2017-2018学年华师大版数学八年级上册第12章整式的乘除单元试卷及答案

合集下载

{word试卷}华东师大版八年级数学上册第12章整式的乘除单元检测试题(有答案)(仅供参考)

{word试卷}华东师大版八年级数学上册第12章整式的乘除单元检测试题(有答案)(仅供参考)

20XX年高中测试高中试题试卷科目:年级:考点:监考老师:日期:第12章整式的乘除单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 多项式的公因式是()A. B. C. D.2. 下列各题中的两个幂是同底数幂的是()A.与B.与C.与D.与3. 下列因式分解的结果正确的是()A. B.C. D.4. 下列分解因式正确的是( )A. B.C. D.5. 运用乘法公式计算的结果是()A. B. C. D.6. 下列计算正确的是()A.•B.C. D.7. 将分解因式,结果是()A. B.C. D.8. 要使的运算结果中不含的项,则的值应为()A. B. C. D.9. 下列计算正确的是()A. B.C. D.10. 下列各式的因式分解正确的是()A.B.D.二、填空题(本题共计 8 小题,每题 3 分,共计24分,)11. 已知的展开式中不含的一次项,则________.12. 因式分解:________.13. 若,则代数式的值为________.14. 分解因式:=________.15. 计算:________;________;________;________.16. 若=,则=________.17. 计算:________.18. 关于的二次多项式恰好是另一个多项式的平方,则常数项=________.三、解答题(本题共计 7 小题,共计60分,)19. 计算:.20. 化简:;;;21. 已知,,求(1)的值;(2)的值.22. 已知是的一个因式,求的值.23. 已知常数、满足,且•,求的值.24. 先化简再求值:;其中,.25. 把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积.(1)如图,是将几个面积不等的小正方形与小长方形拼成一个边长为的正方形,试用不同的方法计算这个图形的面积,你能发现什么结论,请写出来.(2)如图,是将两个边长分别为和的正方形拼在一起,、、三点在同一直线上,连接和,若两正方形的边长满足,,你能求出阴影部分的面积吗?参考答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】D【解答】解:多项式的公因式是,故选:.2.【答案】C【解答】解:、的底数是,的底数是,不是同底数幂,故本选项错误;、的底数是,的底数是,不是同底数幂,故本选项错误;、的底数是,的底数是,是同底数幂,故本选项正确;、的底数是,的底数是,不是同底数幂,故本选项错误.故选.3.【答案】D【解答】解:、,故此选项错误;、,故此选项错误;、,故此选项错误;、,故此选项正确;故选:.4.【答案】C【解答】解:,故错误;,故错误;,故正确;,故错误. 故选.5.【答案】C【解答】解:,故选.6.【答案】D【解答】解:、•,故此选项错误;、,故此选项错误;、,故此选项错误;、,故此选项正确.故选:.7.【答案】D【解答】解:,,,.故选.8.【答案】D【解答】解:,∵运算结果中不含的项,∴,解得:.9.【答案】B【解答】解:、,故错误;、正确;、,故错误;、,故错误;故选:.10.【答案】B【解答】解:、,故此选项错误;、,故此选项正确;、,故此选项错误;、,故此选项错误.故选:.二、填空题(本题共计 8 小题,每题 3 分,共计24分)11.【答案】解:,由结果不含的一次项,得到,解得:,故答案为:.12.【答案】【解答】解:故答案为:.13.【答案】【解答】解:∵,∴.故答案为:.14.【答案】【解答】,=…(提取公因式)=.…(完全平方公式)15.【答案】,,,【解答】解:;;;.故答案为:;;;.16.【答案】【解答】原式=,=,=.因此=.17.【答案】解:原式.故答案为:18.【答案】【解答】∵二次多项式恰好是另一个多项式的平方,∴=.三、解答题(本题共计 7 小题,每题 10 分,共计70分)19.【答案】解:原式;原式.【解答】解:原式;原式.20.【答案】解:...解:...21.【答案】解:(1)原式(2)原式【解答】解:(1)原式(2)原式22.【答案】解:设比较对应项系数得解得、、、∴.【解答】解:设比较对应项系数得解得、、、∴.23.【答案】解:∵,∴,∴,∵•,∴,∴,∴,∴.【解答】解:∵,∴,∴,∵•,∴,∴,∴,∴.24.【答案】解:原式,当,时,原式.【解答】解:原式,当,时,原式.25.【答案】(2)∵,,∴.【解答】(2)∵,,∴.。

华师大版初中数学八年级上册《第12章 整式的乘除》单元测试卷(含答案解析

华师大版初中数学八年级上册《第12章 整式的乘除》单元测试卷(含答案解析

华师大新版八年级上学期《第12章整式的乘除》单元测试卷一.填空题(共6小题)1.多项式x2+mx+5因式分解得(x+5)(x+n),则m=,n=.2.多项式ax2﹣a与多项式x2﹣2x+1的公因式是.3.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b=.4.若a=49,b=109,则ab﹣9a的值为.5.分解因式:4+12(x﹣y)+9(x﹣y)2=.6.分解因式:x3﹣6x2+9x=.二.解答题(共34小题)7.已知a x=5,a x+y=30,求a x+a y的值.8.已知x m=5,x n=7,求x2m+n的值.9.已知a x=3,a y=2,求a x+2y的值.10.已知3×9m×27m=321,求m的值.11.已知:5a=4,5b=6,5c=9,(1)52a+b的值;(2)5b﹣2c的值;(3)试说明:2b=a+c.12.已知(a x)y=a6,(a x)2÷a y=a3(1)求xy和2x﹣y的值;(2)求4x2+y2的值.13.计算(1)(﹣2a2b)2•(ab)3(2)已知a m=2,a n=3,求a2m+3n的值.14.计算:x2y•(﹣0.5xy)2﹣(﹣2x)3•xy3.15.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.16.(x2y﹣xy2﹣y3)(﹣4xy2).17.若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.18.已知代数式(mx2+2mx﹣1)(x m+3nx+2)化简以后是一个四次多项式,并且不含二次项,请分别求出m,n的值,并求出一次项系数.19.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.20.阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:(x﹣1)2+3、(x﹣2)2+2x、(x﹣2)2+x2是x2﹣2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项﹣﹣见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出x2﹣4x+2三种不同形式的配方;(2)将a2+ab+b2配方(至少两种形式);(3)已知a2+b2+c2﹣ab﹣3b﹣2c+4=0,求a+b+c的值.21.如图(1)是一个长为2m,宽为2n的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形.(1)你认为图(2)中的阴影部分的正方形边长是多少?(2)请用两种不同的方法求图(2)阴影部分的面积;(3)观察图(2),你能写出下列三个代数式之间的等量关系吗?三个代数式:(m+n)2,(m﹣n)2,mn.(4)根据(3)题中的等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2的值.22.图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为;(2)观察图②,三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系是;(3)观察图③,你能得到怎样的代数等式呢?(4)试画出一个几何图形,使它的面积能表示(m+n)(m+3n);(5)若x+y=﹣6,xy=2.75,求x﹣y的值.23.如果a2﹣2(k﹣1)ab+9b2是一个完全平方式,那么k=.24.已知,求值:(1)(2).25.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k取正数)是神秘数吗?为什么?26.化简:(a+b)(a﹣b)+2b2.27.计算:(x+2y+z)(x+2y﹣z)29.(﹣2x2y+6x3y4﹣8xy)÷(﹣2xy)30.计算:(3a2b3c4)2÷(﹣a2b4).31.计算:(1)3(2x2﹣y2)﹣2(3y2﹣2x2);(2)(x+1)(x﹣1)﹣(x﹣2)2.32.设y=ax,若代数式(x+y)(x﹣2y)+3y(x+y)化简的结果为x2,请你求出满足条件的a值.33.先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣.34.实数x满足x2﹣2x﹣1=0,求代数式(2x﹣1)2﹣x(x+4)+(x﹣2)(x+2)的值.35.因式分解:(1)2x2﹣4x+2;(2)(a2+b2)2﹣4a2b2.36.分解因式(1)x2y2﹣x2﹣4y2+4xy(2)(a2+1)(a2+2)+.37.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:ax+by+bx+ay=(ax+bx)+(ay+by)=x(a+b)+y(a+b)=(a+b)(x+y)2xy+y2﹣1+x2=x2+2xy+y2﹣1=(x+y)2﹣1=(x+y+1)(x+y﹣1)(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a2﹣b2+a﹣b;(2)分解因式:x2﹣6x﹣7;(3)分解因式:a2+4ab﹣5b2.38.把下列各式分解因式:(1)2x2﹣4x+2;(2)x2﹣3x﹣28;(3)a3+a2﹣a﹣1.39.在实数范围内分解因式:.40.已知代数式M=x2+2y2+z2﹣2xy﹣8y+2z+17.(1)若代数式M的值为零,求此时x,y,z的值;(2)若x,y,z满足不等式M+x2≤7,其中x,y,z都为非负整数,且x为偶数,直接写出x,y,z的值.华师大新版八年级上学期《第12章整式的乘除》单元测试卷参考答案与试题解析一.填空题(共6小题)1.多项式x2+mx+5因式分解得(x+5)(x+n),则m=6,n=1.【分析】将(x+5)(x+n)展开,得到,使得x2+(n+5)x+5n与x2+mx+5的系数对应相等即可.【解答】解:∵(x+5)(x+n)=x2+(n+5)x+5n,∴x2+mx+5=x2+(n+5)x+5n∴,∴,故答案为:6,1.【点评】本题考查了因式分解的意义,使得系数对应相等即可.2.多项式ax2﹣a与多项式x2﹣2x+1的公因式是x﹣1.【分析】第一个多项式提取a后,利用平方差公式分解,第二个多项式利用完全平方公式分解,找出公因式即可.【解答】解:多项式ax2﹣a=a(x+1)(x﹣1),多项式x2﹣2x+1=(x﹣1)2,则两多项式的公因式为x﹣1.故答案为:x﹣1.【点评】此题考查了公因式,将两多项式分解因式是找公因式的关键.3.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b=﹣31.【分析】首先提取公因式3x﹣7,再合并同类项即可得到a、b的值,进而可算出a+3b的值.【解答】解:(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13),=(3x﹣7)(2x﹣21﹣x+13),=(3x﹣7)(x﹣8)=(3x+a)(x+b),则a=﹣7,b=﹣8,故a+3b=﹣7﹣24=﹣31,故答案为:﹣31.【点评】此题主要考查了提公因式法分解因式,关键是找准公因式.4.若a=49,b=109,则ab﹣9a的值为4900.【分析】原式提取公因式a后,将a与b的值代入计算即可求出值.【解答】解:当a=49,b=109时,原式=a(b﹣9)=49×100=4900,故答案为:4900.【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.5.分解因式:4+12(x﹣y)+9(x﹣y)2=(3x﹣3y+2)2.【分析】原式利用完全平方公式分解即可.【解答】解:原式=[2+3(x﹣y)]2=(3x﹣3y+2)2.故答案为:(3x﹣3y+2)2【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.6.分解因式:x3﹣6x2+9x=x(x﹣3)2.【分析】先提取公因式x,再对余下的多项式利用完全平方公式继续分解.【解答】解:x3﹣6x2+9x,=x(x2﹣6x+9),=x(x﹣3)2.故答案为:x(x﹣3)2.【点评】本题考查提公因式法分解因式和利用完全平方公式分解因式,关键在于需要进行二次分解因式.二.解答题(共34小题)7.已知a x=5,a x+y=30,求a x+a y的值.【分析】首先根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,求出a y的值是多少;然后把a x、a y的值相加,求出a x+a y的值是多少即可.【解答】解:∵a x=5,a x+y=30,∴a y=a x+y﹣x=30÷5=6,∴a x+a y=5+6=11,即a x+a y的值是11.【点评】此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.8.已知x m=5,x n=7,求x2m+n的值.【分析】根据同底数幂的乘法,即可解答.【解答】解:∵x m=5,x n=7,∴x2m+n=x m•x m•x n=5×5×7=175.【点评】本题考查了同底数幂的乘法,解决本题的关键是熟记同底数幂的乘法法则.9.已知a x=3,a y=2,求a x+2y的值.【分析】直接利用同底数幂的乘法运算法则将原式变形进而将已知代入求出答案.【解答】解:∵a x=3,a y=2,∴a x+2y=a x×a2y=3×22=12.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确应用同底数幂的乘法运算法则是解题关键.10.已知3×9m×27m=321,求m的值.【分析】先把9m×27m分解成32m×33m,再根据同底数幂的乘法法则进行计算即可求出m的值.【解答】解:∵3×9m×27m=3×32m×33m=31+2m+3m=321,∴1+2m+3m=21,∴m=4.【点评】此题考查了同底数幂的乘法,幂的乘方与积的乘方,理清指数的变化是解题的关键.11.已知:5a=4,5b=6,5c=9,(1)52a+b的值;(2)5b﹣2c的值;(3)试说明:2b=a+c.【分析】(1)根据同底数幂的乘法,可得底数相同的幂的乘法,根据根据幂的乘方,可得答案;(2)根据同底数幂的除法,可得底数相同幂的除法,根据幂的乘方,可得答案;(3)根据同底数幂的乘法、幂的乘方,可得答案.【解答】解:(1)5 2a+b=52a×5b=(5a)2×5b=42×6=96(2)5b﹣2c=5b÷(5c)2=6÷92=6÷81=2/27(3)5a+c=5a×5c=4×9=3652b=62=36,因此5a+c=52b所以a+c=2b.【点评】本题考查了同底数幂的除法,根据法则计算是解题关键.12.已知(a x)y=a6,(a x)2÷a y=a3(1)求xy和2x﹣y的值;(2)求4x2+y2的值.【分析】(1)利用积的乘方和同底数幂的除法,即可解答;(2)利用完全平方公式,即可解答.【解答】解:(1)∵(a x)y=a6,(a x)2÷a y=a3∴a xy=a6,a2x÷a y=a2x﹣y=a3,∴xy=6,2x﹣y=3.(2)4x2+y2=(2x﹣y)2+4xy=32+4×6=9+24=33.【点评】本题考查了同底数幂的除法,积的乘方,以及完全平分公式,解决本题的关键是熟记相关公式.13.计算(1)(﹣2a2b)2•(ab)3(2)已知a m=2,a n=3,求a2m+3n的值.【分析】(1)根据积的乘方的运算法则计算各自的乘方,再进行单项式的乘法即可;(2)先把所求的式子根据幂的乘方的逆运算法则进行变形,再把已知条件代入计算即可.【解答】解:(1)原式=4a4b2•a3b3=a7b5;(2)a2m+3n=(a m)2•(a n)3=4×27=108.【点评】本题考查的是单项式乘单项式、幂的乘方和积的乘方的知识,掌握各自的运算法则是解题的关键.14.计算:x2y•(﹣0.5xy)2﹣(﹣2x)3•xy3.【分析】根据单项式与单项式相乘,把它们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:x2y•(﹣0.5xy)2﹣(﹣2x)3•xy3=0.1x4y3+8x4y3=8.1x4y3.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.15.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.【分析】首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.【解答】解:3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.【点评】本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.16.(x2y﹣xy2﹣y3)(﹣4xy2).【分析】根据单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加可得x2y•(﹣4xy2)﹣xy2•(﹣4xy2)﹣y3•(﹣4xy2),再计算单项式乘以单项式即可.【解答】解:原式=x2y•(﹣4xy2)﹣xy2•(﹣4xy2)﹣y3•(﹣4xy2),=﹣3x3y3+2x2y4+xy5.【点评】此题主要单项式乘以多项式,关键是掌握单项式与多项式相乘的运算法则.17.若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.【分析】(1)形开式子,找出x项与x3令其系数等于0求解.(2)把p,q的值入求解.【解答】解:(1)(x2+px﹣)(x2﹣3x+q)=x4+(p﹣3)x3+(q﹣3p﹣)x2+(qp+1)x+q,∵积中不含x项与x3项,∴P﹣3=0,qp+1=0∴p=3,q=﹣,(2)(﹣2p2q)2+(3pq)﹣1+p2012q2014=[﹣2×32×(﹣)]2++×(﹣)2=36﹣+=35.【点评】本题主要考查了多项式乘多项式,解题的关键是正确求出p,q的值18.已知代数式(mx2+2mx﹣1)(x m+3nx+2)化简以后是一个四次多项式,并且不含二次项,请分别求出m,n的值,并求出一次项系数.【分析】先把代数式按照多项式乘以多项式展开,因为化简后是一个四次多项式,所以x的最高指数m+2=4;不含二次项,即二次项的系数为0,即可解答.【解答】解:(mx2+2mx﹣1)(x m+3nx+2)=mx m+2+3mnx3+2mx2+2mx m+1+6mnx2+4mx ﹣x m﹣3nx﹣2,因为该多项式是四次多项式,所以m+2=4,解得:m=2,原式=2x4+(6n+4)x3+(3+12n)x2+(8﹣3n)x﹣2∵多项式不含二次项∴3+12n=0,解得:n=,所以一次项系数8﹣3n=8.75.【点评】本题考查了多项式乘以多项式,解决本题的关键是明确化简后是一个四次多项式,所以x的最高指数m+2=4;不含二次项,即二次项的系数为0,即可解答.19.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.【分析】(1)先去括号,再整体代入即可求出答案;(2)先变形,再整体代入,即可求出答案.【解答】解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x2+3xy+y2=(x+y)2+xy=32+2=11.【点评】本题考查了整式的混合运算和完全平方公式的应用,题目是一道比较典型的题目,难度适中.20.阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:(x﹣1)2+3、(x﹣2)2+2x、(x﹣2)2+x2是x2﹣2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项﹣﹣见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出x2﹣4x+2三种不同形式的配方;(2)将a2+ab+b2配方(至少两种形式);(3)已知a2+b2+c2﹣ab﹣3b﹣2c+4=0,求a+b+c的值.【分析】(1)(2)本题考查对完全平方公式的灵活应用能力,由题中所给的已知材料可得x2﹣4x+2和a2+ab+b2的配方也可分别常数项、一次项、二次项三种不同形式;(3)通过配方后,求得a,b,c的值,再代入代数式求值.【解答】解:(1)x2﹣4x+2的三种配方分别为:x2﹣4x+2=(x﹣2)2﹣2,x2﹣4x+2=(x+)2﹣(2+4)x,x2﹣4x+2=(x﹣)2﹣x2;(2)a2+ab+b2=(a+b)2﹣ab,a2+ab+b2=(a+b)2+b2;(3)a2+b2+c2﹣ab﹣3b﹣2c+4,=(a2﹣ab+b2)+(b2﹣3b+3)+(c2﹣2c+1),=(a2﹣ab+b2)+(b2﹣4b+4)+(c2﹣2c+1),=(a﹣b)2+(b﹣2)2+(c﹣1)2=0,从而有a﹣b=0,b﹣2=0,c﹣1=0,即a=1,b=2,c=1,∴a+b+c=4.【点评】本题考查了根据完全平方公式:a2±2ab+b2=(a±b)2进行配方的能力.21.如图(1)是一个长为2m,宽为2n的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形.(1)你认为图(2)中的阴影部分的正方形边长是多少?(2)请用两种不同的方法求图(2)阴影部分的面积;(3)观察图(2),你能写出下列三个代数式之间的等量关系吗?三个代数式:(m+n)2,(m﹣n)2,mn.(4)根据(3)题中的等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2的值.【分析】(1)观察可得阴影部分的正方形边长是m﹣n;(2)方法1:边长为m+n的大正方形的面积减去4个长为m,宽为n的小长方形面积;方法2:边长为m+n的大正方形的面积减去长为2m,宽为2n的长方形面积;(3)由(2)可得结论(m+n)2=(m﹣n)2+4mn;(4)由(a﹣b)2=(a+b)2﹣4ab求解.【解答】解:(1)阴影部分的正方形边长是m﹣n.(2)阴影部分的面积就等于边长为m﹣n的小正方形的面积,方法1:边长为m+n的大正方形的面积减去长为2m,宽为2n的长方形面积,即(m﹣n)2=(m+n)2﹣4mn;方法2:边长为m+n的大正方形的面积减去长为2m,宽为2n的长方形面积,即(m﹣n)2=(m+n)2﹣2m•2n=(m+n)2﹣4mn;(3)(m+n)2=(m﹣n)2+4mn.(4)(a﹣b)2=(a+b)2﹣4ab=49﹣4×5=29.【点评】本题考查了完全平方公式的几何意义,认真观察图形以及掌握正方形、长方形的面积公式计算是关键.22.图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为(m﹣n)2;(2)观察图②,三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系是(m+n)2﹣(m﹣n)2=4mn;(3)观察图③,你能得到怎样的代数等式呢?(4)试画出一个几何图形,使它的面积能表示(m+n)(m+3n);(5)若x+y=﹣6,xy=2.75,求x﹣y的值.【分析】(1)可直接用正方形的面积公式得到.(2)掌握完全平方公式,并掌握和与差的区别.(3)可利用各部分面积和=长方形面积列出恒等式.(4)此题可参照第(3)题.(5)掌握完全平方公式,并掌握和与差的区别.【解答】解:(1)阴影部分的边长为(m﹣n),所以阴影部分的面积为(m﹣n)2;故答案为:(m﹣n)2;(2)(m+n)2﹣(m﹣n)2=4mn;故答案为:(m+n)2﹣(m﹣n)2=4mn;(3)(m+n)(2m+n)=2m2+3mn+n2;(4)答案不唯一:(5)(x﹣y)2=(x+y)2﹣4xy=(﹣6)2﹣2.75×4=25,∴x﹣y=±5.【点评】本题考查了因式分解的应用,解题关键是认真观察题中给出的图示,用不同的形式去表示面积,熟练掌握完全平方公式,并能进行变形.23.如果a2﹣2(k﹣1)ab+9b2是一个完全平方式,那么k=4或﹣2.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【解答】解:∵a2﹣2(k﹣1)ab+9b2=a2﹣2(k﹣1)ab+(3b)2,∴﹣2(k﹣1)ab=±2×a×3b,∴k﹣1=3或k﹣1=﹣3,解得k=4或k=﹣2.即k=4或﹣2.故答案为:4或﹣2.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.24.已知,求值:(1)(2).【分析】(1)利用完全平方和公式(a+b)2=a2+2ab+b2解答;(2)利用(2)的结果和完全平方差公式(a﹣b)2=a2﹣2ab+b2解答.【解答】解:(1)∵x+﹣3=0,∴x+=3,∴=(x+)2﹣2=9﹣2=7,即=7;(2)由(1)知,=7,∴(x﹣)2=﹣2=7﹣2=5,∴x﹣=±.【点评】此题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.25.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k取正数)是神秘数吗?为什么?【分析】(1)试着把28、2012写成平方差的形式,解方程即可判断是否是神秘数;(2)化简两个连续偶数为2k+2和2k的差,再判断;(3)设两个连续奇数为2k+1和2k﹣1,则(2k+1)2﹣(2k﹣1)2=8k=4×2k,即可判断两个连续奇数的平方差不是神秘数.【解答】解:(1)设28和2012都是“神秘数”,设28是x和x﹣2两数的平方差得到,则x2﹣(x﹣2)2=28,解得:x=8,∴x﹣2=6,即28=82﹣62,设2012是y和y﹣2两数的平方差得到,则y2﹣(y﹣2)2=2012,解得:y=504,y﹣2=502,即2012=5042﹣5022,所以28,2012都是神秘数.(2)(2k+2)2﹣(2k)2=(2k+2﹣2k)(2k+2+2k)=4(2k+1),∴由2k+2和2k构造的神秘数是4的倍数,且是奇数倍.(3)设两个连续奇数为2k+1和2k﹣1,则(2k+1)2﹣(2k﹣1)2=8k=4×2k,即:两个连续奇数的平方差是4的倍数,是偶数倍,不满足连续偶数的神秘数为4的奇数倍这一条件.∴两个连续奇数的平方差不是神秘数.【点评】此题首先考查了阅读能力、探究推理能力.对知识点的考查,主要是平方差公式的灵活应用.26.化简:(a+b)(a﹣b)+2b2.【分析】先根据平方差公式算乘法,再合并同类项即可.【解答】解:原式=a2﹣b2+2b2=a2+b2.【点评】本题考查了平方差公式和整式的混合运算的应用,主要考查学生的化简能力.27.计算:(x+2y+z)(x+2y﹣z)【分析】将原式进一步转化为[(x+2y)+z][(x+2y)﹣z]后利用平方差公式计算后再利用完全平方公式计算即可.【解答】解:原式=[(x+2y)+z][(x+2y)﹣z]=(x+2y)2﹣z2=x2+4xy+4y2﹣z2【点评】本题考查了平方差公式和完全平方公式,解题的关键是牢记公式的形式.29.(﹣2x2y+6x3y4﹣8xy)÷(﹣2xy)【分析】用多项式的每一项除以单项式,再把商相加即可得到相应结果.【解答】解:原式=(﹣2x2y+6x3y4﹣8xy)÷(﹣2xy)=﹣2x2y÷(﹣2xy)+6x3y4÷(﹣2xy)+(﹣8xy)÷(﹣2xy)=x﹣3x2y3+4.【点评】本题考查两了多项式除以单项式运算.多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加.30.计算:(3a2b3c4)2÷(﹣a2b4).【分析】运用积的乘方及同底数幂的除法法则先算乘方再算除法进行运算.【解答】解:(3a2b3c4)2÷(﹣a2b4)=9a4b6c8÷(﹣a2b4)=﹣27a2b2c8.【点评】本题主要考查了积的乘方及同底数幂的除法,熟记法则是解题的关键.31.计算:(1)3(2x2﹣y2)﹣2(3y2﹣2x2);(2)(x+1)(x﹣1)﹣(x﹣2)2.【分析】(1)原式去括号合并即可得到结果;(2)原式利用平方差公式及完全平方公式展开,计算即可得到结果.【解答】解:(1)原式=6x2﹣3y2﹣6y2+4x2=10x2﹣9y2;(2)原式=x2﹣1﹣x2+4x﹣4=4x﹣5.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.32.设y=ax,若代数式(x+y)(x﹣2y)+3y(x+y)化简的结果为x2,请你求出满足条件的a值.【分析】先利用因式分解得到原式(x+y)(x﹣2y)+3y(x+y)=(x+y)2,再把当y=ax代入得到原式=(a+1)2x2,所以当(a+1)2=1满足条件,然后解关于a的方程即可.【解答】解:原式=(x+y)(x﹣2y)+3y(x+y)=(x+y)2,当y=ax,代入原式得(1+a)2x2=x2,即(1+a)2=1,解得:a=﹣2或0.【点评】本题考查了因式分解的运用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.33.先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣.【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项先计算乘方运算,再计算除法运算,合并得到最简结果,把ab 的值代入计算即可求出值.【解答】解:原式=4﹣a2+a2﹣5ab+3ab=4﹣2ab,当ab=﹣时,原式=4+1=5.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.34.实数x满足x2﹣2x﹣1=0,求代数式(2x﹣1)2﹣x(x+4)+(x﹣2)(x+2)的值.【分析】由x2﹣2x﹣1=0,得出x2﹣2x=1,进一步把代数式化简,整体代入求得答案即可.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴原式=4x2﹣4x+1﹣x2﹣4x+x2﹣4=4x2﹣8x﹣3=4(x2﹣2x)﹣3=4﹣3=1.【点评】此题考查整式的化简求值,注意先化简,再整体代入求得数值.35.因式分解:(1)2x2﹣4x+2;(2)(a2+b2)2﹣4a2b2.【分析】(1)首先提取公因式2,再利用完全平方公式进行二次分解即可;(2)首先利用平方差公式进行分解,再利用完全平方公式进行分解.【解答】解:(1)原式=2(x2﹣2x+1)=2(x﹣1)2,(2)原式=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.36.分解因式(1)x2y2﹣x2﹣4y2+4xy(2)(a2+1)(a2+2)+.【分析】(1)首先将后三项分为一组,进而利用完全平方公式分解因式,进而利用平方差公式分解得出即可.(2)先去括号,再利用完全平方公式进行因式分解.【解答】解:(1)x2y2﹣x2﹣4y2+4xy=(xy)2﹣(x﹣2y)2=(xy+x﹣2y)(xy﹣x+2y)(2)(a2+1)(a2+2)+.=a4+3a2+=(a2+)2【点评】本题主要考查了因式分解,正确分组得出是解题关键.37.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:ax+by+bx+ay=(ax+bx)+(ay+by)=x(a+b)+y(a+b)=(a+b)(x+y)2xy+y2﹣1+x2=x2+2xy+y2﹣1=(x+y)2﹣1=(x+y+1)(x+y﹣1)(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a2﹣b2+a﹣b;(2)分解因式:x2﹣6x﹣7;(3)分解因式:a2+4ab﹣5b2.【分析】仿照题中的方法,得到十字相乘法的技巧,分别将各项分解即可.【解答】解:(1)原式=(a+b)(a﹣b)+(a﹣b)=(a﹣b)(a+b+1);(2)原式=(x﹣7)(x+1);(3)原式=(a﹣b)(a+5b).【点评】此题考查了因式分解﹣十字相乘法,熟练掌握十字相乘法是解本题的关键.38.把下列各式分解因式:(1)2x2﹣4x+2;(2)x2﹣3x﹣28;(3)a3+a2﹣a﹣1.【分析】(1)通过提取公因式2,和完全平方差公式进行因式分解;(2)通过“十字相乘”法进行分解因式;(3)利用分组分解法分解因式.【解答】解:(1)原式=2(x2﹣2x+1)=2(x﹣1)2;(2)原式=(x﹣7)(x+4);(3)原式=a(a2﹣1)+(a2﹣1)=(a+1)(a2﹣1)=(a+1)(a﹣1)(a+1)=(a+1)2(a﹣1).【点评】本题考查了因式分解法:十字相乘法、提取公因式法与公式法的综合运用以及分组分解法.运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,本题需要进行多次因式分解,分解因式一定要彻底.39.在实数范围内分解因式:.【分析】将原式化为(x2﹣2)+(x+)进行分解即可,前半部分可用平方差公式.【解答】解:原式=(x2﹣2)+(x+)=(x+)(x﹣)+(x+)=(x+)(x﹣+1).【点评】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.40.已知代数式M=x2+2y2+z2﹣2xy﹣8y+2z+17.(1)若代数式M的值为零,求此时x,y,z的值;(2)若x,y,z满足不等式M+x2≤7,其中x,y,z都为非负整数,且x为偶数,直接写出x,y,z的值.【分析】(1)先把多项式进行因式分解,利用因式的平方都不小于0求出x,y,z的值.(2)把多项式进行因式分解,都是平方的形式,利用x,y,z都为非负整数,取值求解.【解答】解:(1)∵x2+2y2+z2﹣2xy﹣8y+2z+17=0,∴(x﹣y)2+(y﹣4)2+(z+1)2=0,∵(x﹣y)2≥0,(y﹣4)2≥0,(z+1)2≥0,∴(x﹣y)2=0,(y﹣4)2=0,(z+1)2=0,∴x﹣y=0,y﹣4=0,z+1=0,∴x=y=4,z=﹣1,(2)x=2,y=3,z=0.【点评】本题主要考查了因式分解的应用,解题的关键是正确的把多项式进行因式分解.。

2018年华师大版八年级数学上册《第12章整式的乘除》章节测试题及答案

2018年华师大版八年级数学上册《第12章整式的乘除》章节测试题及答案

整式的乘除章节测试(满分100分,考试时间60分钟)一、选择题(每小题 3 分,共24 分)1. 下列计算正确的是()A .a 4 a 5 a 9B .(3a 2)3 9a6C .(m 2)3・m m 6D .(q)・(q)3 q42. 下列因式分解正确的是()A .x(x 21)x 3xB .a 26a 9(a 3)2C .x 2y 2 (x y)2D .a 32a 2 a a(a 1)(a 1)3. 若代数式y 2a 可以分解因式,则常数a 不可以取()A .-1 B .-3 C .-4 D .-94. 计算(x2 3x n)(x 2 mx 8)的结果中不含x 2和x 3的项,则m ,n 的值为()A .m=3,n=1 B .m=0,n=0C .m=-3,n=-9D .m=-3,n=85. 若关于x 的代数式x 23x 2可以表示为(x 1)2a(x 1)b ,则a b 的值为()A .13B .12C .11D .106.若x 2xy 4m 是完全平方式,则m 为()A .2116y B .2116y C .218y D .218y 7. 已知x 33x 20,则2x 5x 47x 3x 2x 1的值为()A .3B .1C .2D .-38. 已知x 2 ax 12能分解成两个整系数的一次因式的乘积,则符合条件的整数a 有()A .3 个B .4 个C .6 个D .8 个二、填空题(每小题 3 分,共21 分)9. 3211()()=22x x 10. 如果a 255,b 344,c 433,判断a ,b ,c 的大小,用“<”连接为.11. 已知13a a ,则221a a 的值是.12. 已知一个多项式与单项式7x 3y 3的积为28x 7y 321x 5y 52y(7x 3y 3)2,则这个多项式为.13. 计算:21(1)221(1)321...(1)921(1)=10.14. 若x m 2・x 3m x 6,求12m 2m 1的值为.15. 设P a 2b 25,Q 2ab a 24a ,若P=Q ,则a+b=_.三、计算题(本大题共8 小题,满分55 分)16. (9 分)把下列各式因式分解.(1)4x 2y 4y ;(2)2m 28mn 8n 2;(3)1x 22xy y 2.17. (8 分)计算:(1)(x 2)22(22x)(1x)(1x);(2)(2x 3y)2・(2y)(8x 8y 34x 2)÷(2x 2).18. (8 分)化简求值:(1)已知3x2・5x 2 153x4,求(x1)23x(x2)4的值;(2)当a=2,b=1时,求[a2(a3b)(a3b)a2b2]÷231()2a的值.19. (5 分)已知△ABC的三边长分别为a,b,c,且满足a2 16b2 c2 6ab10bc0,求证:a c 2b.20. (5 分)如果(x1)是多项式x2 mx4的一个因式,求m 的值和另一个因式.。

华师大版八年级上《第12章整式的乘除》单元测试含答案

华师大版八年级上《第12章整式的乘除》单元测试含答案

第12章(整式乘除)单元测试一.选择题(每小题3分,共30分).1.计算32()x -的结果是( ).A. -5xB. 5xC. -6xD. 6x2.下列等式成立的是( ).A.x+x =2xB. 2x x x ⋅=C. 2x ÷2x =0D. 22(3)6x x =3.若(x-b)(x-2)展开式中不含有x 的一次项,则b 的值为( ).A.0B.2C.-2D.±24.三个连续偶数,若中间的一个为m ,则它们的积是( ).A.366m m -B.34m m -C.34m m -D.3m m -5.已知M 2(2)x -=53328182x x y x --,则M =( ).A.33491x xy ---B.33491x xy +-C.3349x xy -+D.33491x xy -++6.若a+b=0,ab=-11,则22a ab b -+的值是( ).A.33B.-33C.11D.-117.下列各式能分解因式的是( ).A.21x --B.214x x -+ C.222a ab b +- D.2a b -8.若22(3)16x m +-+是完全平方式,则常数m 的值等于( ).A.3B.-5C.7D.7或-19.已知a+b=2,则224a b b -+的值是( ).A.2B.3C.4D.610.已知x 为任意有理数,则多项式2114x x -+-的值一定是( ). A.正数 B.负数 C.非正数 D.非负数备用题:1.若3122m m n n x y x y -++99x y =,则m-n 等于( ).A.0B.2C.4D.无法确定2.设2(32)m n +=2(32)m n P -+,则P 是( ).A.12mnB.24mnC.6mnD.48mn二.填空题(每小题3分,共30分).11.计算:2232a b ÷(-4ab)= .12.计算1600-39.8×40.2= .13.分解因式:224129x xy y -+= .14若m x =9,n x =6,k x =4,则m n k x-+= . 15.地球与太阳的距离为81.510⨯km ,光速是5310⨯km/s ,则太阳光射到地球上约需___s.16.方程(3x+2)(2x-3)=(6x+5)(x-1)的解为 .17.已知1x x-=2,则221x x += . 18.已知a+b=4,ab=3,则代数式32232a b a b ab ++的值是 .19.若232x x --=2(1)(1)x B x C -+-+,则B = ,C = .20.在日常生活中,如取款、上网等都需要密码,有一种利用“因式分解”产生的密码,方便记忆,原理是:如多项式44x y -=22()()()x y x y x y -++,若x =9,y =9时,则各因式的值为x-y=0,x+y =18,22x y +=162,于是把018162作为一个六位数的密码,对于多项式324x xy -,取x =10,y =10时,用上述方法产生的密码是 .(写一个即可)备用题:1.已知2a b =2,则523()ab a b a b a ---的值为 .2.已知22x y +=25,x+y =7,且x>y ,则x-y 的值是 .三.解答题(共40分).21.(6分)计算:①3412x y -÷231(3)()3x y xy --; ②(2)(2)x y y x +-+2(2)x y --.22.(6分)分解因式:①322a b a b ab -+;②22441x xy y -+-.23.(6分)化简求值:2[4(1)xy --1(2)(2)]4xy xy xy +-÷,其中x =-3,y =15. 24.(6分)有一个长方体游泳池,其长为24a b ,宽为2ab ,高为ab ,若要在该游泳池的四周及底面贴上边长为b 的正方形防渗漏瓷砖,则需用这样的瓷砖多少块?(用含a 、b 的代数式表示)25.(8分) 如图,有足够多的长方形和正方形卡片.(1)如果取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠且无缝隙),请你画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.(2)小明想用类似的方法去解释多项式乘法(3a+2b)(2a+3b)=226136a ab b ++,那么需用1号卡片 张,2号卡片 张,3号卡片 张.26.(8分)因式分解与整式乘法是互逆变形,那么逆用公式(x+a)(x+b)=2x +(a+b)x+ab ,可得:2x +(a+b)x+ab =(x+a)(x+b),故形如2x +(a+b)x+ab 的多项式可以分解成(x+a)(x+b),如:①256x x ++=2(32)32x x +++⨯=(x+3)(x+2);②267x x --=2(71)(7)1x x +-++-⨯=(x-7)(x+1).请你仿照上述方法,把下列多项式分解因式.(1) 298x x -+;(2)2524x x +-.备用题:1.若一个三角形的三边a 、b 、c 满足2222a b c ++-2ab-2bc =0,试说明该三角形是等边三角形.2.已知28a pa ++与23a a q -+的乘积中不含3a 和2a 项,求p 、q 的值.单元测试参考答案一.选择题:1—5. DBCCD ; 6—10.ABDCC. 备用题:1—2.CB.二.填空题:11. -8ab ; 12.0.04; 13.2(23)x y -; 14.6; 15. 2510⨯; 16. 14x =-; 17.6; 18.48;19.-1,-4; 20.103010.备用题:1.-2;2.1.三.解答题:21.①2243x y -,②248xy y -. 22.①2(1)ab a -,②(21)x y -+(21)x y --.23.20xy-32,-44.24. 222(42a b ab ab +2224)ab a b ab b +÷=3323322(428)a b a b a b b ++÷=323428a b a b a ++.25. 解:(1)如图:或代数意义:2232a ab b ++()(2)a b a b =++;(2)6,6,13.26.(1)(x-1)(x-8);(2)(x+8)(x-3).备用题:1.22()()0a b b c -+-=,所以a =b 且b =c ,所以a =b =c.2.p=3,q =1.。

2018年华东师大版八年级上册数学《第12章整式的乘除》检测试卷含答案

2018年华东师大版八年级上册数学《第12章整式的乘除》检测试卷含答案

(2) (2x-3)(x-2)-2(x-1)2
(3)
3 2
2
xy
4
16 x y
5
2x y
2
3
18.( 10 分) ( 1)在三个整式 x +2xy,y +2xy,x 中,请你任意选出两个进行加 运算,使所得整式可以因式分解,并将其进行因式分解;
2
2
2
(或减)
( 2)化简 :2[(a-1)a+a(a+1)][(a-1)a-a(a+1)].若 a 是任意整数,请观察化简后的结果,他能
a b c d
ad
bc ,上述记号就叫做
2 阶行列式 .若
x 1 x 1 x 1 x 1
6 ,则 x=_________.
三、解答题(本大题共 16. ( 6 分)因式分解: 2 2 (1)x +x-m +m
8 个小题,共 75 分) (2) (4x+y)(y-4x)-y(5y-16x)
17. ( 9 分)化简: (1) (x2y3)4+(-x)8(y6)2
2 2 2
2
2 2
2
2
2 2
2
D.a +ab=a(a+b)
10. 计算
2 3
B.
2017
1.5
2016
1
2017
的结果是()
A.
2 3
3 2
C.
2 3
D.
3 2
11. 计算 :
2x
10
2 x =_____________.
a, b ,如果它的周长为 10 ,面积为 5 ,则代数式
8

(考试真题)第12章 整式的乘除数学八年级上册-单元测试卷-华师大版(含答案)

(考试真题)第12章 整式的乘除数学八年级上册-单元测试卷-华师大版(含答案)

(考试真题)第12章整式的乘除数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、下列运算正确的是()A.x 3+x 3=x 6B.x 6÷x 2=x 3C.x•x 3=x 4D.(xy)3=xy 32、一元二次方程x2=x的根是()A.x=1B.x=0C.x1=0,x2=1 D.非以上答案3、计算(x3y)3÷(2xy)3的结果应该是()A. B. C. D.4、下列运算正确的是()A.a 2•a 3=a 6B.(a 2)3=a 5C.2a 2+3a 2=5a 6D.(a+2b)(a﹣2b)=a 2﹣4b 25、下列运算正确的是()A. B. C. D.6、一个长方形的面积为,且一边长为,则另一边的长为()A. B. C. D.7、下列运算正确的是()A.π﹣3.14=0B. + =C.a 3÷a=a 2D.a•a=2a8、若a-b=2,a-c=1,则(2a-b-c)2+(c-b)2的值为()A.10B.9C.2D.19、计算的结果是()A. B. C. D. .10、下列运算正确的是A. B. C. D.11、下列计算:(1)a n•a n=2a n;(2)a6+a6=a12;(3)c•c5=c5;(4)3b3•4b4=12b12;(5)(3xy3)2=6x2y6中正确的个数为()A.0B.1C.2D.312、现有下列算式:(1)2a-a=2;(2)2a·3a=5a²;(3)ax(-1-a²-x)=ax-a³x-ax²;(4)·x²=x³其中错误的有 ( )A.1个B.2个C.3个D.4个13、下列各式中,相等关系一定成立的是()A.(x﹣y)2=(y﹣x)2B.(x+6)(x﹣6)=x 2﹣6C.(x+y)=x 2+y 2D.(3x﹣y)(﹣3x+y)=9x 2﹣y 214、下列运算正确的是()A.a 2•a 3=a 6B.(a 2)3=a 5C.2a 2+3a 2=5a 6D.(a+2b)(a﹣2b)=a 2﹣4b 215、已知x+ =3,则下列三个等式:①x2+ =7,②x﹣,③2x2﹣6x=﹣2中,正确的个数有()A.0个B.1个C.2个D.3个二、填空题(共10题,共计30分)16、把多项式因式分解的结果是________.17、 =________.若2•4m•8m=221,则m=________.18、计算:=________.19、分解因式:x3y﹣2x2y+xy=________.20、如果=63,那么a+b的值为________.21、若3x=10,3y=5,则32x—y=________ .22、已知a+b=2,ab=1,则a2b+ab2的值为________.23、若x2﹣4x+5=(x﹣2)2+m,则m=________.24、(2×102)2×(3×10﹣2)=________(结果用科学记数法表示)25、计算________ ________三、解答题(共5题,共计25分)26、若x y•x p•x6=x y+1•x p﹣1•x2z,试求代数式z2﹣3z+1的值.27、我们知道多项式的乘法可以利用图形的面积进行解释,如(2a+b)(a+b)=2a2+3ab+b2就能用图1或图2等图形的面积表示:(1)请你写出图3所表示的一个等式:.(2)试画出一个图形,使它的面积能表示:(a+b)(a+3b)=a2+4ab+3b2.28、木星是太阳系九大行星中最大的一颗,木星可以近似地看作球体,已知木星的半径大约是7×104km,木星的体积大约是多少km3(取3.14)?29、在实数范围内分解因式:9a2﹣5.30、已知a=255, b=344, c=433,比较a、b、c的大小关系.参考答案一、单选题(共15题,共计45分)1、C2、C3、B4、D5、B6、A7、C8、A9、A10、D11、A12、D13、A14、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

第12章 整式的乘除数学八年级上册-单元测试卷-华师大版(含答案)

第12章 整式的乘除数学八年级上册-单元测试卷-华师大版(含答案)

第12章整式的乘除数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、下列计算中,正确的是()A. B. C. D.2、下列各式从左到右的变形,是因式分解的是()A.x 2-9+6x=(x+3)(x-3)+6xB.(x+5)(x-2)=x 2+3x-10C.x 2-8x+16=(x-4)2D.x 2+1=x(x+)3、下列计算正确的是()A.2a+3b=5abB.a 3•a 2=a 6C.(a﹣b)2=a 2﹣b 2D.(a 2)4=a 84、下列运算正确的是()A.a+a=2aB.a 6÷a 3=a 2C.D.(a﹣b)2=a 2﹣b 25、下列各式从左到右的变形中,是因式分解的是()A. B. C.D.6、已知x2+2mx+9是完全平方式,则m的值为()A.6B.±6C.3D.±37、下列运算正确的是()A. a3+ a3= a6B.(3 ab)2=6 ab2C. a6÷a2= a3D.(﹣a3)2= a68、下列运算正确的是()A. B. C. D.9、下列运算中,结果正确的是()A.(a 2b)2=a 2b 2B.(-m)7÷(-m)3=m 4C.(3xy 2)2=6x 2y4 D.a 6÷a 2=a 310、下列计算正确的是()A.x•x=2xB.x+x=2xC.(x 3)3=x 6D.(2x)2=2x 211、若m表示任意实数,则下列计算一定正确的是()A. B. C. D.12、下列运算正确的是()A.8a﹣a=8B.(﹣a)4=a 4C.a 3•a 2=a 6D.(a﹣b)2=a 2﹣b 213、下列运算正确的是()A.x 2+x 3=x 5B.(-x 2)3=x 6C.x 6÷x 2=x 3D.-2x·x 2=-2x 314、下列计算正确的是( )A.-3 x2y·5 x2y=2 x2yB.-2 x2y3·2 x3y=-2 x5y4 C.35 x3y2÷5 x2y=7 xy D.(-2 x-y)(2 x+y)=4 x2-y215、下列运算正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、(-2m+3)(________)=4m2-917、因式分解:x4﹣16=________.18、(2+1)(22+1)(23+1)(24+1)(28+1)+1=________.19、观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是________.20、计算:(2x)2•3x=________.21、若a+b=﹣3,ab=2,则a2+b2=________22、已知,求m=________.23、已知实数a、b满足ab=1,a=2﹣b,则a2b+ab2=________24、若a+b=6,ab=4,则a2+4ab+b2的值为________.25、分解因式:x2﹣2x=________.三、解答题(共5题,共计25分)26、先化简,再求值:(m﹣n)2﹣(m+n)(m﹣n),其中m= +1,n= .27、已知3x m-3y5-n与-8x3y2的积是2x4y9的同类项,求m、n的值.28、如图,某市区有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,现准备进行绿化,中间的有一边长为(a+b)米的正方形区域将修建一座雕像,则绿化的面积是多少平方米?并求出当a=5,b=3时的绿化面积.29、在日常生活中,如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4-y4,因式分解的结果是(x-y)(x+y)·(x2+y2),若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,x2+y2=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3-xy2,取x=10,y=10时,请你写出用上述方法产生的密码.30、已知9a m+n b n+1与﹣2a2m﹣1b2m﹣1的积与5a6b6是同类项,求m,n的值.参考答案一、单选题(共15题,共计45分)1、C2、C3、D4、A5、C6、D7、D9、B10、B</div>11、A12、B13、D14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、30、。

第12章 整式的乘除数学八年级上册-单元测试卷-华师大版(含答案)

第12章 整式的乘除数学八年级上册-单元测试卷-华师大版(含答案)

第12章整式的乘除数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、下面计算正确的是().A. B. C. D.2、下列式子中,计算正确的是()A. B. C.D.3、下列计算正确的是()A.a 2+a 2=2a 4B.a•a 4=a 5C.(a 3)2=a 5D.a 6÷a 2=a 34、计算(﹣2a﹣3b)(2a﹣3b)的结果为()A.9b 2﹣4a 2B.4a 2﹣9b 2C.﹣4a 2﹣12ab﹣9b 2D.﹣4a2+12ab﹣9b 25、下列运算正确的是()A. B.C. D.6、下列去括号正确的是 ( )A.-(a+b-c)=-a+b-cB.-2(a+b-3c)=-2a-2b+6cC.-(-a-b-c)=-a+b+c D.-(a-b-c)=-a+b-c7、下列多项式中,不能进行因式分解的是()A.–a 2+b 2B.–a 2-b 2C.a 3-3a 2+2aD.a 2-2ab+b 2-18、多项式12ab3+8a3b的各项公因式是()A.abB.2abC.4abD.4ab 29、下列计算正确的是()A.a 3+a 2=2a 5B.a 6÷a 2=a 3C.(a+b)2=a 2+b 2D.(-2a 3)2=4a 610、下列运算正确的是( )A. B. C. D.11、下列运算正确的是()A. B. C. D.12、已知a+b=3,ab=﹣7,则(a+1)(b+1)的值为()A.﹣3B.﹣21C.7D.2113、下列计算正确的是()A.a 2•a 3=a 6B.a 3÷a 3=aC.3a+3b=3abD.(a 3)2=a 614、下列计算正确的是()A. B. C. D.15、计算符合题意结果是()A. B. C. D.二、填空题(共10题,共计30分)16、已知a,b,c为三角形的三边,且满足a2c2-b2c2=a4-b4,那么它的形状是________.17、已知a2+b2=7,ab=1,则(a+b)2=________18、因式分解:=________.19、若(x﹣3)(x2+ax+b)的积中不含x的二次项和一次项,则a+b的值为________.20、若a+b=4,且ab=2,则a2+b2=________.21、若3x=30,3y=6,则3x-y的值为________.22、已知x2+mx+25是完全平方式,则m=________.23、计算:(﹣2)2018(+2)2017=________.24、分解因式:=________.25、计算:(﹣2x)2=________三、解答题(共5题,共计25分)26、先化简,再求值:(x-4)(x-2)-(x-1)(x+3),其中x=- .27、某种产品的原料提价,因而厂家决定对产品进行提价,现有三种方案:①第一次提价p%,第二次提价q%;②第一次提价q%,第二次提价p%;③第一、二次提价均为.其中p,q是不相等的正数,三种方案哪种提价最多?28、计算,结果用幂的形式表示:a3•a•a5+a4•a2•a3.29、若展开后不含x2、x3项,求pq的值.30、分解因式:(1)x4﹣2x3﹣35x2(2)x2﹣4xy﹣1+4y2.参考答案一、单选题(共15题,共计45分)1、C2、C3、B4、A5、D6、B7、B8、C9、D10、D11、A12、A13、D14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华师大版八年级上学期
“整式的乘除”单元测试
一、填空题:(每空3分,共36分)
1.计算:._______53=⋅a a 2.计算:._____)2(23=-a
3.计算:._______2142=÷-a b a 4.计算:._________________)12(2=-x
5.计算:.___________________)3)(2(=+-x x
6.因式分解:.______________252=-x x
7.因式分解:.__________42=-x
8.因式分解:.___________________442=+-x x
9.计算:._______)1098.5()109.1(2427≈⨯÷⨯(保留三个有效数字)
10.有三个连续的自然数,中间一个是x ,则它们的积是____________。

11.若多项式442++kx x 恰好是另一个多项式的平方,则k=___________。

12.一块边长为a 米的正方形广场,扩建后的正方形边长比原来长2米,问扩建后的广场面积增大了______________平方米。

二、选择题:(每小题4分,共24分)
13.下列运算中正确的是( )
A .43x x x =+
B .43x x x =⋅
C .532)(x x =
D .236x x x =÷
14.计算:)3
4()3(42y x y x -⋅的结果是( )
A .26y x
B .y x 64-
C .264y x -
D .y x 835
15.下列从左边到右边的变形,属于因式分解的是( )
A .1)1)(1(2-=-+x x x
B .1)2(122+-=+-x x x x
C .)4)(4(422y x y x y x -+=-
D .)3)(2(62-+=--x x x x
16.下列多项式,能用公式法分解因式的有( )
① 22y x + ② 22y x +- ③ 22y x --
④ 22y xy x ++ ⑤ 222y xy x -+ ⑥ 2244y xy x -+-
A .2个
B .3个
C .4个
D .5个
17.若(x +t )(x +6)的积中不含有x 的一次项,则t 的值是( )
A .6
B .-6
C .0
D .6或-6
18.长方形的长增加50%,宽减少50%,那么长方形的面积( )
A .不变
B .增加75%
C .减少25%
D .不能确定
三、解答题:(共90分)
19.计算题:(每小题6分,共24分)
(1)3324)101).(2.(21x xy y x -
- (2))7)(5()1(2+-+-a a a a
(3)22)5()5(y x y x +-- (4))(]12)1)(1[(22ab b a ab ab -÷+--+
20.(8分)化简求值:
x y x x y x y x y x 2)]2(2)2)(2()2[(2÷--+-+-。

其中 6,5-==y x 。

21.(8分)已知1,5==+xy y x ,求:① 22y x + ; ② 2
)(y x - 。

22.分解因式(各小题6分,共24分)
(1)223242ab b a a +- (2)44y x -
(3)22125)(5m y x -+ (4))34(3422y xy x ++
23.(8分)有一块直径为2a + b 的圆形木板,挖去直径分别为2a 和 b 的两个圆,问剩下的木板的面积是多少?
24.(8分)说明对于任意正整数n ,式子n (n +5)-(n -3)(n +2)的值都能被6整除。

25.应用题:(10分)如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪成一个矩形(如图2),通过计算两个图形(阴影部分)的面积,验证了一个等式,你通过分析能找出来吗?根据以上所提供的方法,你能设计出一个图形说明下面等式:(a+2b)(2a-b)=2a2+3ab-2b2吗?并配文字加以说明。

参考答案
一、填空题
1.8a 2.64a 3.ab 7- 4.1442+-x x 5.62-+x x 6.)25(-x x 7.)2)(2(x x -+ 8.2)2(-x 9.318 10.x x -3 11.1± 12.)44(+a
二、选择题
13.B 14.C 15.D 16.A 17.B 18.C
三、 解答题
19.(1)581000
1y x (2)3523-+a a (3)xy 20- (4)ab 20.化简结果为 y x --,当6,5-==y x 时,原式=1
21.① 23 ②21
22.(1))2(222b ab a a +- (2)))()((22y x y x y x -++
(3))5)(5(5m y x m y x -+++ (4)2)32(y x +
23.ab π
24.n (n +5)-(n -3)(n +2)
=n 2 +5n -n 2 +n +6
=6n +6
=6(n +1)
∵n 为任意正整数
∴6(n +1) ÷6=n +1
∴n (n +7)-(n +3)(n -2)总能被6整除
25.略。

相关文档
最新文档