天然气水合物

合集下载

天然气水合物研究与开发

天然气水合物研究与开发

天然气水合物研究与开发天然气水合物是一种新型的燃料资源,其储量相当丰富,可成为未来能源转型的重要后备力量。

目前,天然气水合物研究与开发已经成为全球能源科技的热点。

一、什么是天然气水合物天然气水合物,是一种以天然气和水形式结合的化合物,也称为天然气冰或脆冰。

它的分子结构是由天然气分子和水分子构成的六边形晶格结构,其中天然气占70%左右,水分子占30%左右。

由于这种化合物在常温常压下呈脆性,有如冰块,因此被称为水合物。

天然气水合物分布广泛,主要分布在浅海和大陆架上,特别是北极地区、南海和日本海等开垦较少的区域。

据估算,全球天然气水合物储量超过14万亿立方米,其中中国的海域储量最高,达3400亿立方米以上,是世界最大的天然气水合物资源国家。

二、天然气水合物研究与开发现状天然气水合物研究和开发虽然起步较晚,但近年来取得了密集的进展。

目前,全球主要的天然气水合物开发国家包括日本、美国、加拿大、印度、中国等。

在日本,多家大型能源公司已经积极投资天然气水合物的开发研究。

日本已经建立了一系列天然气水合物研究机构,主要研究领域包括天然气水合物开采、运输、存储等方面。

美国和加拿大也在积极开展天然气水合物研究工作,主要集中在研究天然气水合物的资源量和开采技术等。

美国已经成立了多个天然气水合物研究中心和联合实验室,而加拿大则在开采海域天然气水合物方面颇具优势。

在印度,天然气水合物研究和开发也备受重视。

印度天然气公司和国家天然气水合物公司联合投资,开展天然气水合物研究和开采工作。

中国也将天然气水合物作为战略能源资源来进行研究开发。

自2013年以来,中国天然气水合物开发基地建设进展迅速,中国海油、中海油、中化集团等多家国内大型能源公司也进行了天然气水合物研究和开发工作。

三、天然气水合物的优缺点与传统燃料相比,天然气水合物具有许多优点。

首先,天然气水合物储量丰富,可作为未来的主要能源资源;其次,天然气水合物燃烧释放出的二氧化碳排放量较低,不会对环境造成较大污染;最后,天然气水合物与液化天然气相比,其产生的碳排放量更少,能源利用效率更高。

天然气水合物的危害与防止

天然气水合物的危害与防止

天然气水合物的危害与防止天然气水合物(又称冰火)是一种在高压和低温条件下形成的物质,由水和天然气分子相结合而成。

它主要存在于深海沉积物中,是一种潜在的能源资源。

然而,天然气水合物也具有一定的危害,并需要采取适当的措施进行防止和控制。

以下是有关天然气水合物的危害和防止方法的详细说明。

一、天然气水合物的危害1. 环境污染:天然气水合物的开采和开发过程中,会产生大量的废水和废气。

废水中含有一定浓度的盐和重金属等有毒物质,如果未经处理直接排放到环境中,将会对水体和生态系统造成严重污染。

废气中含有甲烷等温室气体,其对全球气候变化的影响也不可忽视。

2. 地质灾害:天然气水合物属于一种稳定的结构,在地质条件发生改变时,有可能导致其解聚释放出大量的天然气。

这些气体若在地下形成较大规模的气囊,有可能引发火灾、爆炸等地质灾害,对周围环境和人类的安全造成威胁。

3. 海洋生态系统破坏:天然气水合物存在于深海沉积物中,开采和开发这些水合物往往需要使用大量的设备和工具,这些设备在操作过程中可能会对海洋生态系统造成破坏。

例如,底部拖缆或钻浆泄漏可能导致海洋底栖生物死亡,捕捞设备的使用可能破坏底栖生物的生活环境。

4. 社会经济影响:天然气水合物是一种潜在的能源资源,如果能够成功开发和利用,将会对经济产生重大的影响。

然而,由于水合物开发技术的复杂性和风险性,开发难度较大,并且需要大量的资金投入。

一旦投资失败,将会对相关企业和国家的财务状况产生负面影响。

二、天然气水合物的防止1. 加强监管和管理:针对天然气水合物开采和开发活动,应加强监管和管理。

完善相关法律法规,建立健全的监测和检测机制,确保开发活动符合环境保护和安全标准。

对违规行为严肃追责,提高违法成本,减少不合规行为的发生。

2. 发展环保技术:开发天然气水合物的过程中,应加强环境保护技术研究和应用。

例如,开展废水处理和废气排放控制技术研发,提高处理效率和降低对环境的影响。

同时,应大力发展清洁能源技术,减少对水合物的依赖,推动可再生能源的发展。

天然气水合物

天然气水合物

天然气水合物(Natural Gas Hydrate,简称Gas Hydrate)是分布于深海沉积物或陆域的永久冻土中,由天然气与水在高压低温条件下形成的类冰状的结晶物质。

因其外观象冰一样而且遇火即可燃烧,所以又被称作“可燃冰”或者“固体瓦斯”和“气冰”。

它是在一定条件(合适的温度、压力、气体饱和度、水的盐度、PH值等)下由水和天然气在中高压和低温条件下混合时组成的类冰的、非化学计量的、笼形结晶化合物(碳的电负性较大,在高压下能吸引与之相近的氢原子形成氢键,构成笼状结构)。

它可用mCH4·nH2O来表示,m代表水合物中的气体分子,n为水合指数(也就是水分子数)。

组成天然气的成分如CH4、C2H6、C3H8、C4H10等同系物以及CO2、N2、H2S等可形成单种或多种天然气水合物。

形成天然气水合物的主要气体为甲烷,对甲烷分子含量超过99%的天然气水合物通常称为甲烷水合物(Methane Hydrate)。

到目前为止,已经发现的天然气水合物结构类型有三种,即I型结构、II型结构和H型结构。

I型结构气水合物为立方晶体结构,其在自然界分布最为广泛,其仅能容纳甲烷(C1)、乙烷这两种小分子的烃以及N2、CO2、H2S等非烃分子,这种水合物中甲烷普遍存在的形式是构成CH4·5.75H2O的几何格架。

II型结构气水合物为菱型晶体结构,除包容C1、C2等小分子外,较大的“笼子”(水合物晶体中水分子间的空穴)还可容纳丙烷(C3)及异丁烷(i-C4)等烃类。

H型结构气水合物为六方晶体结构,其大的“笼子”甚止可以容纳直径超过异丁烷(i-C4)的分子,如i-C5和其他直径在7.5~8.6A之间的分子(表2)。

H型结构气水合物早期仅见于实验室,1993年才在墨西哥湾大陆斜坡发现其天然形态。

II型和H 型水合物比I型水合物更稳定。

除墨西哥湾外,在格林大峡谷地区也发现了I、II、H型三种气水合物共存的现象。

天然气水合物

天然气水合物

4、2023年中国地质调查局同意了“天然气水合 物取样技术方案研究”旳课题—中国地质大学(武 汉);
5、2023年国土资源部对天然气水合物旳保压取 样器立项研究—中国地质科学院勘探技术研究所;
6、2023年国家准备开启专题基金,3千万元人 民币。
估计在2023年进行开采。
引起这场火灾旳,原来是一种叫做水化甲烷旳
天然气水合物。
-> 可燃冰 !!
何为“天然气水合物” ?
¡ 天然气水合物,也称气体水合物,是由天然气与水分 子在高压(>100大气压或>10MPa)和低温(0~ 10℃)条件下合成旳一种固态结晶物质。因天然气中 80%~90%旳成份是甲烷,故也有人叫天然气水合 物为甲烷水合物。天然气水合物多呈白色或浅灰色晶 体,外貌类似冰雪,能够象酒精块一样被点燃,故也 有人叫它“可燃冰”。
Hale Waihona Puke 如美国和日本旳近海海域,加勒比海沿岸及我国
南海和东海海底都有储备,估计我国黄海海域和青藏 高原旳冻土带也有储备。
估计全世界甲烷水合物旳储量达 1.87×1017m3(按甲烷计),是目前煤、石油和 天然气储量旳二倍,其中,海底旳甲烷水合物储量占 99%。
天然气水合物—将来旳替代能源
★估计全球储量:
海域:1610千亿吨(数百年); 冻土地域: 5.3千亿吨。
(3)在里海和巴拿马北部近海还发觉水合物分解产生旳海 底泥火山。
(4)全球冻土层退化(如我国旳青藏高原冻土层),存在 天然气水合物大量释放旳危险。
(5)在高纬度永冻土带及极地地域,油井、油气管道等生 产设施中水合物旳形成会造成管路堵塞,而产生事故或灾害 。
气候
CH4旳温室效应比C02要大21倍。在自然界,压 力和温度旳微小变化都会引起天然气水合物分解,并 向大气中释放甲烷气体。

天然气水合物结构类型

天然气水合物结构类型

天然气水合物结构类型天然气水合物(Gas Hydrate)是一种特殊的结晶化合物,由水分子和气体分子形成的固态晶体结构。

其中,水分子以六边形的结构排列,气体分子则嵌入在水分子的六边形晶格当中。

天然气水合物的稳定性取决于温度和压力,一般需要在高压低温的条件下形成。

天然气水合物广泛存在于海洋和陆地的冷寒地区,是重要的能源资源和环境地质问题。

根据水合物结构中气体分子的类型和排列方式,天然气水合物可分为多种结构类型。

下面将介绍几种常见的天然气水合物结构类型。

1. I型水合物(Structure I)I型水合物是最常见的天然气水合物结构类型,其中气体分子以单个分子的形式嵌入在水分子的六边形晶格当中。

这种结构类型适用于大部分低碳烷烃类气体,如甲烷、乙烷等。

I型水合物在低温高压条件下稳定,常存在于海洋沉积物中。

2. II型水合物(Structure II)II型水合物是由二氧化碳分子和水分子形成的结构类型。

在这种结构中,CO2分子以线性链的形式嵌入在水分子的六边形晶格当中。

II型水合物的稳定性较低,需要较高的压力和低温才能形成。

这种结构类型常见于深海寒冷地区。

3. H型水合物(Structure H)H型水合物是由大型气体分子(如烷烃类)形成的结构类型。

在这种结构中,气体分子以大团簇的形式嵌入在水分子的六边形晶格当中。

H型水合物的稳定性较低,需要更高的压力和较低的温度才能形成。

这种结构类型常见于陆地冷寒地区。

4. S型水合物(Structure S)S型水合物是由硫化氢分子和水分子形成的结构类型。

在这种结构中,H2S分子以线性链的形式嵌入在水分子的六边形晶格当中。

S 型水合物的稳定性较低,需要更高的压力和较低的温度才能形成。

这种结构类型常见于海洋沉积物中。

5. Clathrate水合物Clathrate水合物是由较大的气体分子形成的结构类型,气体分子以笼状结构嵌入在水分子的六边形晶格当中。

Clathrate水合物可以包括多种气体分子,如甲烷、乙烷、氮气等。

天然气水合物

天然气水合物

天然气水合物一、简介天然气水合物(Natural Gas Hydrate,简称Gas Hydrate)是分布于深海沉积物或陆域的永久冻土中,由天然气与水在高压低温条件下形成的类冰状的结晶物质。

因其外观象冰一样而且遇火即可燃烧,所以又被称作“可燃冰”或者“固体瓦斯”和“气冰”。

分子式为CH4·8H2O。

组成天然气的成分如CH4、C2H6、C3H8、C4H10等同系物以及CO2、N2、H2S 等可形成单种或多种天然气水合物。

形成可燃冰有三个基本条件:温度、压力和原材料。

首先,低温。

可燃冰在0—10℃时生成,超过20℃便会分解。

海底温度一般保持在2—4℃左右,所以一般在冰土带的地方较多。

;其次,高压。

可燃冰在0℃时,只需30个大气压即可生成,而以海洋的深度,30个大气压很容易保证,并且气压越大,水合物就越不容易分解。

最后,充足的气源。

海底的有机物沉淀,其中丰富的碳经过生物转化,可产生充足的气源。

海底的地层是多孔介质,在温度、压力、气源三者都具备的条件下,可燃冰晶体就会在介质的空隙间中生成。

二、特点天然气水合物具有分布广、资源量巨大、埋藏浅、能量密度高的特点。

1.分布广泛据推算,世界上占海洋总面积90%的海域具有天然气水合物形成的温压条件;据调查,世界天然气水合物矿藏的面积可达全部海洋面积的30%以上。

目前,实际上在所有海洋边缘水深大于300~500m 的大陆斜坡上均已发现了天然气水合物,在一些海洋边缘的深水海台或盆地的浅部地层中也都直接或间接地发现有天然气水合物,在极地冻土带和极地陆架海也发现有天然气水合物,证明天然气水合物分布十分广泛。

据初步研究,我国东海陆坡和南海陆坡及盆地具备天然气水合物的成矿条件和找矿前景,其中南海西沙海槽、台湾东南陆坡已发现天然气水合物存在的地球物理标志。

2.资源量巨大天然气水合物是全球第二大碳储库,仅次于碳酸盐岩,其蕴藏的天然气资源潜力巨大。

据保守估算,世界上天然气水合物所含天然气的总资源量约为(1.8~2.1)×1016m3,其热当量相当于全球已知煤、石油和天然气总热当量的2倍,也就是说,水合物中碳的总量是地球已知化石燃料中碳总量的两倍。

天然气水合物

天然气水合物

天然气水合物开发现状及研究进展天然气水合物(NGH),也称气体水合物,是由天然气与水分子在高压(>10MPa)和低温(0~10℃)条件下合成的一种固态结晶物质。

因天然气水合物中80%~90%的成分是甲烷,故也称甲烷水合物。

天然气水合物多呈白色或浅灰色晶体,外貌类似冰雪,可以象酒精块一样被点燃,所以,也有人叫它“可燃冰”。

一、天然气水合物的形成条件及分布天然气水合物的形成有三个基本条件,缺一不可。

首先温度不能太高;第二压力要足够大,但不需太大;0℃时,30个大气压以上就可生成;第三,地底要有气源。

天然气水合物受其特殊的性质和形成时所需条件的限制,只分布于特定的地理位置和地质构造单元内。

一般来说,除在高纬度地区出现的与永久冻土带相关的天然气水合物之外,在海底发现的天然气水合物通常存在于水深300~500m以下(由温度决定),主要附存于陆坡、岛屿和盆地的表层沉积物或沉积岩中,也可以散布于洋底以颗粒状出现。

这些地点的压力和温度条件使天然气水合物的结构保持稳定。

深海钻探发现,天然气水合物以冰状或更多地以水合物胶结的火山灰和细砂产出,其时代为晚中新世—晚上新世。

天然气水合物与火山灰或火山砂共存,暗示了其形成与火山喷发有某种联系。

天然气水合物形成于低温高压条件下,分布限于极地地区,深海地区及深水湖泊中。

在极地地区天然气水合物通常与大陆和大陆架上的永冻沉积物有关;在海洋里,天然气水合物主要分布于外大陆边缘和洋岛的周围,水深超过大约300 m。

天然气水合物的稳定温度为1~21.1℃,分布的最大下限深度不超过海底下2000m[2]。

深海钻探已经表明天然气水合物既可以产于被动大陆边缘,也可产于活动大陆边缘。

但大多数天然气水合物样品来自于活动边缘[2]。

据估计,陆地上20.7%和大洋底90%的地区,具有形成天然气水合物的有利条件。

绝大部分的天然气水合物分布在海洋里,其资源量是陆地上的100倍以上。

在标准状况下,一单位体积的天然气水合物分解可产生164单位体积的甲烷气体,因而是一种重要的潜在未来资源。

天然气水合物开采原理

天然气水合物开采原理

天然气水合物开采原理天然气水合物是一种白色固体物质,有极强的燃烧力。

它是怎么形成的呢?其实就是在特定的低温高压环境下,天然气分子被锁在水分子形成的笼子里啦。

就好比是天然气分子在水分子搭成的小房子里安了家,乖乖地待着呢。

那要开采它呀,可是个技术活。

有一种开采方法叫热激发开采法。

想象一下,可燃冰就像一个怕冷的小团子,咱们给它加热,就像给它盖上温暖的小被子。

通过向地层注入热水或者热蒸汽,温度升高了,这个稳定的小环境就被打破啦。

那些天然气分子就像睡醒了的小精灵,开始活跃起来,从水分子的笼子里跑出来。

这时候呢,天然气就可以被收集起来啦。

不过这个方法也有点小麻烦呢,就像你在热牛奶的时候,要是火候掌握不好,可能就会溢出来。

加热的温度、注入的量等等都得精确控制,不然可能会引发一些地层的不稳定之类的问题。

还有一种是降压开采法。

这就像是给天然气分子的小房子撤掉了一部分围墙。

咱们降低地层的压力,原本在高压下老老实实待在水合物里的天然气分子,突然觉得压力变小了,就像被松绑了一样,开始往外跑。

这种方法相对来说比较环保呢,就像轻轻地推开一扇门,让天然气自然地流出来。

但是呢,降压的速度和幅度也得拿捏得准准的,要是降得太快太猛,就像突然把气球里的气放得太快,气球可能就爆了,地层也可能会出现一些裂缝之类的不好的情况。

化学试剂注入开采法也很有趣哦。

这就好比是给天然气分子送了一把小钥匙。

咱们把一些化学试剂注入到地层里,这些试剂就像聪明的小助手,能够和天然气水合物发生反应,把那些水分子搭成的笼子给破坏掉。

这样一来,天然气分子又可以自由活动啦。

不过呢,这些化学试剂可不能随便乱用,就像你不能随便给小动物乱喂东西一样。

得选择合适的试剂,而且还要考虑试剂对地层和环境有没有不好的影响。

要是试剂选得不好,就像给地层吃了坏东西,可能会让地层生病呢。

宝子们,天然气水合物的开采可不容易呀。

这每一种方法都像是在小心翼翼地解开一个神秘的魔法盒子,要充满耐心和智慧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• “天然气水合物”,是天然气在0℃和30个大气压的作用下结晶点燃。可用mCH4·nH2O来表示,m代表水合物中的气体分子,n为水合指数(也就是水分子 数)。组成天然气的成分如CH4、C2H6、C3H8、C4H10等同系物以及CO2、N2、H2S等可形成单种或多种天 然气水合物。形成天然气水合物的主要气体为甲烷,对甲烷分子含量超过99%的天然气水合物通常称为甲烷 水合物(Methane Hydrate)。每单位晶胞内有两个十二面体(20 个端点因此有 20 个水分子)和六个十四 面体(tetrakaidecahedral)(24 个水分子)的水笼结构。其水合值(hydratation value)20 可由 MAS NMR 来 求得。 甲烷气水包合物频谱于 275 K 和 3.1 MPa下记录,显示出每个笼形都反映出峰值,且气态的甲烷也有 个别的峰值。
• 世界上海底天然气水合物已发现的主要分布区是大西洋海域的墨西哥湾
• 天然气水合物 、加勒比海、南美东部陆缘、非洲西部陆缘和美国东海岸外的布莱克海台等,西太平洋海域 的白令海、鄂霍茨克海、千岛海沟、冲绳海槽、日本海、四国海槽、日本南海海槽、苏拉威西海和新西兰 北部海域等,东太平洋海域的中美洲海槽、加利福尼亚滨外和秘鲁海槽等,印度洋的阿曼海湾,南极的罗 斯海和威德尔海,北极的巴伦支海和波弗特海,以及大陆内的黑海与里海等。
• 1立方米的可燃冰可在常温常压下释放164立方米的天然气及0.8立方米的淡水)所以固体状 的天然气水合物往往分布于水深大于 300 米 以上的海底沉积物或寒冷的永久冻土中。海底 天然气水合物依赖巨厚水层的压力来维持其固体状态,其分布可以从海底到海底之下 1000 米 的范围以内,再往深处则由于地温升高其固体状态遭到破坏而难以存在。
• 天然气水合物从物理性质来看,天然气水合物的密度接近并稍低于冰的密度,剪切 系数、电解常数和热传导率均低于冰。天然气水合物的声波传播速度明显高于含气 沉积物和饱和水沉积物,中子孔隙度低于饱和水沉积物,这些差别是物探方法识别 天然气水合物的理论基础。此外,天然气水合物的毛细管孔隙压力较高。
• 可燃冰燃烧方程式为:
• 在高压下,甲烷气水包合物在 18 °C 的温度下仍能维持稳定。一般的甲烷气水化合物组成 为 1摩尔的甲烷及每 5.75 摩尔的水,然而这个比例取决于多少的甲烷分子“嵌入”水晶格 各种不同的包覆结构中。据观测的密度大约在 0.9 g/cm³。一升的甲烷气水包合物固体, 在标准状况下,平均包含 168 升的甲烷气体。
理化性质
• 天然气水合物燃烧后几乎不产生任何残渣,污染比煤、石油、天然气都要小得多。1立方米 可燃冰可转化为164立方米的天然气和0.8立方米的水。开采时只需将固体的“天然气水合 物”升温减压就可释放出大量的甲烷气体。
• 天然气水合物在海洋浅水生态圈,通常出现在深层的沉淀物结构中,或是在海床处露出。 甲烷气水包合物据推测是因地理断层深处的气体迁移,以及沉淀、结晶等作用,于上升的 气体流与海洋深处的冷水接触所形成。
组成结构
• 天然气水合物(Natural Gas Hydrate,简称Gas Hydrate),也称为可燃冰、甲烷水合物、甲烷冰、天然气水 合物、“笼形包合物”(Clathrate),分子式为:CH4·nH2O,现已证实分子式为CH4·8H2O。。因其外观像 冰一样而且遇火即可燃烧,所以又被称作“可燃冰”(英译为:Flammable ice)或者“固体瓦斯”和“气 冰”。形成天然气水合物有三个基本条件:温度、压力和原材料。
• 天然气水合物是一种白色固体物质,有极强的燃烧力,主要由水分子和烃类气体分子(主要是甲烷)组成, 它是在一定条件(合适的温度、压力、气体饱和度、水的盐度、PH值等)下由水和天然气在中高压和低温 条件下混合时组成的类冰的、非化学计量的、笼形结晶化合物(碳的电负性较大,在高压下能吸引与之相 近的氢原子形成氢键,构成笼状结构)。一旦温度升高或压强降低,甲烷气则会逸出,固体水合物便趋于 崩解。
• 最后,充足的气源。海底的有机物沉淀,其中丰富的碳经过生物转化,可产生充足 的气源。海底的地层是多孔介质,在温度、压力、气源三者都具备的条件下,可燃 冰晶体就会在介质的空隙间中生成。
分布范围
• 自 20 世纪 60 年代以来,人们陆续在冻土带和海洋深处发现了一种可以燃烧的“冰”。这种“可燃冰”在 地质上称之为天然气水合物。天然气水合物在自然界广泛分布在大陆永久冻土、岛屿的斜坡地带、活动和 被动大陆边缘的隆起处、极地大陆架以及海洋和一些内陆湖的深水环境。在标准状况下,一单位体积的天 然气水合物分解最多可产生164单位体积的甲烷气体。
• CH4·8 H2O+ 2 O2== CO2+ 10 H2O(反应条件为“点燃”)
• 可燃冰分子结构就像一个一个由若干水分子组成的笼子。
• 形成可燃冰有三个基本条件:温度、压力和原材料。
• 首先,低温。可燃冰在0—10℃时生成,超过20℃便会分解。海底温度一般保持在2— 4℃左右;
• 其次,高压。可燃冰在0℃时,只需30个大气压即可生成,而以海洋的深度,30个大 气压很容易保证,并且气压越大,水合物就越不容易分解。
• 天然气水合物是20世纪科学考察中发现的一种新的矿产资源。它是水和天然气在高压和低温条件下混合时 产生的一种固态物质,外貌极像冰雪或固体酒精,点火即可燃烧,有“可燃水”、“气冰”、“固体瓦斯” 之称,被誉为21世纪具有商业开发前景的战略资源。
• 全球天然气水合物的储量是现有天然气、石油储量的两倍,具有广阔的开发前景,美国、日本等国均已经 在各自海域发现并开采出天然气水合物,据测算,中国南海天然气水合物的资源量为700亿吨油当量,约相 当中国陆上石油、天然气资源量总数的二分之一。
天然气水合物
概念
• 天然气水合物是指由主体分子(水)和客体分子(甲烷、乙烷等 烃类气体,及氮气、二氧化碳等非烃类气体分子)在低温(10℃~+28℃)、高压(1~9MPa)条件下,通过范德华力相互作用, 形成的结晶状笼形固体络合物其中水分子借助氢键形成结晶网格, 网格中的孔穴内充满轻烃、重烃或非烃分子。水合物具有极强的 储载气体能力,一个单位体积的天然气水合物可储载100~200倍 于该体积的气体量。
相关文档
最新文档