天然气水合物科普PPT
天然气水合物

一般来说, 人为地打破天然气水合物稳定存在的温压条件使其分解, 是目 前开采天然气水合物的主要途径。但是要考虑到天然气水合物作为储存 区地层的构成部分,在稳定该区域地层方面起着相当重要的作用。 众所周知, 二氧化碳是最重要的温室气体, 其在大气中含量增高是导致全 球气候变暖的主要原因之一。因此深海地层处置被认为是减少CO2排向 大气的有效手段。研究显示,当CO2 被收集起来并注入深海地层,将形 成CO2 水合物。 因此人们设想,若将CO2注入天然气水合物聚集层,既能将其中的CH4 置换出来, 又能有效减少CO2 向大气排放,还可以保持地层的稳定性 。由此Ebinuma及Ohgaki等于1996年提出了CO2 置换法开采天然气水 合物。
天然气水合物
天然气水合物简介
天然气水合物是在一定条件下由轻烃、二氧 化碳及硫化氢等小分子气体与水相互作用形 成的白色固态结晶物质,是一种非化学计量 型晶体化合物,或称笼形水合物,也称为可 燃冰、甲烷水合物、甲烷冰。
在自然界发现的天然气水合物多为白色、淡 黄色、琥珀色、和暗褐色,呈亚等轴状、层 状、小针状结晶或分散状。
形成原因
海洋生成
有两种不同种类的海洋存量。 最常见的绝大多数都是甲烷包覆于结构Ⅰ型的包合物,而且一般都 在沉淀物的深处才能发现。在此结构下,甲烷中的碳同位素较轻,因此 指出其是微生物由CO2的氧化还原作用而来。 在接近沉积物表层所发现较少见的第二种结构中,某些样本有较高 比例的碳氢化合物长链包含于结构Ⅱ型的包合物中。其甲烷的碳同位素 较重,据推断是由沉积物深处的有机物质,经热分解后形成甲烷而往上 迁移而成。
当存在游离水时,CO2 比CH4有更高的亲和势,更易使游离水形成水合 物,这有利于反应向正方向进行。 CO2与CH4的水合物均为结构Ⅰ型,发生在CO2与CH4水合物之间的置换 反应方程式为:
天然气水合物1(精选)PPT文档共99页

56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
60、人民的幸福是至高无个的法。— —西塞 罗
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
天然气水合物

• 天然气水合物开采中的环境问题 • 天然气水合物藏的开采会改变天然气水合物赖以赋存的温压条 件,引起天然气水合物的分解。在天然气水合物藏的开采过程 中如果不能有效地实现对温压条件的控制,就可能产生一系列 环境问题,如温室效应的加剧、海洋生态的变化以及海底滑塌 事件等。
• (1) 甲烷作为强温室气体,它对大气辐射平衡的贡献仅次于二氧化碳。 一方面,全球天然气水合物中蕴含的甲烷量约是大气圈中甲烷量的 3 000倍 ;另一方面,天然气水合物分解产生的甲烷进入大气的量即 使只有大气甲烷总量的0. 5 %,也会明显加速全球变暖的进程。因此, 天然气水合物开采过程中如果不能很好地对甲烷气体进行控制,就 必然会加剧全球温室效应。除温室效应之外,海洋环境中的天然气 水合物开采还会带来更多问题。①进入海水中的甲烷会影响海洋生 态。甲烷进入海水中后会发生较快的微生物氧化作用,影响海水的 化学性质。甲烷气体如果大量排入海水中,其氧化作用会消耗海水 中大量的氧气,使海洋形成缺氧环境,从而对海洋微生物的生长发 育带来危害。②进入海水中的甲烷量如果特别大,则还可能造成海 水汽化和海啸,甚至会产生海水动荡和气流负压卷吸作用,严重危 害海面作业甚至海域航空作业。
• (2)固体开采法。固体开采法最初是直接采集海底固态天 然气水合物,将天然气水合物拖至浅水区进行控制性分解。 这种方法进而演化为混合开采法或称矿泥浆开采法。该方 法的具体步骤是,首先促使天然气水合物在原地分解为气 液混合相,采集混有气、液、固体水合物的混合泥浆,然 后将这种混合泥浆导入海面作业船或生产平台进行处理, 促使天然气水合物彻底分解,从而获取天然气。
• 1立方米的可燃冰可在常温常压下释放164立方米的天然 气及0.8立方米的淡水)所以固体状的天然气水合物往往 分布于水深大于 300 米 以上的海底沉积物或寒冷的永久 冻土中。海底天然气水合物依赖巨厚水层的压力来维持其 固体状态,其分布可以从海底到海底之下 1000 米 的范 围以内,再往深处则由于地温升高其固体状态遭到破坏而 难以存在。
25.沉睡的能源之王——可燃冰PPT课件

美国:
2000年,将“可燃冰”作为政府项目,进行勘探 2012年,投资2900万美元在阿拉斯加实验开采
日本: 2001年,发布<<甲烷水合物开发计划>>,
已拥有七口钻井 2013年,掌握海底甲烷分离技术
2021
12
开采方法
d体期a能b大c促)))扩或耗面使气注降散大大积分体化热压。规,开解置学法但模不采。换试:由 使能。该法剂注降于用有是方:法入低水。效目法不:加压合解前所注向热力物决最需入天流促储2热有的0如然体2使层1利前化二气或水渗用景学氧水直合透效的试化合接物性率一剂碳物加分较较种成等层热解差低开本以中储,,的发较置注层该导缺技高换入来方致陷术,天如提法产。且然甲高不气不气醇水需量适水等合要较合合化物连低长物学区续,期中试域激实或的剂内发际大甲,温,效规烷破度成果模,坏,本不使触其引较佳用发平起低。。甲衡溶,适烷条解适合气件。合长,13
2021
全球有机碳含量分布
7
可燃冰的分布
大陆永久冻土 岛屿的斜坡地带 大陆边缘的隆起处 极地大陆架
深水环境
2021
8
可燃冰在中国的分布
东海海域 南海北部海域
南沙海域 青藏高原冻土区
东北冻土区
2021
9
开采难度
可燃冰大多埋藏在海底的岩石中,
这给开采和运输带来极大困难。有 学者认为,在导致全球气候暖方面 ,甲烷所起的作用比等量的二氧化 碳要大1~20倍。而可燃冰矿藏哪 怕受到极小的破坏,都以导致甲烷 气体大量泄漏。另外,陆缘海边的 可冰开采起来十分困难,一旦发生 井喷事故,就会成海啸、海底滑坡 、海水毒化等灾害。
2021
10
勘探方法
1.地震勘探法,如地震地球物理探查、电磁探测、流体地球化学探查、 海底微地貌勘测等
天然气水合物的勘探与开发-终级版43页PPT

16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
天然气水合物

储量介绍
天然气水合物在世界范围内广泛存在,这 一点已得到广大研究者的公认。在地球上大约 有27%的陆地是可以形成天然气水合物的潜在 地区,而在世界大洋水域中约有90%的面积也 属这样的潜在区域。已发现的天然气水合物主 要存在于北极地区的永久冻土区和世界范围内 的海底、陆坡、陆基及海沟中。由于采用的标 准不同,不同机构对全世界天然气水合物储量 的估计值差别很大。
开发及存在问题
沉淀物生成的甲烷水合物含量可能还包含了 2 至 10 倍的已知的 传统天然气量。这代表它是未来很有潜力的重要矿物燃料来源。 然而,在大多数的矿床地点很可能都过于分散而不利于经济开采。 另外面临经济开采的问题还有:侦测可采行的储藏区、以及从水 合物矿床开采甲烷气体的技术开发。 目前,只有四个国家有能力开采“可燃冰”这种矿物,分别为: 美国、日本、印度及中国。 同等条件下,可燃冰燃烧产生的能量比煤、石油、天然气要多出 数十倍,而且燃烧后不产生任何残渣,避免了最让人们头疼的污 染问题。科学家们如获至宝,把可燃冰称作“属于未来的能源”。
成因分析
可燃冰是天然气分子(烷类)被包进水分子中,在海底 低温与压力下结晶形成的。
形成可燃冰有三个基本条件: 温度、压力和原材料。
成因分析
在海底中形成的优势条件 1. 可燃冰可在0℃以上生成,但超过20℃便会分解。而海底温度一般保持 在2~4℃左右。 2. 可燃冰在0℃时,只需30个大气压即可生成,而以海洋的深度,30个大 气压很容易保证,并且气压越大,水合物就越不容易分解。 3. 海底的有机物沉淀,其中丰富的碳经过生物转化,可产生充足的气源。 海底的地层是多孔介质,在温度、压力、气源三者都具备的条件下,可 燃冰晶体就会在介质的空隙间中生成。
作为未来重要的新型能源矿藏——“可燃冰”将首次纳入到能源规 划之中。2011年3月15日,可燃冰将纳入“十二五”能源发展规 划,加快加强勘探和科学研究,以便为未来开发利用奠定基础。 无论是国土资源部,还是国家能源局,对可燃冰的态度都日 渐明确。作为一种新型能源,可燃冰纳入“十二五”能源发展规 划更多的是侧重于勘探和科学研究。 中国在南海、青藏高原冻土带先后发现可燃冰,其中中国作为第 三大冻土大国,具备良好的天然气水合物赋存条件和资源前景。 据科学家粗略估算,远景资源量至少有350亿吨油当量。 虽然开发利用前景广阔,但短期内可燃冰的开采瓶颈却难以 突破。
未来新能源——天然气水合物(甲烷)
能源特征
作为一种新型的能源矿产, “ 可燃冰 ” 具 有如下的特征 :
1." 可燃冰 " 能量密度高。每立方米的固体 水合物 , 可释放164 立方米的甲烷气体, 其能 量密度是普通天然气的2—5倍。 2〃" 可燃冰 " 杂质少, 无污染。燃烧后几乎 不会产生有害污染物质 , 尤其是生成的致癌 物质二氧化硫要比燃烧原油或煤低两个数量 级, 是一种新型的清洁能源
下一頁
回目錄頁
能源的开采
• 热激化法:向可燃冰矿层注入热能(蒸气、热水、 热盐水等)或利用火驱法,提升矿层地温以分解可 燃冰。但这种方法热损耗大,效率较低。近年来, 人们试验直接在井下加热,如采用井下电磁加热 方法,使采收率高达70%,较其他方法更为有效。 减压法:开采可燃冰层下面存在的游离气,以 • 便降低矿层压力,促使可燃冰分解。 化学试剂法:利用化学试剂掺入可燃冰改变其 • 平衡条件、促其发生失稳作用进行开采。此法降 低能耗明显,但费用昂贵。
下一頁
回目錄頁
可燃冰形成
• • 甲烷水合物形成的条件为: ①温度不能太高。海底的温度是2 ℃至4 ℃,适合甲烷水 合物的形成,高于20 ℃就分解。 • ②压力要足够大。在0 ℃时,只需要3 MPa就可形成甲烷 水合物。海深每增加10 m,压力就增大0.1 MPa,因此海深 300 m就可达到 3 MPa,越深压力越大,甲烷水合物就越稳 定。估计海深300 m至2 000 m应有甲烷水合物存在。 • ③要有甲烷气源。一般认为,海底古生物尸体的沉积物, 被细菌分解会产生甲烷;还有人认为,石油和天然气是在 地球深处(地幔)产生并不断进入地壳的;海底岩层是多 孔状介质。
下一頁 回目錄頁
Thank you
• Thank you !
天然气水合物
天然气水合物natural gas hydrate;gas hydrate 其他名称:可燃冰定义1:天然气与水在高压低温条件下形成的类冰状结晶物质。
所属学科:海洋科技(一级学科);海洋科学(二级学科);海洋地质学、海洋地球物理学、海洋地理学和河口海岸学(三级学科)定义2:分布于深海沉积物中,由天然气与水在高压低温条件下形成的类冰状的结晶物质。
所属学科:资源科技(一级学科);海洋资源学(二级学科)本内容由全国科学技术名词审定委员会审定公布百科名片天然气水合物结构图天然气水合物(Natural Gas Hydrate,简称Gas Hydrate)是分布于深海沉积物中,由天然气与水在高压低温条件下形成的类冰状的结晶物质。
因其外观象冰一样而且遇火即可燃烧,所以又被称作“可燃冰”或者“固体瓦斯”和“气冰”。
目录名词解释成因分析储量介绍海洋生成大陆生成开采设想分布地区开发进程商业用途未来规划主要状况中国状况日本状况主要危害重要性识别标志地震标志地球化学标志海底地形地貌标志名词解释成因分析储量介绍海洋生成大陆生成开采设想分布地区开发进程商业用途未来规划主要状况中国状况日本状况主要危害重要性识别标志地震标志地球化学标志海底地形地貌标志展开编辑本段名词解释天然气水合物天然气水合物(Natural Gas Hydrate,简称Gas Hydrate)因其外观象冰一样而且遇火即可燃烧,所以又被称作“可燃冰”或者“固体瓦斯”和“气冰”。
它是在一定条件(合适的温度、压力、气体饱和度、水的盐度、Hp值等)下由水和天然气在中高压和低温条件下混合时组成的类冰的、非化学计量的、笼形结晶化合物。
它可用M・nH2O来表示,M代表水合物中的气体分子,n为水合指数(也就是水分子数)。
组成天然气的成分如CH4、C2H6、C3H8、C4H10等同系物以及CO2、N2、H2S等可形成单种或多种天然气水合物。
形成天然气水合物的主要气体为甲烷,对甲烷分子含量超过99%的天然气水合物通常称为甲烷水合物(Methane Hydrate)。
第四章 天然气水合物
12
12
第二节 水合物抑制剂处理工艺
表1-2 常用抑制剂物理化学性质
名 性 分子式 相对分子质量 沸点(760mmHg) ,℃ 蒸汽压(20℃) ,mmHg (25℃) ,mmHg 密度, (20℃) ,g/cm 冰点,℃ 粘度 (20℃) ,Pas (25℃) ,Pas 表面张力, (15℃) ,10-3N/m (25℃) ,10 N/m 折光指数, (20℃) (25℃) 比热容, (20℃) ,J/(g℃) (25℃) ,J/(g℃) 闪点(开杯法) ,℃ 汽化热,J/g 与水溶解( (20℃) 性状
16
16
第二节 水合物抑制剂处理工艺
三、抑制剂注入量计算: 抑制剂注入量计算:
注入天然气系统中的抑制剂, 注入天然气系统中的抑制剂,一部分与液态水混 合成为抑制剂水溶液称为富液。 合成为抑制剂水溶液称为富液。一部分蒸发与气体混 合形成蒸发损失。计算抑制剂注入量时, 合形成蒸发损失。计算抑制剂注入量时,对甲醇因沸 点低需要考虑气相和液相中的量。 点低需要考虑气相和液相中的量。对于甘醇因沸点高 一般不考虑气相中的量。 一般不考虑气相中的量。
新大学生培训材料
海洋油气集输
第一章 天然气水合物
本章主要内容: 本章主要内容:
第一节 水合物的形成及防止 第二节 水合物抑制剂处理工艺
2
2φΒιβλιοθήκη 第一节 水合物的形成及防止
一、天然气的水汽含量
天然气在地层温度和压力条件下含有饱和 水汽。天然气的水汽含量取决于天然气的温度 、压力和气体的组成等条件。天然气含水汽量 ,通常用绝对湿度、相对湿度、水露点三种方 法表示。
11
11
第二节 水合物抑制剂处理工艺
一、抑制剂简介 1.抑制剂的种类和特性 可以用于防止天然气水合物生成的抑制剂分为有机抑 制剂和无机抑制剂两类。有机抑制剂有甲醇和甘醇类 化合物,无机抑制剂有氯化钠、氯化钙及氯化镁等。 天然气集输矿场主要采用有机抑制剂,这类抑制剂中 又以甲醇、乙二醇和二甘醇最常使用。 抑制剂的加入会使气流中的水分溶于抑制剂中,改变 水分子之间的相互作用,从而降低表面上水蒸汽分压 ,达到抑制水合物形成的目的。广泛采用的醇类天然 气水合物抑制剂的物理化学性质如表1-2所列。
天然气水合物(可燃冰)
沉睡中的未来能源:可燃冰(天然气水合物)胜利油田培训中心目录•一、什么是可燃冰•二、可燃冰开采方法•三、可燃冰利用的前景分析一、什么是天然气水合物(可燃冰)?•天然气水合物(Natural Gas Hydrate/Gas Hydrate)是由天然气与水分子在高压(>10MPa)和低温(0~10℃)条件下形成的一种类冰状结晶物质,因其外观像冰,遇火即燃,因此被称为“可燃冰”(Combustible ice),化学式为CH₄·nH₂O。
天然气水合物(可燃冰)优势:•一是天然气水合物分布广泛;•全球天然气水合物所含天然气总资源量约为1.8~2.1×1016m3,其热当量相当于全球已知煤、石油和天然气(化石燃料)总热量的2倍;•据国际地质勘探组织估算,地球深海中可燃冰的蕴藏量是常规气体能源储存量的1000倍,且在这些可燃冰层下还可能蕴藏着大量的天然气。
可燃冰一旦得到开采,将使人类的燃料使用时延长几个世纪。
•三是能量密度大;•四是清洁度高。
•它比常规天然气杂质更少,燃烧后几乎不产生污染物,是未来理想的洁净能源。
我国天然气水合物资源•2017年5月,我国在南海北部的首次采样成功,证实了我国南海北部蕴藏丰富的天然气水合物资源。
•我国天然气水合物存在的区域:•南海西沙海槽•东沙陆坡•台湾西南陆坡•南沙海槽•冲绳海槽等。
对于输气管道来讲水化物是有危害的二、天然气水合物开采方法开采方法注热开采减压开采注化学试剂开采CO2置换固体开采传统开采方法新型开采方法1.注热开采•注热开采法就是对天然气水合物层进行加热,使天然气水合物层的温度超过其平衡温度,从而促使天然气水合物分解为水和天然气的一种开采方法。
•根据热源产生方式不同,该方法又可分为直接注入热流体加热法、火驱加热法、井下电磁加热法、微波加热等;•该方法的特点是可实现循环注热,作用方式快,但需要消耗大量的能量,热利用效率低。
2.减压开采•减压开采就是通过降低压力促使天然气水合物分解的一种开采方法。