天然气水合物简介

合集下载

天然气水合物

天然气水合物



一般来说, 人为地打破天然气水合物稳定存在的温压条件使其分解, 是目 前开采天然气水合物的主要途径。但是要考虑到天然气水合物作为储存 区地层的构成部分,在稳定该区域地层方面起着相当重要的作用。 众所周知, 二氧化碳是最重要的温室气体, 其在大气中含量增高是导致全 球气候变暖的主要原因之一。因此深海地层处置被认为是减少CO2排向 大气的有效手段。研究显示,当CO2 被收集起来并注入深海地层,将形 成CO2 水合物。 因此人们设想,若将CO2注入天然气水合物聚集层,既能将其中的CH4 置换出来, 又能有效减少CO2 向大气排放,还可以保持地层的稳定性 。由此Ebinuma及Ohgaki等于1996年提出了CO2 置换法开采天然气水 合物。
天然气水合物
天然气水合物简介

天然气水合物是在一定条件下由轻烃、二氧 化碳及硫化氢等小分子气体与水相互作用形 成的白色固态结晶物质,是一种非化学计量 型晶体化合物,或称笼形水合物,也称为可 燃冰、甲烷水合物、甲烷冰。

在自然界发现的天然气水合物多为白色、淡 黄色、琥珀色、和暗褐色,呈亚等轴状、层 状、小针状结晶或分散状。
形成原因

海洋生成
有两种不同种类的海洋存量。 最常见的绝大多数都是甲烷包覆于结构Ⅰ型的包合物,而且一般都 在沉淀物的深处才能发现。在此结构下,甲烷中的碳同位素较轻,因此 指出其是微生物由CO2的氧化还原作用而来。 在接近沉积物表层所发现较少见的第二种结构中,某些样本有较高 比例的碳氢化合物长链包含于结构Ⅱ型的包合物中。其甲烷的碳同位素 较重,据推断是由沉积物深处的有机物质,经热分解后形成甲烷而往上 迁移而成。


当存在游离水时,CO2 比CH4有更高的亲和势,更易使游离水形成水合 物,这有利于反应向正方向进行。 CO2与CH4的水合物均为结构Ⅰ型,发生在CO2与CH4水合物之间的置换 反应方程式为:

天然气水合物的危害与防止

天然气水合物的危害与防止

天然气水合物的危害与防止天然气水合物(又称冰火)是一种在高压和低温条件下形成的物质,由水和天然气分子相结合而成。

它主要存在于深海沉积物中,是一种潜在的能源资源。

然而,天然气水合物也具有一定的危害,并需要采取适当的措施进行防止和控制。

以下是有关天然气水合物的危害和防止方法的详细说明。

一、天然气水合物的危害1. 环境污染:天然气水合物的开采和开发过程中,会产生大量的废水和废气。

废水中含有一定浓度的盐和重金属等有毒物质,如果未经处理直接排放到环境中,将会对水体和生态系统造成严重污染。

废气中含有甲烷等温室气体,其对全球气候变化的影响也不可忽视。

2. 地质灾害:天然气水合物属于一种稳定的结构,在地质条件发生改变时,有可能导致其解聚释放出大量的天然气。

这些气体若在地下形成较大规模的气囊,有可能引发火灾、爆炸等地质灾害,对周围环境和人类的安全造成威胁。

3. 海洋生态系统破坏:天然气水合物存在于深海沉积物中,开采和开发这些水合物往往需要使用大量的设备和工具,这些设备在操作过程中可能会对海洋生态系统造成破坏。

例如,底部拖缆或钻浆泄漏可能导致海洋底栖生物死亡,捕捞设备的使用可能破坏底栖生物的生活环境。

4. 社会经济影响:天然气水合物是一种潜在的能源资源,如果能够成功开发和利用,将会对经济产生重大的影响。

然而,由于水合物开发技术的复杂性和风险性,开发难度较大,并且需要大量的资金投入。

一旦投资失败,将会对相关企业和国家的财务状况产生负面影响。

二、天然气水合物的防止1. 加强监管和管理:针对天然气水合物开采和开发活动,应加强监管和管理。

完善相关法律法规,建立健全的监测和检测机制,确保开发活动符合环境保护和安全标准。

对违规行为严肃追责,提高违法成本,减少不合规行为的发生。

2. 发展环保技术:开发天然气水合物的过程中,应加强环境保护技术研究和应用。

例如,开展废水处理和废气排放控制技术研发,提高处理效率和降低对环境的影响。

同时,应大力发展清洁能源技术,减少对水合物的依赖,推动可再生能源的发展。

每日科技名词天然气水合物

每日科技名词天然气水合物

每日科技名词天然气水合物天然气水合物natural gas hydrate又称:可燃冰定义:天然气与水在高压低温条件下形成的类冰状结晶物质。

分布于深海沉积物或陆域的永久冻土中。

学科:化工名词_原料与产品相关名词:天然气冻土矿物燃料【延伸阅读】天然气水合物,也称作甲烷水合物、甲烷冰、甲烷气水包合物或可燃冰,为固体形态的水于晶格(水合物)中包含大量的甲烷。

最初人们认为只有在太阳系外围那些低温、常出现冰的区域才可能出现,但后来发现在地球上许多海洋洋底的沉积物下,甚至地球大陆上也有可燃冰的存在,其蕴藏量也较为丰富。

天然气水合物存在于低温高压的环境,是海洋浅水生态圈中常见的成分,它们通常出现在深层的沉淀物结构中,或是在海床处露出,据推测是因地理断层深处的气体迁移后与海洋深处的冷水接触,通过沉淀和结晶等作用形成。

大陆区域的天然气水合物主要蕴藏于西伯利亚和阿拉斯加800米深的砂岩和泥岩床中。

海生形态的矿床分布于整个大陆棚(指大陆边缘倾斜平缓的海底地带),且可能出现于沉积物下或沉积物与海水接触的表面。

天然气水合物是未来很有潜力的重要矿物燃料来源。

世界上只有美国、日本、印度、中国四个国家通过国家级研发计划采到可燃冰实物样品。

中国自1999年起实施海域天然气水合物资源调查。

2007年6月12日,我国第一次开展天然气水合物钻探,科学家共在3个工作站成功获得天然气水合物实物样品。

2008年,首次在陆域上发现天然气水合物,使中国成为继加拿大、美国之后,第三个在陆域上通过国家计划钻探发现天然气水合物的国家。

2017年7月,首次海域天然气水合物试采圆满成功。

2017年9月22日,科学家首次在我国南海海域发现裸露在海底的天然气水合物。

2017年11月3日,国务院正式批准将天然气水合物列为新矿种,成为我国第173个矿种。

(延伸阅读作者:吉林农业大学资源与环境学院副教授王明辉)。

天然气水合物

天然气水合物

天然气水合物(Natural Gas Hydrate,简称Gas Hydrate)是分布于深海沉积物或陆域的永久冻土中,由天然气与水在高压低温条件下形成的类冰状的结晶物质。

因其外观象冰一样而且遇火即可燃烧,所以又被称作“可燃冰”或者“固体瓦斯”和“气冰”。

它是在一定条件(合适的温度、压力、气体饱和度、水的盐度、PH值等)下由水和天然气在中高压和低温条件下混合时组成的类冰的、非化学计量的、笼形结晶化合物(碳的电负性较大,在高压下能吸引与之相近的氢原子形成氢键,构成笼状结构)。

它可用mCH4·nH2O来表示,m代表水合物中的气体分子,n为水合指数(也就是水分子数)。

组成天然气的成分如CH4、C2H6、C3H8、C4H10等同系物以及CO2、N2、H2S等可形成单种或多种天然气水合物。

形成天然气水合物的主要气体为甲烷,对甲烷分子含量超过99%的天然气水合物通常称为甲烷水合物(Methane Hydrate)。

到目前为止,已经发现的天然气水合物结构类型有三种,即I型结构、II型结构和H型结构。

I型结构气水合物为立方晶体结构,其在自然界分布最为广泛,其仅能容纳甲烷(C1)、乙烷这两种小分子的烃以及N2、CO2、H2S等非烃分子,这种水合物中甲烷普遍存在的形式是构成CH4·5.75H2O的几何格架。

II型结构气水合物为菱型晶体结构,除包容C1、C2等小分子外,较大的“笼子”(水合物晶体中水分子间的空穴)还可容纳丙烷(C3)及异丁烷(i-C4)等烃类。

H型结构气水合物为六方晶体结构,其大的“笼子”甚止可以容纳直径超过异丁烷(i-C4)的分子,如i-C5和其他直径在7.5~8.6A之间的分子(表2)。

H型结构气水合物早期仅见于实验室,1993年才在墨西哥湾大陆斜坡发现其天然形态。

II型和H 型水合物比I型水合物更稳定。

除墨西哥湾外,在格林大峡谷地区也发现了I、II、H型三种气水合物共存的现象。

天然气水合物结构类型

天然气水合物结构类型

天然气水合物结构类型天然气水合物(Gas Hydrate)是一种特殊的结晶化合物,由水分子和气体分子形成的固态晶体结构。

其中,水分子以六边形的结构排列,气体分子则嵌入在水分子的六边形晶格当中。

天然气水合物的稳定性取决于温度和压力,一般需要在高压低温的条件下形成。

天然气水合物广泛存在于海洋和陆地的冷寒地区,是重要的能源资源和环境地质问题。

根据水合物结构中气体分子的类型和排列方式,天然气水合物可分为多种结构类型。

下面将介绍几种常见的天然气水合物结构类型。

1. I型水合物(Structure I)I型水合物是最常见的天然气水合物结构类型,其中气体分子以单个分子的形式嵌入在水分子的六边形晶格当中。

这种结构类型适用于大部分低碳烷烃类气体,如甲烷、乙烷等。

I型水合物在低温高压条件下稳定,常存在于海洋沉积物中。

2. II型水合物(Structure II)II型水合物是由二氧化碳分子和水分子形成的结构类型。

在这种结构中,CO2分子以线性链的形式嵌入在水分子的六边形晶格当中。

II型水合物的稳定性较低,需要较高的压力和低温才能形成。

这种结构类型常见于深海寒冷地区。

3. H型水合物(Structure H)H型水合物是由大型气体分子(如烷烃类)形成的结构类型。

在这种结构中,气体分子以大团簇的形式嵌入在水分子的六边形晶格当中。

H型水合物的稳定性较低,需要更高的压力和较低的温度才能形成。

这种结构类型常见于陆地冷寒地区。

4. S型水合物(Structure S)S型水合物是由硫化氢分子和水分子形成的结构类型。

在这种结构中,H2S分子以线性链的形式嵌入在水分子的六边形晶格当中。

S 型水合物的稳定性较低,需要更高的压力和较低的温度才能形成。

这种结构类型常见于海洋沉积物中。

5. Clathrate水合物Clathrate水合物是由较大的气体分子形成的结构类型,气体分子以笼状结构嵌入在水分子的六边形晶格当中。

Clathrate水合物可以包括多种气体分子,如甲烷、乙烷、氮气等。

天然气水合物

天然气水合物

天然气水合物一、简介天然气水合物(Natural Gas Hydrate,简称Gas Hydrate)是分布于深海沉积物或陆域的永久冻土中,由天然气与水在高压低温条件下形成的类冰状的结晶物质。

因其外观象冰一样而且遇火即可燃烧,所以又被称作“可燃冰”或者“固体瓦斯”和“气冰”。

分子式为CH4·8H2O。

组成天然气的成分如CH4、C2H6、C3H8、C4H10等同系物以及CO2、N2、H2S 等可形成单种或多种天然气水合物。

形成可燃冰有三个基本条件:温度、压力和原材料。

首先,低温。

可燃冰在0—10℃时生成,超过20℃便会分解。

海底温度一般保持在2—4℃左右,所以一般在冰土带的地方较多。

;其次,高压。

可燃冰在0℃时,只需30个大气压即可生成,而以海洋的深度,30个大气压很容易保证,并且气压越大,水合物就越不容易分解。

最后,充足的气源。

海底的有机物沉淀,其中丰富的碳经过生物转化,可产生充足的气源。

海底的地层是多孔介质,在温度、压力、气源三者都具备的条件下,可燃冰晶体就会在介质的空隙间中生成。

二、特点天然气水合物具有分布广、资源量巨大、埋藏浅、能量密度高的特点。

1.分布广泛据推算,世界上占海洋总面积90%的海域具有天然气水合物形成的温压条件;据调查,世界天然气水合物矿藏的面积可达全部海洋面积的30%以上。

目前,实际上在所有海洋边缘水深大于300~500m 的大陆斜坡上均已发现了天然气水合物,在一些海洋边缘的深水海台或盆地的浅部地层中也都直接或间接地发现有天然气水合物,在极地冻土带和极地陆架海也发现有天然气水合物,证明天然气水合物分布十分广泛。

据初步研究,我国东海陆坡和南海陆坡及盆地具备天然气水合物的成矿条件和找矿前景,其中南海西沙海槽、台湾东南陆坡已发现天然气水合物存在的地球物理标志。

2.资源量巨大天然气水合物是全球第二大碳储库,仅次于碳酸盐岩,其蕴藏的天然气资源潜力巨大。

据保守估算,世界上天然气水合物所含天然气的总资源量约为(1.8~2.1)×1016m3,其热当量相当于全球已知煤、石油和天然气总热当量的2倍,也就是说,水合物中碳的总量是地球已知化石燃料中碳总量的两倍。

天然气水合物

天然气水合物
3、水合物在地层多孔介质中形成,会造成堵塞油气 井、减低油气藏的孔隙度和相对渗透率、改变油气藏的 油气分布,改变地层流体流向井筒渗流规律,这些危害 使油气井的产量降低。
2019年12月14日星期六
二、天然气水合物生成的条件
1、有游离水存在(天然气的温度必须等于或低于天 然气中水的露点),若天然气中没有自由的游离水,则 不会形成水合物。
天然气水合物
2019年12月14日星期六
1
天然气水合物简介
2
天然气水合物生成的条件
3
阻止天然气水合物生成的措施
2019年12月14日星期六
一、天然气水合物简介 天然气水合物也称天然气水化物(可燃冰),是一种
天然气中的小分子与水分子形成的类冰状固态化合物, 是气体分子与水分子非化学计量的包藏络合物,即水分 子与气体分子以物理结合体所形成的一种固体。
2019年12月14日星期六
天然气水合物在外观上是白色的结晶体,类似于冰或 致密的雪。它的化学成分不稳定,一般用M nH2O 表示,M 为水合物中的气体分子,n为水分子的个数。也有多种气 体混合的水合物。水合物的相对密度为0.96到0.98之间, 可浮于水面,而沉于液烃中。天然气水合物是笼形包合 物:水分子借氢键形成了笼形多面体骨架,其中有孔穴, 孔穴体积由气体分子所占据,被包围在骨架中。甲烷、 乙烷和硫化氢可以占据较小的孔穴,而丙烷和丁烷只能 占据较大的孔穴,大于正构丁烷的分子因太大而不能形 成水合物。
2019年12月14日星期六
形成水合物的压力-温度曲线
2019年12月14日星期六
液态水
低温
高压
气流速度和方向 改变的地方,即
气流的停滞区
在节流阀、阀门关 闭不严处
形成水化物

天然气水合物

天然气水合物


天然气的露点是指在一定的压力条件下, 天然气中开始出现第一滴水珠时的温度。天然 气的露点降是在压力不变的情况下,天然气温 度降至露点温度时产生的温降值。 通常,要求埋地输气管道所输送的天然气 的露点温度比输气管道埋深处的土壤温度低 5℃左右。
12
二、天然气含水量的确定方法
1.天然气含水量测定方法
CRD W / W0.6
19

另 外 , 如 果 水 中 溶 解 有 盐 类 ( NaCl 、 MgCl2 等),则溶液上面水汽的分压将下降, 这样,天然气中水汽含量也就降低。此时, 就必须引入含盐度的修正系数Cs (见图 2-3 左上角的小图)。
Cs Ws / W
20

相对密度为的天然气含水量 CRD 相对密度为0.6时天然气含水量 水中含盐时天然气的含水量 Cs 水中不含盐时天然气的含水量
8
1.绝对湿度或绝对含水量e
给定条件下每立方米天然气所含水汽的质 量数,称为天然气的绝对湿度或绝对含水量。
G e V
式中: e——天然气的绝对湿度,g/m3; G——天然气中的水汽含量,g; V——天然气的体积,m3。
9
2.饱和湿度或饱和含水量
一定状态下天然气与液相水达到相平衡 时,天然气中的含水量称为饱和含水量。 用 es 表示在饱和状态时一立方米体积内的 水汽含量。如果 e<es ,天然气是不饱和的。 而e=es时,天然气则是饱和的。
1
一、水化物形成的主要条件 1.天然气的含水量处于饱和状态
Hale Waihona Puke 天然气中的含水汽量处于饱和状态时,常有 液相水的存在,或易于产生液相水。液相水 的存在是产生水合物的必要条件。
2
2.压力和温度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、水合物的定义
中国石油
它可用M·nH2O来表示,M代表水合物中的气体分子, n为水合指数(也就是水分子数)。组成天然气的成分如CH4、
C2H6、C3H8、C4H10等同系物以及CO2、N2、H2S等可形成单种或
多种天然气水合物。形成天然气水合物的主要气体为甲烷, 对甲烷分子含量超过99%的天然气水合物通常称为甲烷水 合物(Methane Hydrate)。
3.解堵措施
(3)在设备和管线未被水合物堵死时,可以加入防冻剂, 使已经形成的水合物分解集气管线完全被水合物堵死时,
可用降压法降低管线压力、降压时将管线内的天然气放空,
使水合物分解。 (4)当水合物分解后应对该管线清管或吹扫。
中国石油
四、防止水合物形成的方法
中国石油
在节流前加入防冻剂 在节流前加入防冻剂,可降低天然气露点,是天然气 在较低的温度下不生成水合物。防冻剂的种类比较多,有 甲醇、乙二醇、二甘醇、三甘醇、氯化钙水溶液等。采气
中使用最多的是乙二醇。
防冻剂的注入方法一般有自流注入(低压)和泵注入
法(高压连续)。
四、防止水合物形成的方法
2.高压
高压是生成水合物的重要条件。对组分相同的气体, 水合物生成概率随压力升高而升高,也就是压力越高石油
3.低温
低温是水合物形成的重要条件。采气中,天然气从井
底流到井口,经过节流阀、孔板等节流件时,会因压力下 降而引起温度下降。由于温度的下降,会使天然气中呈气 态的水蒸气凝析,当天然气的温度低于天然气中水蒸气露 点时,就为水合物生成创造条件。
中国石油
1.水合物的预测
水合物生成的平衡 曲线是天然气水合物生
成的压力—温度曲线。
已知天然气的相对密度, 通过该平衡曲线就可以 确定天然气形成水合物 的最低压力及最高温度。
预测形成水合物的压力—温度曲线
四、防止水合物形成的方法
中国石油
2.水合物的预防
预防水合物的方法很多,提高节流前天然气温度、加 注防冻剂、干燥气体等都可预防水合物的形成。 提高节流前的天然气温度 提高节流前的天然气温度,使天然气在节流后的温度高 于生成水合物的温度,从而防止在节流后生成水合物。 井场多采用加热法对天然气加热,常采用的加热设备有 蒸汽加热、水套炉加热、电热带加热等。
中国石油
3.解堵措施
当井站设备或集气管线一旦生成水合物时,可用下列 方法解堵。
(1)站内设备可用加热法对生成水合物的部位进行加热,
使生成的水合物迅速溶解。
(2)节流阀出口生成水合物时,一是加热,二是调节节流
压差,使节流压差在节流前后的温度降在不生成水合物的 温度范围。
四、防止水合物形成的方法
中国石油
中国石油
采气队:杜 冬
2009年6月
中国石油
水合物定义 水合物在采气中的危害
水合物形成条件
防止水合物形成的方法
一、水合物的定义
中国石油
天然气水合物(Natural Gas Hydrate,简称Gas Hydrate)
因其外观象冰一样而且遇火即可燃烧,所以又被称作“可燃冰”
或者“固体瓦斯”和“气冰”。它是在一定条件(合适的温度、 压力、气体饱和度、水的盐度、pH值等)下由水和天然气在中 高压和低温条件下混合时组成的类冰的、非化学计量的、笼形 结晶化合物。
三、水合物的形成条件
中国石油
4.流动条件的改变
高流速、压力波动、气流方向改变时结晶核存在(如
杂质)引起的搅动是生成水合物的辅助条件,在阀门、弯 头、异径管、节流装置等产生局部阻力的地方,易形成水 合物。
中国石油
水合物定义 水合物在采气中的危害
水合物形成条件
防止水合物形成的方法
四、防止水合物形成的方法
一、水合物的定义
中国石油
水合物分子结构图
中国石油
水合物定义 水合物在采气中的危害
水合物形成条件
防止水合物形成的方法
二、水合物在采气中的危害
中国石油
水合物在油管中生成时,
会降低井口压力,影响产气量,
妨碍测井仪器的下入;水合物 在井口节流阀或地面管线中生 成时,会使下游压力降低,严 重时堵死管线,造成供气中断
或引起工艺设备超压运行或爆
炸,引发产生事故。
中国石油
水合物定义 水合物在采气中的危害
水合物形成条件
防止水合物形成的方法
三、水合物的形成条件
中国石油
1.液态水的存在
液态水的存在是生成水合物的必要条件。天然气中液 态水的来源,有油气层内的地层水(游离水)以及气层中
的饱和水蒸汽随天然气产出时温度下降而凝析出的凝析水。
相关文档
最新文档