的研究主要集中在以下几个方面:(1)形成 机理与分布规律;(2)物理性质与化学性质;(3)开采技术与经济性;(4) 环境影响与安全性。尽管取得了许多重要成果,但仍存在许多挑战,如天然气水 合物的稳定性和开采过程中的环境风险等。
天然气水合物储运技术的研究现状
2、高效开采技术研究:针对天然气水合物的开采,研究者们开发出了一系列 新型的高效开采技术,如水平井技术、多分支井技术等,大大提高了开采效率。
天然气水合物储运技术的研究现状
3、储运安全技术研究:针对天然气水合物储运过程中的安全问题,研究者们 通过模拟和分析不同情况下的风险因素,提出了一系列有效的安全防技术概述
天然气水合物储运技术概述
天然气水合物,又称可燃冰,是由天然气(主要是甲烷)与水在高压、低温 条件下形成的笼形结晶化合物。由于其储存量大、燃烧清洁、开采成本低等优势, 被视为一种具有巨大潜力的能源。然而,这种化合物的非稳定性以及难以运输的 问题,一直是阻碍其开发利用的主要难题。因此,天然气水合物的储运技术成为 近年来研究的热点和难点。
海洋天然气水合物勘探与开采研究的新态势(一)

第3 0卷
第 6期
天然气水合物简介
()海 洋天 然气水 合 物 的分类 2 通常 , 天然气水合物分为海洋型和大陆型 2大类 , 海洋型又分为生物成 因的和热解成 因的。Ma x依据
生成水合物的甲烷的运移方式 , 把海洋型水合物矿床划分为扩散型 (iue y e与集束型( cs t e , df p) fst f ue y )前 o p 者为分散浸染状 , 后者多为脉状和块状 。而 Mi o 则根据天然气水合物产出的地质环境 ( lv k 主要是地层和构 造 )把水合物矿床分为 3 , 大类 : 岩层型矿床、 构造型矿床以及复合型矿床( 形成于渗透性岩层但流体又是经 断层等构造通道运移上来的) 。 近十年来 , 在海底水合物类型的划分上 , 人们越来越重视水合物特性与开发利用 的关系。这就导致了对 海底水合物矿床的另一种分类法。B s e 研究组最近就推出了一种新的分类系统 , o l w l 他们 以成矿 的地质构造 框架和含水合物沉积岩层的岩石特征( 主要是渗透性 ) 为基础 , 把海洋天然气水合物矿床划分为 4 : 类 砂岩 岩层矿床 , 破碎黏土岩矿床 ( a ue a— m nt l s , f c r c y o ia dp y)海床上( rt dl d e a 及近海床) 的块状水合物矿床 , 不渗透黏 土岩 中的低品位浸染状水合物矿床。后一类型的水合物数量最大 , 因为在陆缘沉积岩 中, 大多数水合物都赋
也使海底天然气水合物的开采在技术上成为可能 , 开采费用也有所降低 。特别是美国、 日本 、 加拿大等困在
20 和 20 对加 拿大 马更些 三角洲 的 Mal 上冻 土 层 中 的水合 物 成 功进 行 了两 度 开 采试 验 , 令 02年 08年 lk陆 i 更
天然气水合物的开采技术

天然气水合物的开采技术随着全球能源需求的不断增长,传统的石油和天然气资源正在逐渐减少。
在这种情况下,人们开始关注新型能源资源的探索和开发。
其中一种备受关注的新型能源资源就是天然气水合物。
天然气水合物是一种在海洋底部和地下埋藏的天然气资源。
它主要由甲烷和水分子组成,可以被看作是天然气和水的一种混合物。
在本文中,我们将讨论天然气水合物的开采技术。
天然气水合物的开采技术主要有两种:第一种是通过在水合物层上方注入高压液体,使天然气水合物分解成天然气和水。
这种方法称为“热力破坏法”。
这种方法的优点是操作简单、效率高、成本低。
但是,这种方法有一个风险,就是在水合物分解过程中释放出的甲烷会增加大气中甲烷的含量,从而加剧全球变暖的现象。
第二种方法是通过将热量传递到水合物层,从而使其中的甲烷蒸发成为气态。
这种方法称为“压力平衡法”。
这种方法的优点是不会释放甲烷到大气中,不会对环境造成负面影响。
但是,这种方法需要高能耗和高成本的设备,需要对现有技术进行改进,以降低成本。
在进行天然气水合物开采的过程中,还涉及到以下两个重要的技术:第一项技术是关于安全问题的。
天然气水合物开采过程中会涉及到高压和低温,如果操作不当就会引发安全事故。
因此,开采过程需要进行严格的安全防护。
比如,使用优质的管道和阀门、加强安全培训、做好紧急预案等。
第二项技术是关于环境问题的。
开采天然气水合物会对地下和海洋环境带来一定的影响。
因此,开采过程需要采取一系列措施,以减小环境影响。
比如,在开采过程中使用环保设备、实行环保措施等。
天然气水合物的开采技术是一个综合性的问题,需要从多个方面进行考虑。
只有通过技术创新,持续改进,才能实现天然气水合物的高效开采和利用。
同时,我们也需要时刻关注天然气水合物开采对环境和人类健康的影响,做到开采和保护的平衡。
总之,天然气水合物是一种潜力巨大的能源资源,目前仍处于开采阶段。
通过不断的技术研究和创新,我们有望在未来几十年内实现天然气水合物的商业开发,为全球能源供给做出更大的贡献。
天然气水合物开采高效率方法优化与示范推广

天然气水合物开采高效率方法优化与示范推广天然气水合物(Gas Hydrates)是一种在高压低温条件下形成的天然燃气和水分子结合的晶体化合物,它具有巨大的潜在能源储量。
然而,由于其特殊的地质环境和工艺难度,目前天然气水合物开采在技术上还面临许多挑战。
因此,为了提高天然气水合物开采的效率,有必要对开采方法进行优化,并进行示范推广。
首先,天然气水合物开采的高效率方法之一是通过改进钻井和压裂技术。
钻井是天然气水合物开采的关键环节,传统的方法往往效果不佳。
为了提高钻井效率,可以采用新型的钻井设备和技术,如钻井液的优化配方和钻井数据的实时监测与分析。
此外,压裂技术也可以用于改善水合物开采效率,通过在水合物层中注入压裂液体,破裂水合物层,增加气体释放速度。
其次,天然气水合物开采的高效率方法还包括适应性开发模式的建立。
传统的天然气水合物开采模式一般是通过建立海上平台或潜水器进行采集,投入成本高且风险大。
为了降低成本和风险,并提高开采效率,可以考虑采用适应性开发模式,即根据地质条件和资源储量,选择合适的开采工艺和设备。
例如,在已知天然气水合物储层存在的地区,可以采用水平井钻探和热解技术来提高开采效率。
此外,天然气水合物开采的高效率方法还包括提高生产工艺和设备的稳定性。
天然气水合物开采过程中,存在许多工艺和设备的不稳定因素,例如水合物在升温过程中可能会分解,导致产气速度降低。
为了克服这些问题,可以通过优化工艺流程和改进设备设计,提高稳定性。
例如,可以采用降低温度和增加压力的方法来稳定水合物层,保证持续的天然气产量。
最后,为了推广天然气水合物开采高效率方法,需要进行示范项目的建设和推广。
示范项目可以在具有较高天然气水合物资源潜力的地区进行,通过实际操作和数据收集,验证和证明高效率方法的可行性和效果。
同时,示范项目还可以吸引投资,促进技术的进一步研发和商业化应用。
总之,天然气水合物开采是一项具有巨大潜力的能源储备,但其开采效率目前仍面临许多技术挑战。
天然气水合物的开发和利用

天然气水合物的开发和利用随着能源需求不断增长,传统石油和煤炭等化石燃料的开采和利用已经难以满足人们的需求。
为了将能源来源多样化,开发和利用新能源已经成为了必要的途径。
其中,天然气水合物(Methane hydrate)是近年来备受关注的一种新型能源,是一种以甲烷分子为主要成分,通过水分子形成的固态物质。
天然气水合物是一种丰富、广泛分布的可再生能源,具有极高的能量密度和环保性,其全球资源总量远远超过传统天然气,具有巨大的经济和社会价值。
一、天然气水合物的形成天然气水合物,是一种在深海和高寒地区常见的固态物质,由水和天然气混合形成,因而又称为“天然气冰”。
其基本的成分是甲烷和水,真正的水合物者,还需一定量的其他气体。
天然气水合物形成于低温、高压条件下,常见的分布在海洋沉积物中,也有一些分布在陆地上或在深度较浅的海域中。
通常情况下,海底深度超过1000米的海底含水层中,甲烷水合物的含量最高,可达到数百万亿立方米。
二、天然气水合物的开采从1970年代开始,国际上就开始了Methane Hydrate的研究工作,而Methane Hydrate的开采和利用则是最近几年的热点话题之一。
天然气水合物开采的主要难点在于其开采和加工过程非常复杂。
因为天然气水合物的结构非常稳定,需要在极端的高压、低温环境下开采和加工。
这需要耗费大量的能源投入,以及高超的技术和专业知识。
从目前的技术水平上来看,天然气水合物的开采和加工还是非常困难的,需要投入大量的资金和技术研究才能实现它的大规模商业开采。
三、天然气水合物的利用天然气水合物的利用可以轻松地看出几个方向:燃料、化工原料和CO2减排等。
首先,天然气水合物的利用最主要的方向是作为一种新的燃料资源。
天然气水合物燃烧后所产生的污染物极其少,对环境污染的危害比传统化石燃料小得多,并且其热值居于化石燃料之上,因此被普遍认为是环保型的能源形式。
其次,人们还可以将天然气水合物提炼甲烷后用于化工原料生产中。
天然气水合物研究进展

论文与案例交流1水合物晶体结构和性质传统化石能源(煤、石油和天然气)的大量消耗带动了工业和社会的进步,然而对能源的过度依赖也使得全球陷入能源危机之中并积极发展替代能源。
由于有技术及经济等众多壁垒的限制,使得清洁新能源大规模工业化利用尚需一定时日。
因此,天然气水合物的开发利用被很多国家提上日程,近年来获得了突飞猛进的发展。
有文章指出,天然气水合物的储量两倍于煤、石油和天然气总储量之和。
因其主要成分为甲烷等各类可燃气体,是上等的优质燃料,若能合理有效地利用这些能源,无疑将会极大地缓解整个世界能源体系的危机现状。
当前全球已经有79个国家发现了天然气水合物,而30多个国家相继开展了水合物的研究工作[1]。
2007年,中国在南海北部成功钻获天然气水合物实物样品,成为继美国、日本,印度之后世界上第四个通过国家级研发计划采到水合物实物样品的国家。
天然气水合物是由某些气体或它们的混合物与水在一定温度、压力条件下生成的一种半稳态的类似于致密冰雪的冰状笼型固体化合物,由水分子的几何晶格构成,晶格含有被轻烃或其他轻质气体(如氮气、二氧化碳)占据的空穴,一般在25℃以下有可能形成。
水分子称为主体分子,而轻烃或其它轻质气体通常称为客体分子。
由水分子通过氢键形成不同形式的刚性笼架晶格,每个笼架晶格中包含一个主要为甲烷的天然气分子,水分子与天然气分子之间通过范德华力相互吸引。
在自然界中,水合物大多存在于大陆永久冻土带和海底沉积层中,其组成以甲烷为主,与天然气相似,故常称作天然气水合物,其中甲烷含量高达99%的天然气水合物又称为甲烷水合物。
已经发现的水合物类型共有三种[1-6]:I 型、II 型和H 型。
其中结构Ⅰ型属于体心立方体结构,可由天然气小分子在深海形成,其笼架晶格以各自的笼架体心堆砌排列。
结构Ⅱ型属于金刚石立方结构,可由含分子大于乙烷小于戊烷的烃形成。
结构I 型和结构II 型主要有小腔和大腔两种结构。
结构H 型属于六面体结构,可由挥发油和汽油等大分子形成,结构H 型有小腔、中腔和大腔三种结构。
天然气水合物开采技术

天然气水合物开采技术天然气水合物是一种新兴的能源资源,它可以替代传统石油和天然气,成为未来能源领域的主要来源。
由于其储量丰富,而且含量稳定,天然气水合物被认为是一种充满潜力的资源,但是由于其开采难度较大,开采技术也相对复杂。
本文将分享一些目前应用的天然气水合物开采技术。
1. 常规水平钻探常规水平钻探是一种基于传统石油开采的方式,通过钻探设备在海底进行,以获取天然气水合物储层的数据。
这种方法比较简单,由于在海底的环境下操作,所以需要钻探设备具有足够的耐腐蚀性能,以确保钻探设备能够在极端天气和海洋环境下运作。
不过这种方法却存在一定的限制,由于水合物储层往往是深埋在海底以下,这种开采方式的效率相对较低,而且成本相对较高。
2. 气体旋流法气体旋流法是一种新型的天然气水合物开采技术,它可以有效解决常规水平钻探的缺陷。
气体旋流法基于一个简单的原理,利用高速气流旋转和冲击力破坏天然气水合物储层结构,并将储层内的天然气释放出来。
这种技术可以提高开采效率,降低成本,在未来有望成为一种主要的开采方式。
3. 洁净隔离技术洁净隔离技术是一种未来重点研发的天然气水合物开采技术,它可以有效地实现天然气和水合物的分离和纯化。
这种技术可以减少环境污染,提高天然气水合物的纯度,从而提高其经济价值。
与此同时,洁净隔离技术还可以防止水合物被氧化和热解,避免不必要的资源浪费。
4. 微生物耦合方法微生物耦合方法是在天然气水合物开采领域探索的一种新型技术,其原理是通过添加细菌和病毒来促进水合物分解和提取。
这种方法可以在不改变天然气水合物储层化学成分的情况下,迅速将煤层气释放出来,从而提高开采效率和经济效益。
此外,微生物耦合方法不会对环境产生负面影响,是一种环保的开采技术。
总结天然气水合物是未来能源领域的一个潜力非常大的资源,开采技术不断取得进展,加上政策方面对于绿色能源的支持,未来天然气水合物有望成为主要的能源来源之一。
当前,常规水平钻探和气体旋流法是目前应用比较广泛的开采技术,而洁净隔离技术和微生物耦合方法是未来需要加强研究的新型技术,未来水合物开采将逐渐转向低成本、高效率、环保、绿色的方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天然气水合物资源开采方法研究(一)
摘要自然界中存在大量的水合物,这些水合物是已经被认为是将来重要的能源,本文分析了天然气水合物资源的特点,并综合介绍了现阶段提出的天然气水合物开采方法及模型,对比分析了典型开采方法,如热激发、降压和注抑制剂等的优缺点和经济性,评述了研究中存在的问题,并提出了今后研究的重点。
关键词水合物资源开采
The Research of Natural Gas Production From Hydrate
Abstract There are a great deal hydrates in the Earth and hydrate reservoirs have been considered as a substantial future energy resource. This paper analyzed the characteristics of hydrate reservoir, introduced the method and models of natural gas production from hydrate dissociation, investigated the relative merits and economical efficiency of typical method such as thermal stimulation, depressurization and inhibitor injection, and given out some suggests for the emphases of the research in the future.
Keywords Gas hydrate; Hydrate reservoir; Natural gas production 天然气水合物(Natural Gas Hydrate,简称Gas Hydrate),又称笼形化合物(Clathrate)。
它是在一定条件(合适的温度、压力、气体饱和度、水的盐度、pH值等)下由水和天然气组成的类冰的、非化学计量的、笼形结晶化合物,其遇火即可燃烧。
在自然界中存在的水合物绝大部分是甲烷水合物。
通常情况下,从水合物分解得到甲烷是水合物体积的160多倍,而且以固态形式存在的天然气的总量比地球上化石燃料贮量多一倍,所以人们已经把水合物作为将来重要的能源贮备。
另外甲烷含碳量少于煤或石油,甲烷产生的二氧化碳仅是煤的一半,是一种比较清洁的能源。
天然气水合物由于其分布广、规模大,因此从20世纪80年代初,美国、加拿大、日本等发达国家开展了本土和国际海底的调查研究和评价。
至今,各国已经对天然气水合物勘探开发技术等方面进行了一系列深入细致的工作,取得了大量令人鼓舞的成果。
但由于天然气水合物的开发面临着经济和技术上的可
行性问题,天然气水合物的开发技术尚处于实验阶段。
1 天然气水合物矿藏的特点
美国能源部R .D .Malone (1985)进行多年研究指出水合物存在于以下四个类型中:
第一种类型是良好分散型水合物,在诸如墨西哥湾的密西西比峡谷和Orca 地区中了发现该种样品。
第二种是结核状水合物,其直径为5cm,可存在诸如墨西哥湾的绿色峡谷中。
该水合物气体为从深处迁移的热成因气体。
第三种是层状水合物,分散于沉积物的各薄层中,例如:在布莱克--白哈马山脉发现的晶核,该水合物存在于所有的近海区域和永久冻土中。
第四种是块状水合物,厚度为3-4m,水合物的含量为95%的,沉积物含量少于5%的,例如在远离中美洲海沟的DSDP84航次570井位发现的水合物样品。
现在还不清楚该样品是来自于生物起源还是来自于热成因。
当该水合物增长时,大部分气体可转移到水合物处,或者形成与断层中,或当块状水合物增加时气体挤压沉积物。
在大陆上,天然气水合物形成带范围较小,大体上与冻结岩石发育带一致。
天然气水合物形成带的最大厚度为1800~20XXm,其中最常见的厚度为700~1000m。
而在海洋中,天然气水合物最初形成的海水深度是:在两极地区约为100~200m,在赤道附近地区为400~600m,水合物的生成带的厚度从几米到500米。
如果沉积物中的全部孔隙都被天然气水合物充满,则该沉积体变可形成一个相对不渗透的屏障,其下可以聚集游离态的天然气,如图1所示。
图 1 典型水合物储层示意图
2 天然气水合物开采方法及模型
天然气水合物开采的思路基本上是首先将蕴藏于沉积物中的天然气水合物进行分解,然后加以利用,现阶段提出的方法可以归为四类。
2.1热激发法
这类方法的基本思路是利用各种加热技术对天然气水合物储层进行加热,使水合物层的温度达到天然气水合物的分解温度以上使水合物分解,代表的方法是注蒸汽(图2)和利用电(或磁)加热。
图 2 热激发开采天然气水合物示意图
在热刺激模型中,水合物产生的热传导控制技术有两种。
1)用热水或蒸汽循环注入预热井。
该过程由两个步骤组成。
1)蒸气或热水输入。
2)水合物分解阶段。
3)产生气体和水的阶段。
宏观模型可确定蒸汽注射阶段以及分解阶段中,蒸汽输入和裂化阶段所需的平均储压和水的饱和度。
输入蒸气过程中有热损,其它热量则消耗用于水合物的分解和对地层的加热。
研究表明:水合物的储层最小应有15%的孔隙度,厚度应有。
如果注射液的温度为340K和5K之间,则可满足其经济可行性的需要。
2)利用电磁或微波等直接加热。
为了更有效利用热能,该模型一般在井下安装加热装置,设备较复杂。
如果利用微波加热,可以通过波导将微波导入井底,直接加热水合物或水。
在数值模拟的模型中,一般忽略了水的流动,再使用差分方法来求解热扩散方程和物质扩散方程,但从实验研究结果看忽略水的流动是不科学的。
2.2降压法
通过降低压力而引起天然气水合物稳定的相平衡曲线的移动,从而达到促使水合物分解的目的。
其一般是通过在一水合物层之下的游离气聚集层中”降低”天然气压力或形成一个天然气”囊”(由热激发或化学试剂作用人为形成),与天然气接触的水合物变得不稳定并且分解为天然气和水。
其实,开采水合物层之下的游离气是降低储层压力的一种有效方法(如图3),另外通过调节天然气的提取速度可以达到控制储层压力的目的,进而达到控制水合物分解的效果。
图3 降压法开采天然气水合物示意图
当储藏压力低于三相(LW-H-V)平衡值时,水合物会分解,要从周围环境中吸热,可观察到储藏物的温度降低。
可得到热力梯度,热量以热传导的形式流入正在分解的水合物交界面上。
水合物可以继续分解,直到在低温下所得的气体可以满足低温下的压力平衡。
采用压力降低方法需要有一定的热力梯度,以便继续进行水合物的分解。
减压模型可看作热量和压力平衡中无限大多孔介质的一维过程。
在水合物下表面,压力下降到平衡值之下,就开始分解过程。
人们使用一个移动边界,来区分已分离的和未分离的区域,每个区域中可移动的相只有气相。
对每个区域气体列出动量方程和移动边界处的质量平衡方程。
该模型假设瞬时有足够的热
量从周围流入水合物分解表面,因此各处的温度都是常数。
在每个区域中,根据移动边界的位置和产出的气体的多少的对应关系,绘制压力图。
减压法开采过程中整个储层压力分布的数学模型如下:
(1)
(2)
(3)
式中r是计算点到井轴线的距离,t是时间,是气体的粘度系数,是已分解区和未分解区的气体渗透率,是水的饱和度,β是水合物的饱和度,Φ是储层的孔隙率。
分解区的压力和温度为相平衡压力和温度,分别为和,它们之间的关系由方程:
(4)
得到,其中为,a、b、c为常数。
气体通过储层的过程可看成焦耳-汤姆生节流过程,温度的分布的数学模型为:
(5)
式中
是热扩散率,是热容,是节流系数,是气体的绝热系数。
把上述方程线化,代入边界条件可解得其自相似解或数值解。
根据一定的假定可以得到更简化的模型,例如Chuang Ji等提出的减压开采模型中认为压力分布为:
和计算结果如图4。
图 4 降压法模型中温度、压力、气体流率和热流率在储层中的分布。