2015年杭州市数学中考难题解析
中考数学培优 易错 难题(含解析)之一元二次方程含详细答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.2.已知关于x 的一元二次方程()220x m x m -++=(m 为常数) (1)求证:不论m 为何值,方程总有两个不相等的实数根;(2)若方程有一个根是2,求m 的值及方程的另一个根.【答案】(1)见解析;(2) 即m 的值为0,方程的另一个根为0.【解析】【分析】(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m 2+4>0,则方程有两个不相等实数解,于是可判断不论m 为何值,方程总有两个不相等的实数根;(2)设方程的另一个根为t ,利用根与系数的关系得到2+t=21m + ,2t=m,最终解出关于t 和m 的方程组即可.【详解】(1)证明:△=(m+2)2−4×1⋅m=m 2+4,∵无论m 为何值时m 2≥0,∴m 2+4≥4>0,即△>0,所以无论m 为何值,方程总有两个不相等的实数根.(2)设方程的另一个根为t ,()220x m x m -++=根据题意得2+t=21m + ,2t=m , 解得t=0,所以m=0,即m 的值为0,方程的另一个根为0.【点睛】本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t ,用根于系数关系列出方程组,在求解.3.某社区决定把一块长50m ,宽30m 的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x 为何值时,活动区的面积达到21344m ?【答案】当13x m =时,活动区的面积达到21344m【解析】【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答.【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--=解得13x =- (舍),213x =.∴当13x m =时,活动区的面积达到21344m【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.4.已知关于x的一元二次方程有两个实数x2+2x+a﹣2=0,有两个实数根x1,x2.(1)求实数a的取值范围;(2)若x12x22+4x1+4x2=1,求a的值.【答案】(1)a≤3;(2)a=﹣1.【解析】试题分析:(1)由根的个数,根据根的判别式可求出a的取值范围;(2)根据一元二次方程根与系数的关系,代换求值即可得到a的值.试题解析:(1)∵方程有两个实数根,∴△≥0,即22﹣4×1×(a﹣2)≥0,解得a≤3;(2)由题意可得x1+x2=﹣2,x1x2=a﹣2,∵x12x22+4x1+4x2=1,∴(a﹣2)2﹣8=1,解得a=5或a=﹣1,∵a≤3,∴a=﹣1.5.校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.【答案】(1)长为18米、宽为7米或长为14米、宽为9米;(2)若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.【解析】【分析】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,再根据矩形面积公式列方程求解即可得到答案.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,根据题意得:x(32﹣2x)=126,解得:x1=7,x2=9,∴32﹣2x=18或32﹣2x=14,∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,根据题意得:y(36﹣2y)=170,整理得:y2﹣18y+85=0.∵△=(﹣18)2﹣4×1×85=﹣16<0,∴该方程无解,∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.6.已知关于x的方程x2﹣(k+3)x+3k=0.(1)若该方程的一个根为1,求k的值;(2)求证:不论k取何实数,该方程总有两个实数根.【答案】(1)k=1;(2)证明见解析.【解析】【分析】(1)把x=1代入方程,即可求得k的值;(2)求出根的判别式是非负数即可.【详解】(1)把x=1代入方程x2﹣(k+3)x+3k=0得1﹣(k﹣3)+3k=0,1﹣k﹣3+3k=0解得k=1;(2)证明:1,(3),3a b k c k==-+=24b ac∆=-∴△=(k+3)2﹣4•3k =(k﹣3)2≥0,所以不论k取何实数,该方程总有两个实数根.【点睛】本题考查了一元二次方程的解以及根的判别式,熟练掌握相关知识点是解题关键.7.今年以来猪肉价格不断走高,引起了民众与区政府的高度关注,当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.据统计:从今年年初至11月 10 日,猪排骨价格不断走高,11 月 10 日比年初价格上涨了 75%.今年 11 月 10 日某市民于 A 超市购买 5 千克猪排骨花费 350 元.(1)A 超市 11 月排骨的进货价为年初排骨售价的32倍,按 11 月 10 日价格出售,平均一天能销售出 100 千克,超市统计发现:若排骨的售价每千克下降 1 元,其日销售量就增加20千克,超市为了实现销售排骨每天有 1000 元的利润,为了尽可能让顾客优惠应该将排骨的售价定位为每千克多少元?(2)11 月 11 日,区政府决定投入储备猪肉并规定排骨在 11 月 10 日售价的基础上下调a%出售,A 超市按规定价出售一批储备排骨,该超市在非储备排骨的价格不变情况下,该天的两种猪排骨总销量比 11 月 10 日增加了a%,且储备排骨的销量占总销量的57,两种排骨销售的总金额比 11 月 10 日提高了128a %,求 a 的值. 【答案】(1)售价为每千克65元;(2)a =35.【解析】【分析】 (1)先根据题意计算出11月10的售价和11月的进货价,设每千克降价x 元,则每千克的利润为10-x 元,日销量为100+20x 千克,根据销量×单利润=总利润列出方程求解,并根据为了尽可能让顾客优惠,对所得的解筛选;(2)根据销售总金额=储备排骨销售单价×储备排骨销售数量+非储备排骨销售单价×非储备排骨销售数量,即可得出关于a 的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)11月10日的售价为350÷5=70元/千克年初的售价为:350÷5÷175%=40元/千克,11月的进货价为: 340602元/千克设每千克降价x 元,则每千克的利润为70-60-x=10-x 元,日销量为100+20x 千克 则(10020)(10)1000x x ,解得10x =,25x =因为为了尽可能让顾客优惠,所以降价5元,则售价为每千克65元. (2)根据题意可得52170(1%)100(1%)70100(1%)701001%7728a a a a ⎛⎫-++⨯+=⨯+ ⎪⎝⎭解得135a =,20a =(舍去)所以a =35.【点睛】 本题考查一元二次方程的应用,(1)中理清销售量随着单价的变化而变化的数量关系是解题关键;(2)中在求解时有些难度,可先设令%a t =,解方程求出t 后再求a 的值.8.利民商店经销甲、乙两种商品.现有如下信息信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.()1甲、乙两种商品的进货单价各是多少?()2据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降0.1元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a 元,在不考虑其他因素的条件下,当a 定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件(2)当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元【解析】【分析】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据给定的三个信息,可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据总利润=单件利润⨯销售数量,即可得出关于a 的一元二次方程,解之即可得出结论.【详解】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据题意得:()()113x 222y 437x y +=⎧++-=⎨⎩, 解得:{56x y ==.答:甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件. ()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据题意得:()()250010001500a a -+=,整理得:22310a a -+=,解得:10.5a =,21a =.答:当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2找准等量关系,正确列出一元二次方程.9. ∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m 吨(或水费是按y=1.7x 来计算的),五月份用水量超过m 吨(或水费是按来计算的) 则有151=1.7×80+(80-m )×即m 2-80m+1500=0解得m 1=30,m 2=50.又∵四月份用水量为35吨,m 1=30<35,∴m 1=30舍去.∴m=50【解析】10.我市茶叶专卖店销售某品牌茶叶,其进价为每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后来经过市场调查发现,单价每降低 10 元,则平均每周的销售量可增加 40 千克,若该专卖店销售这种品牌茶叶要想平均每周获利 41600 元,请回答: (1)每千克茶叶应降价多少元?(2)在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的 几折出售?【答案】(1)每千克茶叶应降价30元或80元;(2)该店应按原售价的8折出售.【解析】【分析】(1)设每千克茶叶应降价x 元,利用销售量×每件利润=41600元列出方程求解即可; (2)为了让利于顾客因此应下降价80元,求出此时的销售单价即可确定几折.【详解】(1)设每千克茶叶应降价x 元.根据题意,得:(400﹣x ﹣240)(200+10x ×40)=41600. 化简,得:x 2﹣10x +240=0.解得:x 1=30,x 2=80.答:每千克茶叶应降价30元或80元.(2)由(1)可知每千克茶叶可降价30元或80元.因为要尽可能让利于顾客,所以每千克茶叶某应降价80元.此时,售价为:400﹣80=320(元),320100%80%400⨯=. 答:该店应按原售价的8折出售.【点睛】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.。
2015年中考状元经验谈

2015年杭州市中考状元李家豪(男)就是多花时间在弱项上,重视整理。
他最喜欢的科目是数学,每天会挑数学的作业先做。
2015年天津市中考状元张鹤芊(女)说起自己的学习方法,张鹤芊总结说,最突出的一点就是抓紧一切时间:课上45分钟,午休时间,大课间时间,下午自习课,也许身边的同学开起了小差,但这个女孩大多数时间,则是心平气和地坐在课桌前,对知识点进行查漏补缺。
“我特别欣赏高效率这个词。
高效率在我看来,就是努力。
”“我对自己的学习有一个较为清醒的认识。
我的物理学科相对薄弱,于是抓紧一切时间查找漏洞,在最短的时间内提升自己的综合成绩水平。
”张鹤芊说。
2015年泉州市中考状元赖诗勇(男)英语是基础各科要整错题集说到状元,大家都不能放过讨要“学习秘诀”。
赖诗勇说自己最大的心得是:英语是总分领先的基础,一定要学好。
“英语比语文好学多了,语法清晰又简单。
”赖诗勇建议学弟学妹一定要把语法吃透。
提到英语,词汇量是最基础的,但背单词又是很多人头痛的一环,“要系统地学习音标,这样就能快速地背下。
”赖诗勇说自己在小学升初中的时候特地报了音标班,这对自己帮助很大,“我背单词的速度绝对是同学中最快的”。
此外,状元还有自己的错题本,语数英都有,这样每次都能有针对性地复习和加强。
“我不喜欢题海术,就像数学的练习卷只做最后几道难题,和自己出错过的题,做完就扔。
”2015年广州市中考状元许源睿(女)小学就读天河区红英小学,因为想要学习第二外语法语,初中许源睿选择了广州外国语学校。
在广外,她的兴趣得到进一步的发展,从小就喜欢语言学科的她在学校里,当起了英语播音员,“小时候喜欢看新闻,听英语广播,可能就产生了兴趣。
”广播站英语播音员、学习委员、宿舍长,在学校,许源睿有着多种身份,但这并没有影响她的学习。
班主任杨老师说,初中三年,许源睿的成绩没有落下班上前十,“她是一个全面发展的学生,比起其他同学,她的心态更好,做事有计划,遇到事情也会抱怨,但抱怨过后她会微笑着去解决。
浙江省杭州市中考数学试题分类解析 专题11 圆

浙江省杭州市中考数学试题分类解析 专题11 圆一、选择题1. (2002年浙江杭州3分)过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm .则OM 的长为【 】. (A )3cm (B )5cm(C )2cm(D )3cm【答案】B 。
【考点】垂径定理,勾股定理。
【分析】⊙O 内一点M 的最长的弦是过点M 的直径;最短的弦是过点M 垂直于过点M 的直径的弦。
如图,AB 是最长的弦,CD 是最短的弦,连接OC 。
∵AB=6cm,CD=4cm ;∴OC=OA=3cm,CM=2cm 。
∴2222OM OC CM 325=-=-=(cm )。
故选B 。
2. (2003年浙江杭州3分)如图,点C 为⊙O 的弦AB 上的一点,点P 为⊙O 上一点,且OC⊥CP,则 有【 】(A )OC 2=CA•CB (B )OC 2=PA•PB (C )PC 2=PA•PB (D )PC 2=CA•CB【答案】D。
【考点】垂径定理,相交弦定理。
【分析】延长PC交圆于D,连接OP,OD。
根据相交弦定理,得CP•CD=CA•CB。
∵OP=OD,OC⊥PC,∴PC=CD。
∴PC2=CA•CB。
故选D。
3. (2004年浙江杭州3分)如图,三个半径为3的圆两两外切,且ΔABC的每一边都与其中的两个圆相切,那么ΔABC的周长是【】(A)12+63(B)18+63(C)18+123(D)12+123【答案】B。
【考点】相切圆的性质,等边三角形、矩形的判定和性质,锐角三角函数定义,特殊角的三角函数值。
【分析】∵三圆两两相切,∴外切的△ABC为等边三角形(证明略)。
如图,连接 BO 2,CO 3,分别过点O 1,O 2作BC 的垂线,垂足为D ,E 。
∴BO 2平分∠ABC,∠O 2BC =30° 。
∵O 2D⊥BD ,∴22O D 3tan O BC tan30BD 3∠︒===。
∵O 2D=3,∴2O D 3BD 33333===。
浙江省杭州市中考数学真题试题(含解析)

浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分。
1.计算下列各式,值最小的是()A. 2×0+1-9B. 2+0×1-9C. 2+0-1×9D. 2+0+1-9【答案】 A【考点】有理数的加减乘除混合运算【解析】【解答】解:A.∵原式=0+1-9=-8,B.∵原式=2+0-9=-7,C.∵原式=2+0-9=-7,D.∵原式=2+1-9=-6,∵-8<-7<-6,∴值最小的是-8.故答案为:A.【分析】先分别计算出每个代数式的值,再比较大小,从而可得答案.2.在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A. m=3,n=2B. m=-3,n=2 C. m=3,n=2 B.m=-2,n=3【答案】 B【考点】关于坐标轴对称的点的坐标特征【解析】【解答】解:∵A(m,2)与B(3,n)关于y轴对称,∴m=-3,n=2.故答案为:B.【分析】关于y轴对称的点的特征:横坐标互为相反数,纵坐标不变,依此即可得出答案.3.如图,P为⊙O外一点,PA,PB分别切⊙O于A,B两点,若PA=3,则PB=()A. 2B. 3C. 4D. 5【答案】 B【考点】切线长定理【解析】【解答】解:∵PA、PB分别为⊙O的切线,∴PA=PB,又∵PA=3,∴PB=3.故答案为:B.【分析】根据切线长定理可得PA=PB,结合题意可得答案.4.已知九年级某班30位学生种树72株,男生每人种3棵树,女生每人种2棵树.设e男生有人,则()A. 2x+3(72-x)=30B. 3x+2(72-x)=30C. 2x+3(30-x)=72 D. 3x+2(30-x)=72【答案】 D【考点】一元一次方程的其他应用【解析】【解答】解:依题可得,3x+2(30-x)=72.故答案为:D.【分析】男生种树棵数+女生种树棵数=72,依此列出一元一次方程即可.5.点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A. 平均数B. 中位数C. 方差 D. 标准差【答案】 B【考点】中位数【解析】【解答】解:依题可得,这组数据的中位数为:=41,∴计算结果与被涂污数字无关的是中位数.故答案为:B.【分析】中位数:将一组数据从小到大或从大到小排列,如果是奇数个数,则处于中间的那个数即为中位数;若是偶数个数,则中间两个数的平均数即为中位数;依此可得答案.6.如图,在△ABC中,点D,E分别在AB和AC边上,DE∥BC,M为BC边上一点(不与点B、C重合),连接AM交DE于点N,则()A. B. C.D.【答案】 C【考点】平行线分线段成比例【解析】【解答】解:A.∵DE∥BC,∴,,∴,,∵≠ ,∴≠ ,故错误,A不符合题意;B.∵DE∥BC,∴,,∴,,∵≠ ,∴≠ ,故错误,B不符合题意;C.∵DE∥BC,∴,,∴= ,故正确,C符合题意;D.∵DE∥BC,∴,,∴= ,即= ,故错误,D不符合题意;故答案为:C.【分析】根据平行线截线段成比例逐一分析即可判断对错,从而可得答案.7.在△ABC中,若一个内角等于另两个内角的差,则()A. 必有一个内角等于30°B. 必有一个内角等于45°C. 必有一个内角等于60°D. 必有一个内角等于90°【答案】 D【考点】三角形内角和定理【解析】【解答】解:设△ABC的三个内角分别为A、B、C,依题可得,A=B-C ①,又∵A+B+C=180°②,②-①得:2B=180°,∴B=90°,∴△ABC必有一个内角等于90°.故答案为:D.【分析】根据题意列出等式A=B-C①,再由三角形内角和定理得A+B+C=180°②,由②-①可得B=90°,由此即可得出答案.8.已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A B C D【答案】 A【考点】一次函数图象、性质与系数的关系【解析】【解答】解:A.∵y1=ax+b图像过一、二、三象限,∴a>0,b>0,又∵y2=bx+a图像过一、二、三象限,∴b>0,a>0,故正确,A符合题意;B.∵y1=ax+b图像过一、二、三象限,∴a>0,b>0,又∵y2=bx+a图像过一、二、四象限,∴b<0,a>0,故矛盾,B不符合题意;C.∵y1=ax+b图像过一、二、四象限,∴a<0,b>0,又∵y2=bx+a图像过一、二、四象限,∴b<0,a>0,故矛盾,C不符合题意;D.∵y1=ax+b图像过二、三、四象限,∴a<0,b<0,又∵y2=bx+a图像过一、三、四象限,∴b>0,a<0,故矛盾,D不符合题意;故答案为:A.【分析】根据一次函数图像与系数的关系:k>0,b>0时,图像经过一、二、三象限;k>0,b<0时,图像经过一、三、四象限;k<0,b<0时,图像经过二、三、四象限;k>0,b>0时,图像经过一、二、四象限;依此逐一分析即可得出答案.9.如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内).已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A. asinx+bsinxB. acosx+bcosxC. asinx+bcosx.D. acosx+bsin x【答案】 D【考点】解直角三角形的应用【解析】【解答】解:作AG⊥OC交OC于点G,交BC于点H,如图,∵四边形ABCD为矩形,AD=b,∴∠ABH=90°,AD=BC=b,∵OB⊥OC,∴∠O=90°,又∵∠HCG+∠GHC=90°,∠AHB+∠BAH=90°,∠GHC=∠AHB,∠BC0=x,∴∠HCG=∠BAH=x,在Rt△ABH中,∵cos∠BAH=cosx= ,AB=a,∴AH= ,∵tan∠BAH=tanx= ,∴BH=a·tanx,∴CH=BC-BH=b-a·tanx,在Rt△CGH中,∵sin∠HCG=sinx= ,∴GH=(b-a·tanx)·sinx=bsinx-atanxsinx,∴AG=AH+HG= +bsinx-atanxsinx,= +bsinx- ,=bsinx+acosx.故答案为:D.【分析】作AG⊥OC交OC于点G,交BC于点H,由矩形性质得∠ABH=90°,AD=BC=b,根据等角的余角相等得∠HCG=∠BAH=x,在Rt△ABH中,根据锐角三角函数余弦定义cosx= 得AH= ,根据锐角三角函数正切定义tanx= 得BH=a·tanx,从而可得CH长,在Rt△CGH中,根据锐角三角函数正弦定义sinx= 得GH=bsinx-atanxsinx,由AG=AH+HG计算即可得出答案.10.在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A. M=N-1或M=N+1B. M=N-1或M=N+2C. M=N或M=N+1 D. M=N或M=N-1【答案】 C【考点】二次函数图象与坐标轴的交点问题【解析】【解答】解:∵y=(x+a)(x+b),∴函数图像与x轴交点坐标为:(-a,0),(-b,0),又∵y=(ax+1)(bx+1),∴函数图像与x轴交点坐标为:(- ,0),(- ,0),∵a≠b,∴M=N,或M=N+1.故答案为:C.【分析】根据函数解析式分别得出图像与x轴的交点坐标,根据题意a≠b分等于0和不等于0的情况即可得出两个交点个数之间的关系式,从而得出答案.二、填空题:本大题有6个小题,每小题4分,共24分,11.因式分解:1-x2=________.【答案】(1+x)(1-x)【考点】因式分解﹣运用公式法【解析】【解答】解:∵原式=(1+x)(1-x).故答案为:(1+x)(1-x).【分析】根据因式分解的方法——公式法因式分解即可得出答案.12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于________。
2015年中考数学 走出题海之黄金30题系列(第01期)专题01 经典母题30题(含解析)

专题01 经典母题30题一、选择题1.的相反数是()A. B.﹣ C.2 D.﹣2【答案】B【解析】的相反数是﹣,添加一个负号即可.故选B.2.下列图形中是轴对称图形但不是中心对称图形的是()A. B. C. D.【答案】B.3.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是()A.AB∥CD,AD∥BCB.OA=OC,OB=ODC.AD=BC,AB∥CDD.AB=CD,AD=BC【答案】C【解析】A、根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;B、根据对角线互相平分的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;C、不能判定四边形ABCD是平行四边形,故此选项符合题意;D、根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;故选C.4.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9.这5个数据的中位数是()A.6 B.7 C.8 D.9【答案】C.【解析】将这组数据重新排序为6,7,8,9,9,∴中位数是按从小到大排列后第3个数为:8.故选C.5.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2 B.4 C.6 D.8【答案】D.6.由几个大小不同的正方形组成的几何图形如图,则它的俯视图是()A. B. C. D.【答案】A.【解析】根据从上面看得到的图形是俯视图,可得:从上面看有两排,前排右边一个,后排三个正方形,故选A.7.不等式3x+2>﹣1的解集是()A.1x3-> B.1x3-< C.x1-> D.x1-<【答案】C.【解析】移项得,3x >﹣1﹣2,合并同类项得,3x >﹣3,把x 的系数化为1得,x >﹣1.故选C .8.将抛物线y=x 2平移得到抛物线y=(x+2)2,则这个平移过程正确的是( )A .向左平移2个单位B .向右平移2个单位C .向上平移2个单位D .向下平移2个单位【答案】A .【解析】根据图象左移加可得,将抛物线y=x 2平移得到抛物线y=(x+2)2,则这个平移过程正确的是向左平移了2个单位,故选A .9.在一个不透明的盒子中装有12个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球是白球的概率是13,则黄球的个数为( )A .18B .20C .24D .28【答案】C .【解析】设黄球的个数为x 个,根据题意得:311212=+x ,解得:x=24, 经检验:x=24是原分式方程的解;∴黄球的个数为24.故选C .10. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A.x y 523x 2y 20+=⎧⎨+=⎩B.x y 522x 3y 20+=⎧⎨+=⎩C.x y 202x 3y 52+=⎧⎨+=⎩D.x y 203x 2y 52+=⎧⎨+=⎩【答案】D .【解析】本题等量关系为:①男女生共20人;②男女生共植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.据此列出方程组:x y 203x 2y 52+=⎧⎨+=⎩. 故选D .11.如图,三棱柱的体积为10,其侧棱AB 上有一个点P 从点A 开始运动到点B 停止,过P 点作与底面平行的平面将这个三棱柱截成两个部分,它们的体积分别为x 、y ,则下列能表示y 与x 之间函数关系的大致图象是( )A .B .C .D .【答案】A . 【解析】∵过P 点作与底面平行的平面将体积为10的三棱柱截成两个部分的体积分别为x 、y ,∴x+y=10,即y=﹣x+10(0≤x ≤10).∴函数图象是经过点(10,0)和(0,10)的线段.故选A .12.如图,正方形ABCD 中,AB=6,点E 在边CD 上,且CD=3D E .将△ADE 沿A E 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF .则下列结论:①△ABG ≌△AFG ;②BG=CG ;③AG ∥CF ;④S △EGC =S △AFE ;⑤∠AGB+∠AED=145°.其中正确的个数是( )A .2B .3C .4D .5【答案】C 【解析】①正确.理由:∵AB=AD=AF ,AG=AG ,∠B=∠AFG=90°,∴Rt △ABG ≌Rt △AFG (HL );②正确.理由: EF=DE=31CD=2,设BG=FG=x ,则CG=6﹣x .在直角△ECG 中,根据勾股定理,得(6﹣x )2+42=(x+2)2,解得x=3.∴BG=3=6﹣3=GC ;③正确.理由:∵CG=BG ,BG=GF ,∴CG=GF ,∴△FGC 是等腰三角形,∠GFC=∠GCF .又∵Rt △ABG ≌Rt △AFG ;∴∠AGB=∠AGF ,∠AGB+∠AGF=2∠AGB=180°﹣∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF ,∴∠AGB=∠AGF=∠GFC=∠GCF ,∴AG ∥CF ;④正确.理由:∵S △GCE =21GC •CE=21×3×4=6,∵S △AFE =21AF •EF=21×6×2=6,∴S △EGC =S △AFE ; ⑤错误.∵∠BAG=∠FAG ,∠DAE=∠FAE ,又∵∠BAD=90°,∴∠GAF=45°,∴∠AGB+∠AED=180°﹣∠GAF=135°. 故选C .二、填空题13.分解因式:2a a - = .【答案】()a a 1-.【解析】()2a a a a 1-=-.14.计算:50°﹣15°30′= .【答案】34°30′.【解析】50°﹣15°30′=49°60′﹣15°30′=34°30′.15.在函数y=中,自变量x 的取值范围是 .【答案】x ≠﹣2【解析】由题意得,2x+4≠0,解得x ≠﹣2.16.如图,将边长为6的正方形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH ,点C 落在点Q 处,EQ 与BC 交于点G ,则△EBG 的周长是 cm .【答案】12【解析】由翻折的性质得,DF=EF ,设EF=x ,则AF=6﹣x ,∵点E 是AB 的中点,∴AE=BE=×6=3,在Rt△AEF中,AE2+AF2=EF2,即32+(6﹣x)2=x2,解得x=,∴AF=6﹣=,∵∠FEG=∠D=90°,∴∠AEF+∠BEG=90°,∵∠AEF+∠AFE=90°,∴∠AFE=∠BEG,又∵∠A=∠B=90°,∴△AEF∽△BGE ,∴==,即==,解得BG=4,EG=5,∴△EBG的周长=3+4+5=12.故答案为12.17.如图,已知在Rt△OAC中,O为坐标原点,直角顶点C在x轴的正半轴上,反比例函数kyx=(k≠0)在第一象限的图象经过OA的中点B,交AC于点D,连接OD.若△OCD∽△ACO,则直线OA的解析式为.【答案】y=2x.【解析】设OC=a,∵点D在kyx=上,∴CD=ka.∵△OCD∽△ACO,∴23OC AC OC aACCD OC CD k=⇒==. ∴点A的坐标为(a,3a k ).∵点B是OA的中点,∴点B的坐标为3a a,22k⎛⎫⎪⎝⎭.∵点B在反比例函数图象上,∴kaak223=,∴a2=2k. ∴点B的坐标为(a2,a).设直线OA的解析式为y=mx,则m·2a=a,∴m=2.∴直线OA的解析式为y=2x.18.某种商品每件的标价为240元,按标价的八折销售时,每件仍能获利20%,则这种商品每件的进价为元.【答案】160【解析】设这种商品每件的进价为x元,由题意得,240×0.8﹣x=20%x,解得:x=160,即每件商品的进价为160元.19.⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为.【答案】1或3【解析】如图所示:∵⊙O 的半径为2,弦BC=23,点A 是⊙O 上一点,且AB=AC ,∴AD ⊥BC ,∴BD=BC=3,在Rt △OBD 中,∵BD 2+OD 2=OB 2,即(3)2+OD 2=22,解得OD=1, ∴当如图1所示时,AD=OA ﹣OD=2﹣1=1;当如图2所示时,AD=OA+OD=2+1=3.故答案为:1或3.20.如图,在△ABC 中,AC=BC=8,∠C=90°,点D 为BC 中点,将△ABC 绕点D 逆时针旋转45°,得到△A ′B ′C ′,B ′C ′与AB 交于点E ,则S 四边形ACDE = .【答案】28【解析】由题意可得:∠B=∠BDE=45°,BD=4,则∠DEB=90°,∴BE=DE=22,∴S △BDE =21×22×22=4,∵S △ACB =21×AC ×BC=32,∴S 四边形ACDE =S △ACB ﹣S △BDE =28. 21.分式方程x x 1x 2x -=+的解为x= . 【答案】2.【解析】去分母得:x 2=x 2﹣x+2x ﹣2,解得:x=2,经检验x=2是分式方程的解.22.如图,在平面直角坐标系xOy 中,已知点M 0的坐标为(1,0),将线段OM 0绕原点O 逆时针方向旋转45°,再将其延长到M 1,使得M 1M 0⊥OM 0,得到线段OM 1;又将线段OM 1绕原点O 逆时针方向旋转45°,再将其延长到M 2,使得M 2M 1⊥OM 1,得到线段OM 2;如此下去,得到线段OM 3,OM 4,OM 5,…根据以上规律,请直接写出OM 2014的长度为 .【答案】21007.【解析】∵点M 0的坐标为(1,0),∴OM 0=1.∵线段OM 0绕原点O 逆时针方向旋转45°,M 1M 0⊥OM 0,∴△OM 0M 1是等腰直角三角形.∴OM 1OM 0同理,OM 21=2,OM 3OM 2=3,…,OM 2014OM 2013=2014=21007.三、解答题23.(1)计算:(1014sin4512-⎛⎫-︒-+ ⎪⎝⎭ (2)先化简,再求值:()()()2a a 3b a b a a b -++--,其中1a 1b 2==-,.【答案】(1)10;(2)54.【解析】(1)(1014sin45124112-⎛⎫-︒-+=--+ ⎪⎝⎭. (2)()()()2222222a a 3b a b a a b a 3ab a 2ab b a ab a b -++--=-+++-+=+. 当1a 1b 2==-,时,原式=2211511244⎛⎫+-=+= ⎪⎝⎭. 24.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt △ABC 的三个顶点A (﹣2,2),B (0,5),C (0,2).(1)将△ABC 以点C 为旋转中心旋转180°,得到△A 1B 1C ,请画出△A 1B 1C 的图形.(2)平移△ABC ,使点A 的对应点A 2坐标为(﹣2,﹣6),请画出平移后对应的△A 2B 2C 2的图形.(3)若将△A 1B 1C 绕某一点旋转可得到△A 2B 2C 2,请直接写出旋转中心的坐标.【答案】(1)图形见解析;(2)图形见解析;(3)旋转中心坐标(0,﹣2).【解析】(1)如图所示:△A1B1C即为所求;(2)如图所示:△A2B2C2即为所求;(3)旋转中心坐标(0,﹣2).25.海南有丰富的旅游产品.某校九年级(1)班的同学就部分旅游产品的喜爱情况对游客随机调查,要求游客在列举的旅游产品中选出喜爱的产品,且只能选一项,以下是同学们整理的不完整的统计图:根据以上信息完成下列问题:(1)请将条形统计图补充完整;(2)随机调查的游客有人;在扇形统计图中,A部分所占的圆心角是度;(3)请根据调查结果估计在1500名游客中喜爱黎锦的约有人.【答案】(1)补图见解析;(2)400, 72°;(3)420.【解析】(1)∵喜爱B产品的人数为60÷15%-80-72-60-76=112(人),∴将条形统计图补充完整如下:(2)400, 72°.(3)420.26.已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收x20元,若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.【答案】(1)y=6x ﹣100;(2)120吨;(3)100吨.【解析】(1)设y 关于x 的函数关系式y=kx+b ,∵直线y=kx+b 经过点(50,200),(60,260),∴50k b 20060k b 260+=⎧⎨+=⎩,解得k 6b 100=⎧⎨=-⎩.∴y 关于x 的函数关系式是y=6x ﹣100. (2)由图可知,当y=620时,x >50,∴6x ﹣100=620,解得x=120.答:该企业2013年10月份的用水量为120吨.(3)由题意得,()x 6x 100x 8060020-+-=,化简得x 2+40x ﹣14000=0 解得:x 1=100,x 2=﹣140(不合题意,舍去).答:这个企业2014年3月份的用水量是100吨.27.如图,在平面直角坐标系中,⊙M 过原点O ,与x 轴交于A (4,0),与y 轴交于B (0,3),点C 为劣弧AO 的中点,连接AC 并延长到D ,使DC=4CA ,连接BD .(1)求⊙M 的半径;(2)证明:BD 为⊙M 的切线;(3)在直线MC 上找一点P ,使|DP ﹣AP|最大.【答案】(1)52;(2)证明见解析;(3)取点A 关于直线MC 的对称点O ,连接DO 并延长交直线MC 于P ,此P 点为所求,且线段DO 的长为|DP ﹣AP|.【解析】(1)∵由题意可得出:OA 2+OB 2=AB 2,AO=4,BO=3,∴AB=5.∴圆的半径为52. (2)由题意可得出:M (2,32).∵C 为劣弧AO 的中点,由垂径定理且 MC=52,故 C (2,﹣1).如答图1,过 D 作 DH ⊥x 轴于 H ,设 MC 与 x 轴交于 N ,则△ACN ∽△ADH ,又∵DC=4AC ,∴ DH=5NC=5,HA=5NA=10.∴D (﹣6,﹣5).设直线BD 表达式为:y=ax+b ,则6k b 5b 3-+=-⎧⎨=⎩,解得:4k 3b 3⎧=⎪⎨⎪=⎩.∴直线BD 表达式为:y=43x+3. 设 BD 与 x 轴交于Q ,则Q (9,04- ).∴OQ=94.∴2515AQ ,BQ 44== . ∵222225625BQ ,AB 25,AQ 1616=== ,∴222BQ AB AQ +=.∴△ABQ 是直角三角形,即∠ABQ=90°. ∴BD ⊥AB ,BD 为⊙M 的切线.(3)如答图2,取点A 关于直线MC 的对称点O ,连接DO 并延长交直线MC 于P ,此P 点为所求,且线段DO 的长为|DP ﹣AP|的最大值.设直线DO 表达式为 y=kx ,∴﹣5=﹣6k ,解得:k=56.∴直线DO 表达式为 y=56x 又∵在直线DO 上的点P 的横坐标为2,∴y=53.∴P (2,53).此时|DP ﹣28.如图,在平面直角坐标系中,A 是抛物线21y x 2=上的一个动点,且点A 在第一象限内.AE ⊥y 轴于点E ,点B 坐标为(0,2),直线AB 交x 轴于点C ,点D 与点C 关于y 轴对称,直线DE 与AB 相交于点F ,连结BD .设线段AE 的长为m ,△BED 的面积为S .(1)当m =S 的值.(2)求S 关于()m m 2≠的函数解析式.(3)①若S AF BF 的值; ②当m >2时,设AF k BF=,猜想k 与m 的数量关系并证明.【答案】(1;(2)()S m m >0,m 2=≠ ;(3)①34;②21k m 4=,证明见解析. 【解析】(1)∵点A 是抛物线21y x 2=上的一个动点,AE ⊥y 轴于点E ,且AE m =,∴点A 的坐标为21m,m 2⎛⎫ ⎪⎝⎭.∴当m =A 的坐标为)1. ∵点B 的坐标为()0,2 ,∴BE=OE=1.∵AE ⊥y 轴,∴AE ∥x 轴. ∴△ABE ∽△CBO .∴AE BE CO BO=12=,解得CO =∵点D 与点C 关于y 轴对称,∴DO CO ==∴11S BE DO 122=⋅=⋅⋅.(2)①当0<m <2时,如图,∵点D 与点C 关于y 轴对称,∴△DBO ≌△CBO .∵△ABE ∽△CBO ,∴△ABE ∽△DBO .∴BE BOAE DO =.∴BE DO AE BO 2m ⋅=⋅= ∴11S BE DO 2m m 22=⋅=⋅=.②当m >2时,如图,同①可得11S BE DO AE OB m 22=⋅=⋅=综上所述,S 关于m 的函数解析式()S m m >0,m 2=≠ .(3)①如图,连接AD ,∵△BEDS m == A的坐标为32⎫⎪⎭ . 设ADFAEF BDF BEF S S AF k S S BF∆∆∆∆===,∴ADF BDF AEF BEF S kS ,S kS ∆∆∆∆== . ∴()BDF BEF ADE ADF AEF BDE BDF BEF BDF BEFk S S S S S k S S S S S ∆∆∆∆∆∆∆∆∆∆--===--.∴ADEBDE 13S AF 3k BF S 4∆∆===.②k 与m 的数量关系为21k m 4=,证明如下: 连接AD ,则 ∵ADF AEF BDF BEF S S AF k S S BF∆∆∆∆===,∴ADF BDF AEF BEF S kS ,S kS ∆∆∆∆== . ∴()BDF BEF ADE ADF AEF BDE BDF BEF BDF BEF k S S S S S k S S S S S ∆∆∆∆∆∆∆∆∆∆++===++. ∵点A 的坐标为21m,m 2⎛⎫ ⎪⎝⎭ ,∴()22ADEBDE 11m m S 122k m m >2S m 4∆∆⋅===.29.课本中有一道作业题:有一块三角形余料ABC ,它的边BC=120mm ,高AD=80mm .要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上.问加工成的正方形零件的边长是多少mm ?小颖解得此题的答案为48mm ,小颖善于反思,她又提出了如下的问题.(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm ?请你计算.(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.【答案】(1)2407mm ,4807mm ;(2)PN=60mm ,PQ 40=mm . 【解析】(1)设矩形的边长PN=2ymm ,则PQ=ymm ,由条件可得△APN ∽△ABC , ∴PN AE BC AD =,即2y 80y 12080-=,解得240y 7=,∴PN=2407×2=4807(mm ). 答:这个矩形零件的两条边长分别为2407mm ,4807mm. (2)设PN=xmm ,由条件可得△APN ∽△ABC , ∴PN AE BC AD =,即x 80PQ 12080-=,即2PQ 80x 3=-. ∴()()22S PN PQ x 80x x 80x x 602400=⋅=-=-+=--+.∴S 的最大值为2400mm 2,此时PN=60mm ,2PQ 8060403=-⨯=mm .30.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?【答案】(1)购买一个台灯需要25元,购买一个手电筒需要5元;(2)荣庆公司最多可购买21个该品牌的台灯.【解析】(1)设购买该品牌一个手电筒需要x 元,则购买一个台灯需要(x+20)元.根据题意 得2116020400⨯=+x x 解得 x=5经检验,x=5是原方程的解.所以 x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a ,则还需要购买手电筒的个数是(2a+8)由题意得 25a+5(2a+8)≤670解得 a ≤21所以 荣庆公司最多可购买21个该品牌的台灯.31.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x (单位:时),慢车与第一、第二列快车之间的距离y (单位:千米)与x (单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为 千米.(2)求图1中线段CD 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围.(3)请直接在图2中的( )内填上正确的数.【答案】(1)900;(2)y=75x (6≤x ≤12);(3)0.75,6.75.【解析】(1)由函数图象得:甲、乙两地之间的距离为900千米, 故答案为:900;(2)由题意,得:慢车速度为900÷12=75千米/时,快车速度+慢车速度=900÷4=225千米/时,快车速度=225﹣75=150千米/时,快车走完全程时间为900÷150=6小时快车到达时慢车与快车相距 6×75=450千米,∴C (6,450).设y CD =kx+b (k ≠0,k 、b 为常数)把(6,450)(12,900)代入y CD =kx+b 中,有⎩⎨⎧=+=+450690012b k b k ,解得:⎩⎨⎧==075b k .∴y=75x (6≤x ≤12); (3)由题意,得4.5﹣(900﹣4.5×75)÷150=0.75,4.5+6﹣(900﹣4.5×75)÷150=6.75.故答案为:0.75,6.75.32.如图,在平面直角坐标系中,正方形ABCD 的顶点A 在y 轴正半轴上,顶点B 在x 轴正半轴上,OA 、OB 的长分别是一元二次方程x 2﹣7x+12=0的两个根(OA >OB ).(1)求点D 的坐标.(2)求直线BC 的解析式.(3)在直线BC 上是否存在点P ,使△PCD 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,说明理由.【答案】【解析】(1)x 2﹣7x+12=0,解得x 1=3,x 2=4,∵OA >OB ,∴OA=4,OB=3,过D 作DE ⊥y 于点E ,∵正方形ABCD ,∴AD=AB ,∠DAB=90°,∠DAE+∠OAB=90°,∠ABO+∠OAB=90°,∴∠ABO=∠DAE ,∵DE ⊥AE ,∴∠AED=90°=∠AOB ,∵DE ⊥AE ∴∠AED=90°=∠AOB ,∴△DAE ≌△ABO (AAS ),∴DE=OA=4,AE=O B=3,∴OE=7,∴D (4,7);(2)过点C 作CM ⊥x 轴于点M ,同上可证得△BCM ≌△ABO ,∴CM=OB=3,BM=OA=4,∴OM=7,∴C (7,3),设直线BC 的解析式为y=kx+b (k ≠0,k 、b 为常数),代入B (3,0),C (7,3)得,⎩⎨⎧=+=+0337b k b k , 解得⎪⎪⎩⎪⎪⎨⎧-==4943b k ,∴y=43x ﹣49; (3)存在.点P与点B重合时,P1(3,0),点P与点B关于点C对称时,P2(11,6).。
2016年浙江省杭州市中考数学试卷附详细答案(原版+解析版)

2016年浙江省杭州市中考数学试卷一、填空题(每题3分)1.(3分)(2016•杭州)=()A.2 B.3 C.4 D.52.(3分)(2016•杭州)如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若=,则=()A.B.C.D.13.(3分)(2016•杭州)下列选项中,如图所示的圆柱的三视图画法正确的是()A.B.C.D.4.(3分)(2016•杭州)如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A.14℃,14℃B.15℃,15℃C.14℃,15℃D.15℃,14℃5.(3分)(2016•杭州)下列各式变形中,正确的是()A.x2•x3=x6B.=|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+6.(3分)(2016•杭州)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2(106+x)B.518﹣x=2×106 C.518﹣x=2(106+x)D.518+x=2(106﹣x)7.(3分)(2016•杭州)设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x 的函数图象可能为()A.B.C. D.8.(3分)(2016•杭州)如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.DE=EB C.DE=DO D.DE=OB9.(3分)(2016•杭州)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0 10.(3分)(2016•杭州)设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④ B.①③④ C.①②④ D.①②③二、填空题(每题4分)11.(4分)(2016•黔东南州)tan60°=.12.(4分)(2016•杭州)已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是.13.(4分)(2016•杭州)若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解,则k的值可以是(写出一个即可).14.(4分)(2016•杭州)在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为.15.(4分)(2016•杭州)在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D关于坐标原点的对称点的坐标为.16.(4分)(2016•杭州)已知关于x的方程=m的解满足(0<n<3),若y >1,则m的取值范围是.三、解答题17.(6分)(2016•杭州)计算6÷(﹣),方方同学的计算过程如下,原式=6+6=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.18.(8分)(2016•杭州)某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图如图所示.根据统计图回答下列问题:(1)若第一季度的汽车销售量为2100辆,求该季的汽车产量;(2)圆圆同学说:“因为第二,第三这两个季度汽车销售数量占当季汽车产量是从75%降到50%,所以第二季度的汽车产量一定高于第三季度的汽车产量”,你觉得圆圆说的对吗?为什么?19.(8分)(2016•杭州)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.20.(10分)(2016•杭州)把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米)适用公式h=20t﹣5t2(0≤t≤4).(1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t;(3)若存在实数t1,t2(t1≠t2)当t=t1或t2时,足球距离地面的高度都为m(米),求m 的取值范围.21.(10分)(2016•杭州)如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DE上,点A,D,G在同一直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE 交CG于点H.(1)求sin∠EAC的值.(2)求线段AH的长.22.(12分)(2016•杭州)已知函数y1=ax2+bx,y2=ax+b(ab≠0).在同一平面直角坐标系中.(1)若函数y1的图象过点(﹣1,0),函数y2的图象过点(1,2),求a,b的值.(2)若函数y2的图象经过y1的顶点.①求证:2a+b=0;②当1<x<时,比较y1,y2的大小.23.(12分)(2016•杭州)在线段AB的同侧作射线AM和BN,若∠MAB与∠NBA的平分线分别交射线BN,AM于点E,F,AE和BF交于点P.如图,点点同学发现当射线AM,BN交于点C;且∠ACB=60°时,有以下两个结论:①∠APB=120°;②AF+BE=AB.那么,当AM∥BN时:(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出∠APB的度数,写出AF,BE,AB长度之间的等量关系,并给予证明;(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32,求AQ的长.2016年浙江省杭州市中考数学试卷参考答案与试题解析一、填空题(每题3分)1.(3分)(2016•杭州)=()A.2 B.3 C.4 D.5【分析】算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.依此即可求解.【解答】解:=3.故选:B.【点评】考查了算术平方根,注意非负数a的算术平方根a有双重非负性:①被开方数a 是非负数;②算术平方根a本身是非负数.2.(3分)(2016•杭州)如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若=,则=()A.B.C.D.1【分析】直接根据平行线分线段成比例定理求解.【解答】解:∵a∥b∥c,∴==.故选B.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.3.(3分)(2016•杭州)下列选项中,如图所示的圆柱的三视图画法正确的是()A.B.C.D.【分析】根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,可得答案.【解答】解:该圆柱体的主视图、俯视图均为矩形,左视图为圆,故选:A.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.4.(3分)(2016•杭州)如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A.14℃,14℃B.15℃,15℃C.14℃,15℃D.15℃,14℃【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【解答】解:由条形统计图中出现频数最大条形最高的数据是在第三组,14℃,故众数是14℃;因图中是按从小到大的顺序排列的,最中间的环数是14℃、14℃,故中位数是14℃.故选:A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.5.(3分)(2016•杭州)下列各式变形中,正确的是()A.x2•x3=x6B.=|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+【分析】直接利用二次根式的性质以及同底数幂的乘法运算法则和分式的混合运算法则分别化简求出答案.【解答】解:A、x2•x3=x5,故此选项错误;B、=|x|,正确;C、(x2﹣)÷x=x﹣,故此选项错误;D、x2﹣x+1=(x﹣)2+,故此选项错误;故选:B.【点评】此题主要考查了二次根式的性质以及同底数幂的乘法运算和分式的混合运算等知识,正确掌握相关运算法则是解题关键.6.(3分)(2016•杭州)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2(106+x)B.518﹣x=2×106 C.518﹣x=2(106+x)D.518+x=2(106﹣x)【分析】设从甲煤场运煤x吨到乙煤场,根据题意列出方程解答即可.【解答】解:设从甲煤场运煤x吨到乙煤场,可得:518﹣x=2(106+x),故选C.【点评】考查了由实际问题抽象出一元一次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.7.(3分)(2016•杭州)设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x 的函数图象可能为()A.B.C.D.【分析】根据反比例函数解析式以及z=,即可找出z关于x的函数解析式,再根据反比例函数图象在第一象限可得出k>0,结合x的取值范围即可得出结论.【解答】解:∵y=(k≠0,x>0),∴z===(k≠0,x>0).∵反比例函数y=(k≠0,x>0)的图象在第一象限,∴k>0,∴>0.∴z关于x的函数图象为第一象限内,且不包括原点的正比例的函数图象.故选D.【点评】本题考查了反比例函数的图象以及正比例函数的图象,解题的关键是找出z关于x 的函数解析式.本题属于基础题,难度不大,解决该题型题目时,根据分式的变换找出z关于x的函数关系式是关键.8.(3分)(2016•杭州)如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.DE=EB C.DE=DO D.DE=OB【分析】连接EO,只要证明∠D=∠EOD即可解决问题.【解答】解:连接EO.∵OB=OE,∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故选D.【点评】本题考查圆的有关知识、三角形的外角等知识,解题的关键是添加除以辅助线,利用等腰三角形的判定方法解决问题,属于中考常考题型.9.(3分)(2016•杭州)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0【分析】如图,根据等腰三角形的性质和勾股定理可得m2+m2=(n﹣m)2,整理即可求解【解答】解:如图,m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故选:C.【点评】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.10.(3分)(2016•杭州)设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④ B.①③④ C.①②④ D.①②③【分析】根据新定义可以计算出啊各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.【解答】解:①根据题意得:a@b=(a+b)2﹣(a﹣b)2∴(a+b)2﹣(a﹣b)2=0,整理得:(a+b+a﹣b)(a+b﹣a+b)=0,即4ab=0,解得:a=0或b=0,正确;②∵a@(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4aca@b+a@c=(a+b)2﹣(a﹣b)2+(a+c)2﹣(a﹣c)2=4ab+4ac,∴a@(b+c)=a@b+a@c正确;③a@b=a2+5b2,a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∵a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∴a2+b2+2ab≥4ab,∴4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∴a@b最大时,a=b,故④正确,故选C.【点评】本题考查因式分解的应用、整式的混合运算、二次函数的最值,解题的关键是明确题意,找出所求问题需要的条件.二、填空题(每题4分)11.(4分)(2016•黔东南州)tan60°=.【分析】根据特殊角的三角函数值直接得出答案即可.【解答】解:tan60°的值为.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角的三角函数值是解答此题的关键.12.(4分)(2016•杭州)已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是.【分析】先求出棕色所占的百分比,再根据概率公式列式计算即可得解.【解答】解:棕色所占的百分比为:1﹣20%﹣15%﹣30%﹣15%=1﹣80%=20%,所以,P(绿色或棕色)=30%+20%=50%=.故答案为:.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.13.(4分)(2016•杭州)若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解,则k的值可以是﹣1(写出一个即可).【分析】令k=﹣1,使其能利用平方差公式分解即可.【解答】解:令k=﹣1,整式为x2﹣y2=(x+y)(x﹣y),故答案为:﹣1.【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.14.(4分)(2016•杭州)在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为45°或105°.【分析】如图当点E在BD右侧时,求出∠EBD,∠DBC即可解决问题,当点E在BD左侧时,求出∠DBE′即可解决问题.【解答】解:如图,∵四边形ABCD是菱形,∴AB=AD=BC=CD,∠A=∠C=30°,∠ABC=∠ADC=150°,∴∠DBA=∠DBC=75°,∵ED=EB,∠DEB=120°,∴∠EBD=∠EDB=30°,∴∠EBC=∠EBD+∠DBC=105°,当点E′在BD左侧时,∵∠DBE′=30°,∴∠E′BC=∠DBC﹣∠DBE′=45°,∴∠EBC=105°或45°,故答案为105°或45°.【点评】本题考查菱形的性质、等腰三角形的性质等知识,解题的关键是正确画出图形,考虑问题要全面,属于中考常考题型.15.(4分)(2016•杭州)在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D关于坐标原点的对称点的坐标为(﹣5,﹣3).【分析】直接利用平行四边形的性质得出D点坐标,进而利用关于原点对称点的性质得出答案.【解答】解:如图所示:∵A(2,3),B(0,1),C(3,1),线段AC与BD互相平分,∴D点坐标为:(5,3),∴点D关于坐标原点的对称点的坐标为:(﹣5,﹣3).故答案为:(﹣5,﹣3).【点评】此题主要考查了平行四边形的性质以及关于原点对称点的性质,正确得出D点坐标是解题关键.16.(4分)(2016•杭州)已知关于x的方程=m的解满足(0<n<3),若y >1,则m的取值范围是<m<.【分析】先解方程组,求得x和y,再根据y>1和0<n<3,求得x的取值范围,最后根据=m,求得m的取值范围.【解答】解:解方程组,得∵y>1∴2n﹣1>1,即n>1又∵0<n<3∴1<n<3∵n=x﹣2∴1<x﹣2<3,即3<x<5∴<<∴<<又∵=m∴<m<故答案为:<m<【点评】本题主要考查了分式方程的解以及二元一次方程组的解,解题时需要掌握解二元一次方程和一元一次不等式的方法.根据x取值范围得到的取值范围是解题的关键.三、解答题17.(6分)(2016•杭州)计算6÷(﹣),方方同学的计算过程如下,原式=6+6=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.【分析】根据有理数的混合运算顺序,先算括号里面的,再根据除法法则进行计算即可.【解答】解:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣+)=6÷(﹣)=6×(﹣6)=﹣36.【点评】此题考查了有理数的除法,用到的知识点是有理数的除法、通分、有理数的加法,关键是掌握运算顺序和结果的符号.18.(8分)(2016•杭州)某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图如图所示.根据统计图回答下列问题:(1)若第一季度的汽车销售量为2100辆,求该季的汽车产量;(2)圆圆同学说:“因为第二,第三这两个季度汽车销售数量占当季汽车产量是从75%降到50%,所以第二季度的汽车产量一定高于第三季度的汽车产量”,你觉得圆圆说的对吗?为什么?【分析】(1)根据每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图,可以求得第一季度的汽车销售量为2100辆时,该季的汽车产量;(2)首先判断圆圆的说法错误,然后说明原因即可解答本题.【解答】解:(1)由题意可得,2100÷70%=3000(辆),即该季的汽车产量是3000辆;(2)圆圆的说法不对,因为百分比仅能够表示所要考查的数据在总量中所占的比例,并不能反映总量的大小.【点评】本题考查折线统计图,解题的关键是明确题意,找出所求问题需要的条件.19.(8分)(2016•杭州)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.【分析】(1)欲证明△ADF∽△ACG,由可知,只要证明∠ADF=∠C即可.(2)利用相似三角形的性质得到=,由此即可证明.【解答】(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵=,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG,∴=,又∵=,∴=,∴=1.【点评】本题考查相似三角形的性质和判定、三角形内角和定理等知识,记住相似三角形的判定方法是解决问题的关键,属于基础题中考常考题型.20.(10分)(2016•杭州)把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米)适用公式h=20t﹣5t2(0≤t≤4).(1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t;(3)若存在实数t1,t2(t1≠t2)当t=t1或t2时,足球距离地面的高度都为m(米),求m 的取值范围.【分析】(1)将t=3代入解析式可得;(2)根据h=10可得关于t的一元二次方程,解方程即可;(3)由题意可得方程20t﹣t2=m 的两个不相等的实数根,由根的判别式即可得m的范围.【解答】解:(1)当t=3时,h=20t﹣5t2=20×3﹣5×9=15(米),∴当t=3时,足球距离地面的高度为15米;(2)∵h=10,∴20t﹣5t2=10,即t2﹣4t+2=0,解得:t=2+或t=2﹣,故经过2+或2﹣时,足球距离地面的高度为10米;(3)∵m≥0,由题意得t1,t2是方程20t﹣5t2=m 的两个不相等的实数根,∴b2﹣4ac=202﹣20m>0,∴m<20,故m的取值范围是0≤m<20.【点评】本题主要考查二次函数背景下的求值及一元二次方程的应用、根的判别式,根据题意得到相应的方程及将实际问题转化为方程问题是解题的关键.21.(10分)(2016•杭州)如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DE上,点A,D,G在同一直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE 交CG于点H.(1)求sin∠EAC的值.(2)求线段AH的长.【分析】(1)作EM⊥AC于M,根据sin∠EAM=求出EM、AE即可解决问题.(2)先证明△GDC≌△EDA,得∠GCD=∠EAD,推出AH⊥GC,再根据S△AGC=•AG•DC=•GC•AH,即可解决问题.【解答】解:(1)作EM⊥AC于M.∵四边形ABCD是正方形,∴∠ADC=90°,AD=DC=3,∠DCA=45°,∴在RT△ADE中,∵∠ADE=90°,AD=3,DE=1,∴AE==,在RT△EMC中,∵∠EMC=90°,∠ECM=45°,EC=2,∴EM=CM=,∴在RT△AEM中,sin∠EAM===.(2)在△GDC和△EDA中,,∴△GDC≌△EDA,∴∠GCD=∠EAD,GC=AE=,∵∠EHC=∠EDA=90°,∴AH⊥GC,∵S△AGC=•AG•DC=•GC•AH,∴×4×3=××AH,∴AH=.【点评】本题考查正方形的性质、全等三角形的判定和性质、勾股定理、三角形面积等知识,添加常用辅助线是解决问题的关键,学会用面积法求线段,属于中考常考题型.22.(12分)(2016•杭州)已知函数y1=ax2+bx,y2=ax+b(ab≠0).在同一平面直角坐标系中.(1)若函数y1的图象过点(﹣1,0),函数y2的图象过点(1,2),求a,b的值.(2)若函数y2的图象经过y1的顶点.①求证:2a+b=0;②当1<x<时,比较y1,y2的大小.【分析】(1)结合点的坐标利用待定系数法即可得出关于a、b的二元一次方程组,解方程组即可得出结论;(2)①将函数y1的解析式配方,即可找出其顶点坐标,将顶点坐标代入函数y2的解析式中,即可的出a、b的关系,再根据ab≠0,整理变形后即可得出结论;②由①中的结论,用a表示出b,两函数解析式做差,即可得出y1﹣y2=a(x﹣2)(x﹣1),根据x的取值范围可得出(x﹣2)(x﹣1)<0,分a>0或a<0两种情况考虑,即可得出结论.【解答】解:(1)由题意得:,解得:,故a=1,b=1.(2)①证明:∵y1=ax2+bx=a,∴函数y1的顶点为(﹣,﹣),∵函数y2的图象经过y1的顶点,∴﹣=a(﹣)+b,即b=﹣,∵ab≠0,∴﹣b=2a,∴2a+b=0.②∵b=﹣2a,∴y1=ax2﹣2ax=ax(x﹣2),y2=ax﹣2a,∴y1﹣y2=a(x﹣2)(x﹣1).∵1<x<,∴x﹣2<0,x﹣1>0,(x﹣2)(x﹣1)<0.当a>0时,a(x﹣2)(x﹣1)<0,y1<y2;当a<0时,a(x﹣1)(x﹣1)>0,y1>y2.【点评】本题考查了二次函数的综合应用,解题的关键是:(1)结合点的坐标利用待定系数法求出函数系数;(2)①函数y1的顶点坐标代入y2中,找出a、b间的关系;②分a>0或a<0两种情况考虑.本题属于中档题,难度不大,解决该题时,利用配方法找出函数y1的顶点坐标,再代入y2中找出a、b间的关系是关键.23.(12分)(2016•杭州)在线段AB的同侧作射线AM和BN,若∠MAB与∠NBA的平分线分别交射线BN,AM于点E,F,AE和BF交于点P.如图,点点同学发现当射线AM,BN交于点C;且∠ACB=60°时,有以下两个结论:①∠APB=120°;②AF+BE=AB.那么,当AM∥BN时:(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出∠APB的度数,写出AF,BE,AB长度之间的等量关系,并给予证明;(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32,求AQ的长.【分析】(1)由角平分线和平行线整体求出∠MAB+∠NBA,从而得到∠APB=90°,最后用等边对等角,即可.(2)先根据条件求出AF,FG,求出∠FAG=60°,最后分两种情况讨论计算.【解答】解:(1)原命题不成立,新结论为:∠APB=90°,AF+BE=2AB(或AF=BE=AB),理由:∵AM∥BN,∴∠MAB+∠NBA=180°,∵AE,BF分别平分∠MAB,NBA,∴∠EAB=∠MAB,∠FBA=∠NBA,∴∠EAB+∠FBA=(∠MAB+∠NBA)=90°,∴∠APB=90°,∵AE平分∠MAB,∴∠MAE=∠BAE,∵AM∥BN,∴∠MAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE,同理:AF=AB,∴AF=+BE=2AB(或AF=BE=AB);(2)如图1,过点F作FG⊥AB于G,∵AF=BE,AF∥BE,∴四边形ABEF是平行四边形,∵AF+BE=16,∴AB=AF=BE=8,∵32=8×FG,∴FG=4,在Rt△FAG中,AF=8,∴∠FAG=60°,当点G在线段AB上时,∠FAB=60°,当点G在线段BA延长线时,∠FAB=120°,①如图2,当∠FAB=60°时,∠PAB=30°,∴PB=4,PA=4,∵BQ=5,∠BPA=90°,∴PQ=3,∴AQ=4﹣3或AQ=4+3.②如图3,当∠FAB=120°时,∠PAB=60°,∠FBG=30°,∴PB=4,∵PB=4>5,∴线段AE上不存在符合条件的点Q,∴当∠FAB=60°时,AQ=4﹣3或4+3.【点评】此题是四边形综合题,主要考查了平行线的性质,角平分线的性质,直角三角形的性质,勾股定理,解本题的关键是用勾股定理计算线段.参与本试卷答题和审题的老师有:HJJ;gsls;三界无我;sjzx;sd2011;1987483819;曹先生;弯弯的小河;zgm666;lantin;星期八;sks;szl;星月相随(排名不分先后)菁优网2016年9月8日。
2015年浙江省金华市中考数学试题及解析

2015年省市中考数学试卷一、选择题:此题有10小题,每题3分,共30分。
1.〔3分〕〔2015•〕计算〔a2〕3的结果是〔〕A.a5B.a6C.a8D.3a22.〔3分〕〔2015•〕要使分式有意义,那么x的取值应满足〔〕A.x=﹣2 B.x≠2C.x>﹣2 D.x≠﹣23.〔3分〕〔2015•〕点P〔4,3〕所在的象限是〔〕A.第一象限B.第二象限C.第三象限D.第四象限4.〔3分〕〔2015•〕∠α=35°,那么∠α的补角的度数是〔〕A.55°B.65°C.145°D.165°5.〔3分〕〔2015•〕一元二次方程x2+4x﹣3=0的两根为x1、x2,那么x1•x2的值是〔〕A.4B.﹣4 C.3D.﹣36.〔3分〕〔2015•〕如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是〔〕A.点A B.点B C.点C D.点D7.〔3分〕〔2015•〕如图的四个转盘中,C、D转盘分成8等分,假设让转盘自由转动一次,停止后,指针落在阴影区域的概率最大的转盘是〔〕A.B.C.D.8.〔3分〕〔2015•〕图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O 为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=﹣〔x ﹣80〕2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴,假设OA=10米,那么桥面离水面的高度AC为〔〕A.16米B.米C.16米D.米9.〔3分〕〔2015•〕以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是〔〕A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD10.〔3分〕〔2015•〕如图,正方形ABCD和正△AEF都接于⊙O,EF与BC、CD分别相交于点G、H,那么的值是〔〕A.B.C.D.2二、填空题:此题有6小题,每题4分,共24分。
金华2015中考数学试题(解析版)

2015年浙江省金华市中考数学试卷解析(本试卷满分120分,考试时间120分钟,本次考试采用开卷形式,不得使用计算器)一、选择题(本题有10小题,每小题3分,共30分)1. (2015年浙江金华3分) 计算23(a )结果正确的是【 】A. 5aB. 6aC. 8aD. 23a【答案】B .【考点】幂的乘方【分析】根据“幂的乘方,底数不变,指数相乘”的幂的乘方法则计算作出判断:23236(a )a a ⨯==.故选B .2. (2015年浙江金华3分)要使分式1x 2+有意义,则x 的取值应满足【 】 A. x 2=- B. x 2≠- C. x 2>- D. x 2≠-【答案】D .【考点】分式有意义的条件.【分析】根据分式分母不为0的条件,要使1x 2+在实数范围内有意义,必须x 20x 2+≠⇒≠-.故选D . 3. (2015年浙江金华3分) 点P (4,3)所在的象限是【 】A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A .【考点】平面直角坐标系中各象限点的特征.【分析】根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).故点P (4,3)位于第一象限. 故选A .4. (2015年浙江金华3分) 已知35α∠=︒,则α∠的补角的度数是【 】A. 55°B. 65°C. 145°D. 165°【答案】C .【考点】补角的计算.【分析】根据“当两个角的度数和为180 °时,这两个角互为补角”的定义计算即可:∵35α∠=︒,∴α∠的补角的度数是18035145︒-︒=︒.故选C .5. (2015年浙江金华3分)一元二次方程2x 4x 30+-=的两根为1x ,2x ,则12x x ⋅的值是【 】A. 4B. -4C. 3D. -3【答案】D .【考点】一元二次方程根与系数的关系.【分析】∵一元二次方程2x 4x 30+-=的两根为1x ,2x ,∴123x x 31-⋅==-. 故选D .6. (2015年浙江金华3分) 如图,数轴上的A ,B ,C ,D 四点中,与表示数3-的点最接近的是【 】A. 点AB. 点BC. 点CD. 点D【答案】B .【考点】实数和数轴;估计无理数的大小;作差法的应用.【分析】∵1<3<41<3<22<3<1⇒⇒---,∴3-在21--.又∵()32331293>0222-----==,∴3>32--. ∴32<3<2---,即与无理数3-最接近的整数是2-. ∴在数轴上示数3-的点最接近的是点B .故选B .7. (2015年浙江金华3分)如图的四个转盘中,C ,D 转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是【 】A. B. C.D.【答案】A .【考点】概率.【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,∵四个转盘中,A 、B 、C 、D 的面积分别为转盘的3215,,,4328 ,∴A 、B 、C 、D 四个转盘指针落在阴影区域内的概率分别为3215,,,4328 . ∴指针落在阴影区域内的概率最大的转盘是A .故选A . 8. (2015年浙江金华3分)图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线21y (x 80)16400=--+,桥拱与桥墩AC 的交点C 恰好在水面,有AC ⊥x 轴. 若OA =10米,则桥面离水面的高度AC 为【 】A. 40916米B. 417米C. 40716米D. 415米 【答案】B .【考点】二次函数的应用(实际应用);求函数值.【分析】如图,∵OA =10,∴点A 的横坐标为10-,∴当x 10=-时,2117y (1080)164004=---+=-.∴AC =174米. 故选B .9. (2015年浙江金华3分)以下四种沿AB 折叠的方法中,不一定能判定纸带两条边线a ,b 互相平行的是【 】A. 如图1,展开后,测得∠1=∠2B. 如图2,展开后,测得∠1=∠2,且∠3=∠4C. 如图3,测得∠1=∠2D. 如图4,展开后,再沿CD 折叠,两条折痕的交点为O ,测得OA =OB ,OC =OD【答案】C .【考点】折叠问题;平行的判定;对顶角的性质;全等三角形的判定和性质.【分析】根据平行的判定逐一分析作出判断:A . 如图1,由∠1=∠2,根据“内错角相等,两直线平行”的判定可判定纸带两条边线a ,b 互相平行;B . 如图2,由∠1=∠2和∠3=∠4,根据平角定义可得∠1=∠2=∠3=∠4=90°,从而根据“内错角相等,两直线平行”或“同旁内角互补,两直线平行”的判定可判定纸带两条边线a ,b 互相平行;C . 如图3,由∠1=∠2不一定得到内错角相等或同位角相等或同旁内角互补,故不一定能判定纸带两条边线a ,b 互相平行;D . 如图4,由OA =OB ,OC =OD ,AOC BOD ∠∠=得到AOC BOD ∆∆≌,从而得到CAO DBO ∠∠=,进而根据“内错角相等,两直线平行”的判定可判定纸带两条边线a ,b 互相平行.故选C .10. (2015年浙江金华3分)如图,正方形ABCD 和正三角形AEF 都内接于⊙O ,EF 与BC ,CD 分别相交于点G ,H ,则EF GH的值是【 】A. 26B. 2C. 3D. 2【答案】C .【考点】正方形和等边三角形的性质;圆周角定理;锐角三角函数定义;特殊角的三角函数值;等腰直角三角形的判定和性质,特殊元素法的应用.【分析】如答图,连接AC,EC ,AC 与EF 交于点M .则根据对称性质,AC 经过圆心O ,∴AC 垂直 平分EF ,01EAC FAC EAF 302∠=∠=∠=.不妨设正方形ABCD 的边长为2,则AC =∵AC 是⊙O 的直径,∴0AEC 90∠=.在Rt ACE ∆中,AE AC cos EAC =⋅∠==, 1CE AC sin EAC 2=⋅∠=在Rt MCE ∆中,∵0FEC FAC 30∠=∠=,∴1CM CE sin EAC 2=⋅∠==易知GCH ∆是等腰直角三角形,∴GF 2CM ==又∵AEF ∆是等边三角形,∴EF AE ==∴EF GH ==. 故选C .二、填空题(本题有6小题,每小题4分,共24分)11. (2015年浙江金华4分) 数3-的相反数是 ▲【答案】3.【考点】相反数.【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0. 因此-3的相反数是3.12. (2015年浙江金华4分)数据6,5,7,7,9的众数是 ▲【答案】7【考点】众数.【分析】众数是在一组数据中,出现次数最多的数据,这组数据中7出现两次,出现的次数最多,故这组数据的众数为7.13. (2015年浙江金华4分)已知a b 3+=,a b 5-=,则代数式22a b -的值是 ▲【答案】15.【考点】求代数式的值;因式分解的应用;整体思想的应用.【分析】∵a b 3+=,a b 5-=,∴()()22a b a b a b 3515-=+-=⨯=.14. (2015年浙江金华4分)如图,直线126l ,l ,,l ⋅⋅⋅ 是一组等距离的平行线,过直线1l 上的点A 作两条射线,分别与直线3l ,6l 相交于点B ,E ,C ,F . 若BC =2,则EF 的长是 ▲【答案】5.【考点】平行线分线段成比例的性质;相似三角形的判定和性质.【分析】∵直线126l ,l ,,l ⋅⋅⋅ 是一组等距离的平行线,∴AB 2BE 3=,即AB 2AE 5=. 又∵3l ∥6l ,∴ABC AEF ∆∆∽. ∴BC AB 2EF AE 5==. ∵BC =2,∴22EF 5EF 5=⇒=. 15. (2015年浙江金华4分)如图,在平面直角坐标系中,菱形OBCD 的边OB 在x 轴正半轴上,反比例函数k y (x 0)x =>的图象经过该菱形对角线的交点A ,且与边BC 交于点F . 若点D 的坐标为(6,8),则点F 的坐标是 ▲【答案】8123⎛⎫ ⎪⎝⎭,. 【考点】反比例函数综合题;曲线上点的坐标与方程的关系;待定系数法的应用;菱形的性质;中点坐标;方程思想的应用.【分析】∵菱形OBCD 的边OB 在x 轴正半轴上,点D 的坐标为(6,8),∴22OD DC OD 6810===+=.∴点B 的坐标为(10,0),点C 的坐标为(16,8).∵菱形的对角线的交点为点A ,∴点A 的坐标为(8,4). ∵反比例函数k y (x 0)x=>的图象经过点A ,∴k 8432=⋅=. ∴反比例函数为32y x =.设直线BC 的解析式为y mx n =+,∴4m 16m n 8310m n 040n 3⎧=⎪+=⎧⎪⇒⎨⎨+=⎩⎪=-⎪⎩. ∴直线BC 的解析式为440y x 33=-. 联立440x 12y x 33832y y 3x ⎧==-⎧⎪⎪⎪⇒⎨⎨=⎪⎪=⎩⎪⎩. ∴点F 的坐标是8123⎛⎫ ⎪⎝⎭,. 16. (2015年浙江金华4分)图1是一张可以折叠的小床展开后支撑起来放在地面的示意图,此时,点A ,B ,C 在同一直线上,且∠ACD =90°.图2是小床支撑脚CD 折叠的示意图,在折叠过程中,ΔACD 变形为四边形ABC'D',最后折叠形成一条线段BD".(1)小床这样设计应用的数学原理是 ▲(2)若AB :BC =1:4,则tan ∠CAD 的值是 ▲【答案】(1)三角形的稳定性和四边形的不稳定性;(2)815. 【考点】线动旋转问题;三角形的稳定性;旋转的性质;勾股定理;锐角三角函数定义.【分析】(1)在折叠过程中,由稳定的ΔACD 变形为不稳定四边形ABC'D',最后折叠形成一条线段BD",小床这样设计应用的数学原理是:三角形的稳定性和四边形的不稳定性.(2)∵AB :BC =1:4,∴设AB x,CD y == ,则BC 4x,AC 5x == .由旋转的性质知BC"BC 4x,AC"3x,C"D"y === = ,∴AD AD"AC"C"D"3x y ==+=+.在Rt ACD ∆中,根据勾股定理得222AD AC CD =+,∴()()22283x y 5x y y x 3+=+⇒=. ∴8x CD y 83tan CAD AD 5x 5x 15∠====. 三、解答题(本题有8小题,共66分,个小题都必须写出解答过程)17. (2015年浙江金华6分)计算:111224cos302-+-︒+- 【答案】解:原式=131112342323122222⨯==+-++-+. 【考点】实数的运算;二次根式化简;负整数指数幂;特殊角的三角函数值;绝对值.【分析】针对二次根式化简,负整数指数幂,特殊角的三角函数值,绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.18. (2015年浙江金华6分)解不等式组5x 34x 4(x 1)32x -<⎧⎨-+≥⎩【答案】解:5x 3<4x 4(x 1)32x -⎧⎨-+≥⎩①②由①可得5x 4x 3-<,即x 3<,由②可得4x 432x -+≥,4x 2x 43-≥-,2x 1≥,1x 2≥, ∴不等式组的解是1x 32≤<. 【考点】解一元一次不等式组.【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).19. (2015年浙江金华6分)在平面直角坐标系中,点A 的坐标是(0,3),点B 在x 轴上,将△AOB 绕点A 逆时针旋转90°得到△AEF ,点O ,B 对应点分别是E ,F .(1)若点B 的坐标是()40- ,,请在图中画出△AEF ,并写出点E ,F 的坐标; (2)当点F 落在x 轴上方时,试写出一个符合条件的点B 的坐标.【答案】解:(1)如答图,△AEF 就是所求作的三角形; 点E 的坐标是(3,3),点F 的坐标是()3,1- .(2)答案不唯一,如B ()20- ,. 【考点】开放型;网格问题;图形的设计(面动旋转);点的坐标.【分析】(1)将线段AO 、AB 绕点A 逆时针旋转90°得到AE 、AF ,连接EF ,则△AEF 就是所求作的三角形,从而根据图形得到点E ,F 的坐标.(2)由于旋转后EF x ⊥,点E 的坐标是(3,3),所以当点F 落在x 轴上方时,只要0<EF <3即0<OB <3即可,从而符合条件的点B 的坐标可以是()()120,10,02⎛⎫--- ⎪⎝⎭,,,等,答案不唯一. 20. (2015年浙江金华8分)小明随机调查了若干市民租用公共自行车的骑车时间t (单位:分),将获得的数据分成四组,绘制了如下统计图. 请根据图中信息,解答下列问题:(1)这次被调查的总人数是多少?(2)试求表示A 组的扇形圆心角的度数,并补全条形统计图;(3)如果骑自行车的平均速度为12km /h ,请估算,在租用公共自行车的市民中,骑车路程不超过6km 的人数所占的百分比.【答案】解:(1)被调查总人数为19÷38%=50(人).(2)表示A 组的扇形圆心角的度数为15360=10850︒︒⨯. ∵C 组的人数为501519412---=(人),∴补全条形统计图如答图:(3)设骑车时间为t分,则12t660,解得t≤30,∴被调查的50人中,骑公共自行车的路程不超过6km的人数为50-4=46(人),∴在租用公共自行车的市民中,骑车路程不超过6km的人数所占的百分比为46÷50=92%.【考点】条形统计图和扇形统计图;频数、频率和总量的关系;用样本估计总体.【分析】(1)由B组的频数确19、频率38%,根据频数、频率和总量的关系即可求得被调查总人数.(2)求出A组的频率,即可求得表示A组的扇形圆心角的度数;求得C组的人数即可补全条形统计图.(3)求出被调查的50人中骑车路程不超过6km的人数所占的百分比即可用样本估计总体. 21.(2015年浙江金华8分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.(1)求证:DE=AB;(2)以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求EG的长.【答案】解:(1)证明:∵DE⊥AF,∴∠AED=90°.又∵四边形ABCD是矩形,∴AD∥BC,∠B=90°.∴∠DAE=∠AFB,∠AED=∠B=90°.又∵AF=AD,∴△ADE≌△FAB(AAS).∴DE=AB.(2)∵BF =FC =1,∴AD =BC =BF +FC =2.又∵△ADE ≌△FAB ,∴AE =BF =1.∴在Rt △ADE 中,AE =12AD . ∴∠ADE =30°. 又∵DE =2222AD AE 213-=-=,∴n R 3033EG 1801806πππ⋅⋅===. 【考点】矩形的性质;全等三角形的判定和性质;含30度角直角坐标三角形的性质;勾股定理;弧长的计算.【分析】(1)通过应用AAS 证明△ADE ≌△FAB 即可证明DE =AB .(2)求出∠ADE 和DE 的长即可求得EG 的长.22. (2015年浙江金华410分)小慧和小聪沿图1中的景区公路游览,小慧乘坐车速为30km /h 的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆现. 小聪骑自行车从飞瀑出发前往宾馆,速度为20km /h ,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点,上午10:00小聪到达宾馆. 图2中的图象分别表示两人离宾馆的路程s (km )与时间t (h )的函数关系. 试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB ,GH 的交叉点B 的坐标,并说明它的实际意义;(3)如果小聪到达宾馆后,立即以30km /h 的速度按原路返回,那么返回途中他几点钟遇见小慧?【答案】解:(1)小聪从飞瀑到宾馆所用的时间为50÷20=2.5(h )∵小聪上午10:00到达宾馆,∴小聪从飞瀑出发的时刻为10-2.5=7.5.∴小聪早上7:30分从飞瀑出发.(2)设直线GH 的函数表达式为s =kt +b ,∵点G (12,50),点H (3, 0 ),∴1k b 5023k b 0⎧+=⎪⎨⎪+=⎩,解得k 20b 60=-⎧⎨=⎩. ∴直线GH 的函数表达式为s =-20t +60.又∵点B 的纵坐标为30,∴当s =30时,-20t +60=30, 解得t =32. ∴点B (32,30). 点B 的实际意义是:上午8:30小慧与小聪在离宾馆30km (即景点草甸) 处第一次相遇.(3)设直线DF 的函数表达式为11s k t b =+,该直线过点D 和 F (5,0),∵小慧从飞瀑回到宾馆所用时间55030=3÷(h ), ∴所以小慧从飞瀑准备返回时t =510533-=,即D (103,50). 111110k b 5035k b 0⎧+=⎪⎨⎪+=⎩,解得11k 30b 150=-⎧⎨=⎩. ∴直线DF 的函数表达式为s =-30t +150.∵小聪上午10:00到达宾馆后立即以30km /h 的速度返回飞瀑,∴所需时间55030=3÷(h ). 如答图,HM 为小聪返回时s 关于t 的函数图象. ∴点M 的横坐标为3+53=143,点M (143,50). 设直线HM 的函数表达式为s k t b =+22,该直线过点H (3,0) 和点M (143,50), ∴14k b 5033k b 0⎧+=⎪⎨⎪+=⎩2222,解得k 30b 90=⎧⎨=-⎩22. ∴直线HM 的函数表达式为s =30t -90,由30t 9030t 150-=-+解得t 4=,对应时刻7+4=11,∴小聪返回途中上午11:00遇见小慧.【考点】一次函数的应用;待定系数法的应用;直线上点的坐标与议程伯关系.【分析】(1)求出小聪从飞瀑到宾馆所用的时间即可求得小聪上午从飞瀑出发的时间.(2)应用待定系数法求出直线GH 的函数表达式即可由点B 的纵坐标求出横坐标而得点B 的坐标;点B 的实际意义是:上午8:30小慧与小聪在离宾馆30km (即景点草甸) 处第一次相遇.(3)求出直线DF 和小聪返回时s 关于t 的函数(HM ),二者联立即可求解. 23. (2015年浙江金华10分)图1,图2为同一长方体房间的示意图,图2为该长方体的表面展开图.(1)蜘蛛在顶点A'处①苍蝇在顶点B 处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C 处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD 爬行的最近路线A'GC 和往墙面BB'C'C 爬行的最近路线A'HC ,试通过计算判断哪条路线更近?(2)在图3中,半径为10dm 的⊙M 与D'C'相切,圆心M 到边CC'的距离为15dm ,蜘蛛P 在线段AB 上,苍蝇Q 在⊙M 的圆周上,线段PQ 为蜘蛛爬行路线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015 猜题1:(-1,0),如图所示;抛物线22y ax ax =+-(1)求点B 的坐标; (2)求抛物线的解析式;(3)在抛物线上是否还存在点P (点B 除外)的等腰直角三角形?若存在,求所有点P 若不存在,请说明理由.答:(1)过点B 作BD x ⊥轴,垂足为D ,∵90,BCD ACO ∠+∠=︒ACO OAC ∠+∠=∴;BCD CAO ∠=∠又∵90;BDC COA ∠=∠=︒,CB AC = ∴△BCD ≌△CAO ,∴BD =OC =1,CD =OA =2; ∴点B 的坐标为(-3,1);(2)抛物线22y ax ax =+-经过点B (-3,1)解得12a =,所以抛物线解析式为211222y x x =+-; (3)假设存在P 、Q 两点,使得△ACP 是直角三角形:①若以AC 为直角边,点C 为直角顶点;则延长BC 至点1P ,使得1PC BC =,得到等腰直角三角形△1ACP ,过点1P作1PM x ⊥轴, ∵CP 1=BC ,1MCP BCD ∠=∠,190PMC BDC ∠=∠=︒;∴△1MPC ≌△DBC ∴CM =CD =2, ∴1PM =BD =1, 可求得点P 1(1,-1); 经检验点P 1(1,-1)在抛物线211222y x x =+-上,使得△1ACP 是等腰直角三角形;②若以AC 为直角边,点A 为直角顶点;则过点A 作2AP CA ⊥,且使得2AP AC =,得到等腰直角三角形△2ACP ,过点P 2作2P N y ⊥轴,同理可证△2APN ≌△CAO ; ∴2NP =OA =2, AN =OC = 1, 可求得点2P (2,1);经检验点2P (2,1)也在抛物线211222y x x =+-上,使得△2ACP 也是等腰直角三角形.猜题2:已知:在Rt △ABO 中,∠OAB=90°,∠BOA=30°,AB=2,若以O 为坐标原点,OA 所在直线为x 轴,建立如图所示平面直角坐标系,点B 在第一象限内,将Rt △ABO 沿OB 折叠后,点A 落在第一象限内的点C 处.⑴求点C 的坐标;(3分)⑵若抛物线()20y ax bx a =+≠经过C.A 两点,求此抛物线的解析式;(4分)⑶若上述抛物线的对称轴与OB 交于点D ,点P 为线段DB 上一动点,过P 作y 轴的平行线,交抛物线于点M ,问:是否存在这样的点P ,使得四边形CDPM 请说明理由. (5分)答:⑴过点C 作CH ⊥x 轴,垂足为H∵在Rt △OAB 中,∠OAB =900,∠BOA =300,AB =2 ∴OB =4,OA =32由折叠知,∠COB =300,OC =OA =32∴∠COH =600,OH =3,CH =3∴C 点坐标为(3,3)⑵由抛物线bx ax y +=2(a ≠0)经过C (3,3)、A (32,0)两点,得()()⎪⎩⎪⎨⎧+=+=ba b a 3232033322解得 ⎩⎨⎧=-=321b a∴此抛物线的解析式为:x x y 322+-= ⑶ 存在.因为x x y 322+-=的顶点坐标为(3,3)即为点C ,MP ⊥x 轴,设垂足为N ,PN =t ,因为∠BOA =300,所以ON =3t , ∴P (3t ,t )作PQ ⊥CD ,垂足为Q ,ME ⊥CD ,垂足为E把t x ⋅=3代入x x y 322+-=得:t t y 632+-=∴ M (3t ,t t 632+-),E (3,t t 632+-) 同理:Q (3,t ),D (3,1) 要使四边形CDPM 为等腰梯形,只需CE =QD 即()16332-=+--t t t ,解得:341=t ,12=t (舍) ∴ P 点坐标为(334,34) ∴ 存在满足条件的点P ,使得四边形CDPM 为等腰梯形,此时P 点的坐为(334,34) 猜题3:已知点A(6,0),B(0,3),线段AB 上一点C ,过C 分别作CD ⊥x 轴于D ,作CE ⊥y 轴于E ,若四边形ODCE 为正方形。
(1)求点C 的坐标;(2)若过点C 、E 的抛物线c bx ax y ++=2的顶点落在正方形ODCE 内(包括四边形上),求a 的取值范围;(3)在(2)题的抛物线中与直线AB 相交于点C 和另一点P ,若△PEC ∽△PBE ,求此时抛物线的解析式。
答:(1)设直线AB 的函数解析式:b kx y += 则⎩⎨⎧==+306b b k ,解得⎪⎩⎪⎨⎧=-=321b k∴321+-=x y 由题意可设C (m,m ),则有m m =+-321,解得2=m ∴C (2,2)(2)由(1)可得E (0,2) ∵抛物线的顶点在正方形内,且过C ,E 两点∴0>a ,且抛物线的对称轴为1=x ∵⎩⎨⎧==++2024c c b a 即a b 2-=∴顶点纵坐标a aa a ab ac -=-⨯=-244244422 ∴由题意得220≤-≤a ,解得20≤≤a(3)∵PEC ∆∽PBE ∆∴21===EC BE PE PB PC PE ,∠PEB=∠ECB 过点P 作PH ⊥EB 于点H ,可知PEH ∆∽CBE ∆H∴21==EC BE HE PH ∴可设P (22,+-m m ) ∵P 在直线321+-=x y 上,∴22321+-=+-m m 解得32-=m ∴P (310,32-),设抛物线k x a y +-=2)1(,可知⎪⎩⎪⎨⎧=+=+3109252k a k a 解得⎪⎪⎩⎪⎪⎨⎧==4543k a ∴45)1(432+-=x y 猜题4:(本小题满分12分).已知点M ,N 的坐标分别为(0,1),(0,-1),点P 是抛物线214y x =上的一个动点.(1)求证:以点P 为圆心,PM 为半径的圆与直线1y =-的相切; (2)设直线PM 与抛物线214y x =的另一个交点为点Q ,连接NP ,NQ ,求证:PNM QNM ∠=∠.答:(1)设点P 的坐标为2001(,)4x x ,则 PM20114x ==+; 又因为点P 到直线1y =-的距离为220011(1)144x x --=+,所以,以点P 为圆心,PM 为半径的圆与直线1y =-相切.(2)如图,分别过点P ,Q 作直线1y =-的垂线,垂足分别为H ,R .由(1)知,PH =PM ,同理可得,QM =QR .因为PH ,MN ,QR 都垂直于直线1y =-,所以,PH ∥MN ∥QR ,于是QM MP RN NH=,所以QR PHRN HN=, 因此,Rt △PHN ∽Rt △QRN .于是HNP RNQ ∠=∠,从而PNM QNM ∠=∠参考例题:例1:如图,在平面直角坐标系中,已知点A 坐标为(2,4),直线x=2与x 轴相交于点B ,连结OA ,抛物线2x y =从点O 沿OA 方向平移,与直线x=2交于点P ,顶点M 到A 点时停止移动. (引用)(1)求线段OA 所在直线的函数解析式; (2)设抛物线顶点M 的横坐标为m, ①用m 的代数式表示点P 的坐标; ②当m 为何值时,线段PB 最短; (3)当线段PB 最短时,相应的抛物线上是否存在点Q ,使△QMA 的面积与△PMA 的面积相等,若存在,请求出点Q 的坐标;若不存在,请说明理由. 【研析】:(1)设OA 所在直线的函数解析式为y=kx ,因为A (2,4),∴2k=4,k=2,所以OA 所在直线的函数解析式为y=2x ;(2)①∵顶点M 的横坐标为m ,且在线段OA 上移动, ∴y=2m (0≤m ≤2),∴顶点M 的坐标为(m,2m),∴抛物线函数解析式为2()2y xm m=-+, ∴当x=2时,2(2)2y m m=-+224m m =-+(0≤m ≤2), ∴点P 的坐标是(2,224m m -+); ② ∵PB=224m m -+=2(1)3m -+, 又∵0≤m ≤2, ∴当m=1时,PB 最短;(3)由(2)中的②可知,当线段PB 最短时,m=1,从而可知平移后抛物线的解析式为()212+-=x y . 假设在抛物线上存在点Q ,使Q M A P M A S S =, 设点Q 的坐标为(x ,223x x -+). ①当点Q 落在直线OA 的下方时,过P 作直线PC//AO ,交y 轴于点C , ∵PB=3,AB=4,∴AP=1,∴OC=1,∴C 点的坐标是(0,-1). ∵点P 的坐标是(2,3),∴直线PC 的函数解析式为y=2x-1. ∵Q M A P M AS S =,∴点Q 落在直线y=2x-1上, ∴223x x -+=2x-1,解得122,2x x ==,所以点Q (2,3),∴点Q 与点P 重合,此时抛物线上不存在点Q ,使△QMA 与△APM 的面积相等; ②当点Q 落在直线OA 的上方时,作点P 关于点A 的对称称点D ,过D 作直线DE//AO ,交y 轴于点E , ∵AP=1,∴EO=DA=1,∴E 、D 的坐标分别是(0,1),(2,5), ∴直线DE 函数解析式为y=2x+1.∵Q M A P M AS S =,∴点Q 落在直线y=2x+1上,∴223x x -+=21x +.解得:12x =22x =代入y=2x+1,得15y =+25y =-∴此时抛物线上存在点(12Q ,()225,222--Q ,使△QMA 与△PMA 的面积相等.综上所述,抛物线上存在点(12Q ,()225,222--Q ,使△QMA 与△PMA 的面积相等.【概括总结】:动态的函数图象问题常常涉及到方程知识、坐标方法和数形结合思想.在抛物线上的存在性问题中,又经常需要用到一元二次方程的根及其判别式进行探索,先假设存在,后得出结论似乎已是解决存在性问题的基本方法.猜题1:如图(22),点P 是菱形ABCD 的对角线BD 上一点,连结CP 并延长,交AD 于E ,交BA 的延长线点F .问:(1) 图中△APD 与哪个三角形全等?并说明理由. (2) 求证:△APE ∽△FPA .(3) 猜想:线段PC 、PE 、PF 之间存在什么关系?并说明理由.答:(1) △APD ≌△CPD理由: ∵四边形ABCD 菱形 ∴AD=CD, ∠ADP=∠CDP 又∵PD=PD∴△APD ≌△CPD(2) 证明:∵△APD ≌△CPD ∴∠DAP=∠DCP∵CD ∥BF ∴∠DCP=∠F ∴∠DAP= ∠F 又∵∠APE=∠FPA ∴△APE ∽△FPA(3) 猜想:PF PE PC ∙=2理由: ∵△APE ∽△FPA ∴PAPE FP AP = ∴ PF PE PA ∙=2∵△APD ≌△CPD∴PA=PC ∴PF PE PC ∙=2猜题2:如图,在平行四边形ABCD 中,E 为BC 边上一点,且 AB=AE . (1)求证:△ABC ≌△EAD . (2)若AE 平分∠DAB ,,∠EAC=250,求∠AED 的度数.答:(1)证明:(1)∵四边形ABCD 是平行四边形 ∴AD ∥BC,AD=BC ∴∠DAE=∠AEB∵AB=AE ∴∠AEB=∠B , ∴∠DAE=∠B ∴△ABC ≌△EAD(2)∵∠DAE=∠BAE ,∠DAE=∠AEB ∴∠BAE=∠AEB=∠B∴△ABE 为等边三角形 ∴∠BAE=600,∵∠EAC=25 ∴∠BAC=850∵△ABC ≌△EAD ,∴∠AED=∠BAC=850猜题3:如图,在R t △ABC 中,∠ACB =90°,以AC 为直径的⊙O 与AB 边交于点D ,过点D 作⊙O 的切线,交BC 于点E .⑴求证:点E 是边BC 的中点; ⑵若EC=3,BD =62,求⊙O 的直径AC 的长度;⑶若以点O ,D ,E ,C 为顶点的四边形是正方形,试判断△ABC 的 形状,并说明理由.答:⑴证明:连接DO ,∵∠ACB =90°,AC 为直径, ∴EC 为⊙O 的切线,B(第23题)AB第23题又∵ED 也为⊙O 的切线 ∴EC =ED . 又∵∠EDO =90° ∴∠BDE +∠ADO =90°, ∴∠BDE +∠A =90°, 又∵∠B +∠A =90° ∴∠BDE =∠B , ∴EB =ED .∴EB =EC ,即点E 是边BC 的中点.⑵ ∵BC ,BA 分别是⊙O 的切线和割线, ∴BC 2=BD ·BA ∴(2EC )2= BD ·BA 即BA ·62=36∴BA =63, (6分)在R t △ABC 中,由勾股定理得 AC =22BC AB -=226)63(-=23. ⑶ △ABC 是等腰直角三角形. 理由:∵四边形ODEC 为正方形∴∠DOC =∠ACB =90° 即DO ∥BC ,又∵点E 是边BC 的中点 ∴BC =2OD =AC ,∴△ABC 是等腰直角三角形.猜题4:如图,AB 是⊙O 的直径,以OA 为直径的⊙O 1与⊙O 2的弦相交于D ,DE ⊥OC ,垂足为E . (1)求证:AD=DC .(2)求证:DE 是⊙O 1的切线.答:证明:(1)连结OD ,AO 是直径90ADO AO CO ⇒∠=︒⎫⇒⎬=⎭AD=DC .(2)连结O 1D ,111O D O A A ADO OA OC A C =⇒∠=∠⎫⎬=⇒∠=∠⎭190C ADO DE CE C CDE ⇒∠=∠⎫⎬⊥⇒∠+∠=︒⎭1119090ADO CDE O DE D O ⇒∠+∠=︒⇒∠=︒⎫⎬⎭在上⇒DE 是切线.参考例题:例1:全等证明如图,Rt △ABC 中,AB=AC ,∠BAC=90°,直线AE•是经过点A•的任一直线,BD ⊥AE 于D ,CE ⊥AE 于E ,若BD>CE ,试问:(引用)(1)AD 与CE 的大小关系如何?请说明理由. (2)你能说明DE=BD-CE 的理由吗?【研析】(1)909090BAC BAD CAE BD AE BAD ABD ∠=︒⇒∠+∠=︒⎫⇒⎬⊥⇒∠+∠=︒⎭∠CAE=∠ABD .又∵AB=AC ,∠ADB=∠AEC=90°, ∴△ABD ≌△CAE ,∴AD=CE .(2)∵△ABD ≌△CAE ,∴BD=AE . ∴DE=AE-AD=BD-CE .【归纳总结】三角形全等证明考生需要注意:1.全等判定定理(“SSS ”,“SAS ”等)必须牢固掌握,同时有几条特殊线:中位线、中垂线、中线、角平分线及垂线的概念与性质和三角形内外角关系也是考试时经常要用到的。