知识点2014年中考数学
2014年河北省中考数学试卷知识点分析

A BDEC图1 O K图2 100° ab70°2014年河北省初中毕业升学文化课考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分:卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷总分120分,考试时间120分钟.卷Ⅰ(选择题,共42分)一、选择题(本大题共16个小题,1-6小题每小题2分;7-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.-2是2的( )A.倒数B.相反数C.绝对值D.平方根 涉及知识点:相反数04012302.如图1,△ABC 中,D 、E 分别是边AB 、AC 的中点,若DE=2,则BC=( ) A.2 B.3 C.4 D.5 涉及知识点:三角形的中位线04181223.计算:852-152= ( )A.70B.700C.4900D.7000 涉及知识点:因式分解0414300;公式法04143204.如图2,平面上直线a ,b 分别过线段OK 两端点(数据如图),则a ,b 相交所成的锐角是( )A.20°B.30°C.70°D.80° 涉及知识点:三角形的外角及其性质04112035.a ,b 是两个连续整数,若a<7<b ,则a ,b 分别是( ) A.2,3 B.3,2 C.3,4 D.6,8lxy o图3 涉及知识点:无理数的概念04063016.如图3,直线l 经过第二、三、四象限,l 的解析式是y=(m -2)x+n ,则m 的取值范围在数轴上表示为( )ABC D涉及知识点:一次函数的图象0419222;数轴上的点与有理数的关系04012227.化简:=---112x xx x ( ) A.0 B.1 C.x D.1-x x涉及知识点:分式的加减法法则04152218.如图4,将长为2、宽为1的矩形纸片分割成n 个三角形后,拼成面积为2的正方形,则n ≠( )A.2B.3C.4D.5 涉及知识点:简单的图案分析04233029.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x 厘米,当x=3时,y=18,那么当成本为72元时,边长为( ) A.6厘米 B.12厘米 C.24厘米 D.36厘米 涉及知识点:一次函数的简单应用041922710.图5-1是边长为1的六个小正方形组成的图形,它可以围成图5-2的正方形,则图5-1中小图412正方形顶点A,B在围成的正方体...上的距离是( )A.0B.1C.2D.3涉及知识点:勾股定理的应用041710311.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图6的拆线统计图,则符合这一结果的实验最有可能的是( )A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是4涉及知识点:用频率估计概率0425300;描述数据——条形图、扇形图、折线图12.如图7,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是( )涉及知识点:尺规作图040420513.在研究相似问题时,甲、乙同学的观点如下:频率0.10100 200 次数图6300 400 5000.050.150.200.25·····图5-2AB C图7图5-1··AB对于两人的观点,下列说法正确的是( )A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对 涉及知识点:相似多边形0427103;相似三角形的判定042721014.定义新运算:()()⎪⎪⎩⎪⎪⎨⎧<->=⊕.0.0b ba b bab a 例如:5454=⊕,()5454=-⊕,则函数()02≠⊕=x x y 图象大致是( )涉及知识点:反比例函数的图象和性质042612015.如图9,边长为a 的正六边形内有两个三角形(数据如图),则=空白阴影S S ( ) A.3 B.4 C.5 D.6图8-1111 甲:将边长为3,4,5的三角形按图8-1的方式 向外扩张,得到新三角形,它们的对应边间 距均为1,则新三角形与原三角形相似.图8-21111 乙:将邻边为3和5的矩形按图8-2的方式向外扩张,得到新矩形,它们的对应边间距均为1,则新矩形与原矩形不.相似. 图9a aa 60°60°涉及知识点:正多边形和园042430016.五名学生投篮球,规定每人投20次,统计他们每人投中的次数,得到五个数据.若这五个数据的中位数是6,唯一..众数是7,则他们投中次数的总和可能是( ) A.20 B.28 C.30 D.31 涉及知识点:中位数和众数0420120卷Ⅱ(非选择题,共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上) 17.计算:=⨯218 涉及知识点:二次根式的乘除041620018.若实数m ,n 满足()0201422=-+-n m ,则m -1+n 0=涉及知识点:零指数幂的性质0414145;整数指数幂0415231;绝对值的概念0410241 19.如图10,将长为8cm 的铁丝AB 首尾相接围成半径为2cm 的扇形. 则=扇形S cm 2涉及知识点:扇形的面积公式042440220.如图11,点O ,A 在数轴上表示的数分别是0,0.1,将线段OA 分成100等份,其分点由左向右依次为M 1,M 2,…,M 99;再将线段OM 1分成100等份,其分点由左向右依次为N 1,N 2,…,N 99;继续将线段ON 1分成100等份,其分点由左向右依次为P 1,P 2,…,P 99.则点A(B) A228图10· · · BP 37所表示的数用科学记数法表示为 .涉及知识点:科学计数法0415232三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分10分)嘉淇同学用配方法推导一元二次方程()002≠=++a c bx ax 的求根公式时,对于042>-ac b 的情况,她是这样做的:(1)嘉淇的解法从第 步开始出现错误:事实上,当042>-ac b 时,方程()002≠=++a c bx ax 的求根公式是 .(2)用配方法解方程:02422=--x x涉及知识点:解一元二次方程0421200;配方法0421212 22.(本小题满分10分)如图12-1,A ,B ,C 是三个垃圾存放点,点B ,C 分别位于点A 的正北和正东方向,AC=100米.四人分别测得∠C. a 2ac 4b b x, ) 0ac 4b (a4ac4b a 2b x , a 4ac 4b ) a 2b x ( , ) a2b (a c ) a 2b (x a b x ,acx a b x 变形为0c bx ax ,方程0a 由于22222222222-+-=>--=+-=++-=++-=+=++≠ :…………………………………………第一步…………………第二步………………………………第三步………………第四步 ………………………………五步第ABC图12-1北东ABCD EF 40°100°图13的度数如下表:他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图12-2,12-3:(1)求表中∠C 度数的平均数x ;(2)求A 处的垃圾量,并将图12-2补充完整;(3)用(1)中的x 作为∠C 的度数,要将A 处的垃圾沿道路AB 都运到B 处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75) 涉及知识点:描述数据——条形图、扇形图、折线图;算术平均数0420111;解直角三角形在实际问题中的应用0428204 23.(本小题满分11分)如图13,△ABC 中,AB=AC ,∠BAC=40°,将△ABC 绕点A 按逆时针方向旋转100°得到△ADE ,连接BD ,CE 交于点F.(1)求证:△ABD ≌△ACE(2)求∠ACE 的度数;(3)求证:四边形ABFE 是菱形.涉及知识点:全等三角形的性质0412103;三角形全等的判定0412200;菱形的性质0418222;旋转的性质0423102甲 乙 丙 丁 ∠C(单位:度) 34363840AB C 垃圾点320 240 160 80 0图12-2垃圾量/千克 各点垃圾量条形统计图 图12-3C A B 50%37.5%各点垃圾量扇形统计图24.(本小题满分11分)如图14,2×2网格(每个小正方形的边长为1)中有A,B,C,D,E,F,G,H,O九个格点.抛物线l的解析式为y=(-1)n x2+bx+c(n为整数).(1)n为奇数,且l经过点H(0,1)和C(2,1),求b,c的值,并直接写出哪个格点是该抛物线的顶点;(2)n为偶数,且l经过点A(1,0)和B(2,0),通过计算说明点F(0,2)和H(0,1)是否在该抛物线上;(3)若l经过这九个格点中的三个,直接..写出所有满足这样条件的抛物线条数.涉及知识点:二次函数042200025.(本小题满分11分)图15-1和15-2中,优弧AB⌒所在⊙O的半径为2,AB=32,点P为优弧AB⌒上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′(1)点O到弦AB的距离是;当BP经过点O时,∠ABA′= °;(2)当BA′与⊙O相切时,如图15-2,求折痕BP的长.(3)若线段..BA′与优弧AB⌒只有一个公共点B,设∠ABP=α,G2图14FHByE DxC1A12O·········BDA(出口) 图16-2· 1号车2号车C(景点)K(甲)确定α的取值范围.涉及知识点:圆0424000;勾股定理0417101;垂径定理及其推论0424104;圆的切线的性质定理0424223;锐角三角函数的概念0428101 26.(本小题满分13分)某景区内的环形路是边长为800米的正方形ABCD ,如图16-1和16-2,现有1号、2号两游览车分别从出口A 和景点C 同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.探究:设行驶时间为t 分.(1)当0≤t ≤8时,分别写出1号车、2号车在左半环线离出口A 的路程y 1,y 2(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时t 的值;(2)t 为何值时,1号车第三次恰好经过景点C ?并直接写出这一段时间内它与2号车相遇过的次数.发现:如图16-2,游客甲在BC 上的一点K(不与点B ,C 重合)处候车,准备乘车到出口A ,设CK=x 米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车; 情况二:若他刚好错过1号车,便搭乘即将到来的2号车. 比较哪种情况用时较多?(含候车时间)BDA(出口) 图16-1··1号车 2号车C(景点)决策:已知游客乙在DA上从D向出口A走去,步行的速度是50米/分,当行进到DA上一点P(不与点D,A重合)时,刚好与2号车迎面相遇.(1)他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由;(2)设PA=s(0<s<800)米,若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中,他该如何选择?涉及知识点:运用一次函数选择最佳方案0419301;列不等式组解应用题的一般步骤0409304;一元一次方程0403000。
2014陕西中考数学考点-

一、选择题(注:难度系数越大,表示试题越简单1、数的四大概念及有理数中的简单运算:相反数、绝对值、倍数、数轴(有序排列、数轴上表示数的大小(难度系数0.952、对简单几何体的认识,补角、邻补角、余角角度计算(难度系数0.903、单项式及运算、不等式及基本性质、字母表示数、等式的基本性质(难度系数0.884、简单几何图形、有线与直线的位置关系,线与线形成的角的关系(难度系数0.865、平均数、众数、中位数(难度系数0.856、不等式(组0的解(解集求法,数轴表示,、不等式的正整数解(难度系数0.827、三角形的边角关系,特殊线段(中线、高线、角平分线、中位线(难度系数0.808、正比例函数或方程建模(难度系数0.809、特殊四边形与三角形的关系(难度系数0.7510、二次函数:①解析式②图像③性质--对称性、增成性④平移轴对称变换(难度系数0.65二、填空题(注:难度系数越大,表示试题越简单11、无理数概念和运算的认识(难度系数0.912、特殊三角形及正多边形的认识(难度系数0.8513、多项式恒等变形(化简、因式分解及分式性质的理解和掌握(难度系数0.8214、科学计算器、正数的平方、开方(两位数以上的数一个锐角正弦、余弦、正切的计算。
平移、旋转、轴对称、中心对称、所产生的性质求其度量关系(难度系数0.815、反比例函数的表达式、图像、性质(对称性、增减性、坐标轴的关系、几何定义等(难度系数0.7516、主要考查学生对一个圆的认识(①特殊线段;②特殊角;③圆内特殊三角形、四边形。
(难度系数0.65三、解答题(9小题(注:难度系数越大,表示试题越简单17题5分:主要考察学生对代数式中多项式与分式的恒等变形(化简求值能力或对分式方程的理解及解法(难度系数0.7018题6分:主要考查学生对两个三角形何时可以全等及全等后具有什么性质、载体是两个有关联的三角形成一个四边形(难度系数0.8519题7分,主要考查学生运用统计图来处理数据,并通过图来反映事物变换趋势的意义; (难度系数0.80(直方图、扇形图、折线图三种图形20题8分,主要考查学生灵活运用锐角三角函数的概念来解决现实生活中,用Rt△建模的实际问题,并通过解Rt△,而使问题得以解决的能力;(高度、宽度、深度;某一个几何图形的参数或面积等(难度系数0.6521题8分,主要考查一次函数:①对一次函数的认识(解析式、图像;②实际问题中运用函数、方程、不等式思想建立关于与一次函数相关的模型;③会用待定系数法确定未知参数从而解决实际问题(难度系数0.6522题8分,主要考查学生运用数学相关知识解决事件发生的概率:①摸球事件(球的个数不超过6个,不同品种不能超过2种,随机一次摸两个,只摸一次,求某两个出现的概率或某一个出现的概率,若一次只摸一个(摸完要求放回再摸第二次摸的次数不超过两次。
2014中考数学总复习(详解版,教师学生都适用)

第1课时 实数的有关概念【知识梳理】1. 实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限 环循小数)都是有理数. 有理数和无理数统称为实数.2. 数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上的点一一对应.3. 绝对值:在数轴上表示数a 的点到原点的距离叫数a 的绝对值,记作∣a ∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.4. 相反数:符号不同、绝对值相等的两个数,叫做互为相反数.a 的相反数是-a ,0的相反数是0.5. 有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字. 6. 科学记数法:把一个数写成a×10n 的形式(其中1≤a<10,n 是整数),这种记数法叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5. 7. 大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小.8. 数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂.9. 平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a的平方根(也叫做二次方根).一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根. 10. 开平方:求一个数a 的平方根的运算,叫做开平方.11. 算术平方根:一般地,如果一个正数x 的平方等于a,即x 2=a ,那么这个正数x就叫做a 的算术平方根,0的算术平方根是0.12. 立方根:一般地,如果一个数x 的立方等于a,即x 3=a ,那么这个数x 就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0.13. 开立方:求一个数a 的立方根的运算叫做开立方. 【思想方法】数形结合,分类讨论【例题精讲】 例1.下列运算正确的是( )A .33--=B .3)31(1-=-C .93=±D .3273-=-例2.2的相反数是( ) A .2- B .2 C .22- D .22例3.2的平方根是( )A .4B .2C .2-D .2±例4.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A .107.2610⨯ 元B .972.610⨯ 元C .110.72610⨯ 元D .117.2610⨯元例5.实数a b ,在数轴上对应点的位置如图所示, 则必有( )A .0a b +>B .0a b -<C .0ab >D .0ab< 例6.(改编题)有一个运算程序,可以使:a ⊕b = n (n 为常数)时,得(a +1)⊕b = n +2, a ⊕(b +1)= n -3现在已知1⊕1 = 4,那么2009⊕2009 = . 【当堂检测】1.计算312⎛⎫- ⎪⎝⎭的结果是( )A .16B .16-C .18D .18-2.2-的倒数是( ) A .12-B .12C .2D .2-3.下列各式中,正确的是( )A .3152<<B .4153<<C .5154<<D .161514<< 4.已知实数a 在数轴上的位置如图所示,则化简2|1|a a -+的结果为( ) A .1 B .1- C .12a -D .21a -5.2-的相反数是( ) A .2B .2-C .12D .12-6.-5的相反数是____,-12的绝对值是____,()24-=_____.7.写出一个有理数和一个无理数,使它们都是小于-1的数 . 8.如果2()13⨯-=,则―‖内应填的实数是( ) A . 32B . 23C .23-D .32-1-1 0 a 第4题图0 a 1 1-0 b 例5图第2课时 实数的运算【知识梳理】1.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数. 2.有理数减法法则:减去一个数,等于加上这个数的相反数.3.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘; 任何数与0相乘,积仍为0.4.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除; 0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数. 5.有理数的混合运算法则:先算乘方,再算乘除,最后算加减; 如果有括号,先算括号里面的. 6.有理数的运算律:加法交换律:a+b=b+a(a b 、为任意有理数) 加法结合律:(a+b)+c=a+(b+c)(a, b,c 为任意有理数)【思想方法】数形结合,分类讨论【例题精讲】例1.某校认真落实苏州市教育局出台的―三项规定‖,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学其有____________名.例2.下表是5个城市的国际标准时间(单位:时)那么北京时间2006年6月17日上午9时应是( )A .伦敦时间2006年6月17日凌晨1时.B .纽约时间2006年6月17日晚上22时.C .多伦多时间2006年6月16日晚上20时 .D .汉城时间2006年6月17日上午8时.例3.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,……,按照这样的规律排列下去,则第9个图形由__________个圆组成.北京 汉城 8 9 0 伦敦 -4 多伦多纽约国际标准时间(时) -5 例2图……例3图例4.下列运算正确的是( ) A .523=+B .623=⨯C .13)13(2-=- D .353522-=-例5.计算: (1) 911)1(8302+-+--+-π (2)03(2)tan 45π---+º(3)102)21()13(2-+--; (4)20080131(1)()83π--+-+.【当堂检测】1.下列运算正确的是( )A .a 4×a 2=a 6B .22532a b a b -=C .325()a a -= D .2336(3)9ab a b =2.某市2008年第一季度财政收入为76.41亿元,用科学记数法(结果保留两个有效数字)表示为( )A .81041⨯元B .9101.4⨯元C .9102.4⨯元D .8107.41⨯元 3.估计68的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间 4.如图,数轴上点P 表示的数可能是( ) A .7B .7-C . 3.2-D .10-5.计算: (1)02200960cos 16)21()1(-+--- (2)()113142-⎛⎫--+ ⎪⎝⎭3- 2- 1- O 1 2 3P 第4题图第3课时 整式与分解因式【知识梳理】1.幂的运算性质:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a -=÷(a≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即nnnb a ab =)((n 为正整数);④零指数:10=a (a≠0);⑤负整数指数:nn a a 1=-(a≠0,n 为正整数); 2.整式的乘除法:(1)几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除. (2)单项式乘以多项式,用单项式乘以多项式的每一个项.(3)多项式乘以多项式,用一个多_项式的每一项分别乘以另一个多项式的每一项. (4)多项式除以单项式,将多项式的每一项分别除以这个单项式.(5)平方差公式:两个数的和与这两个数的差的积等于这两个数的平方, 即22))((b a b a b a -=-+;(6)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去) 它们的积的2倍,即2222)(b ab a b a +±=±3.分解因式:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式.4.分解因式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.⑵运用公式法:公式22()()a b a b a b -=+- ; 2222()a ab b a b ±+=±5.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解. 6.分解因式时常见的思维误区:⑴ 提公因式时,其公团式应找字母指数最低的,而不是以首项为准. ⑵ 提取公因式时,若有一项被全部提出,括号内的项― 1‖易漏掉. (3) 分解不彻底,如保留中括号形式,还能继续分解等【例题精讲】 【例1】下列计算正确的是( )A. a +2a=3a 2B. 3a -2a=aC. a 2∙a 3=a 6D.6a 2÷2a 2=3a 2 【例2】(2008年茂名)任意给定一个非零数,按下列程序计算,最后输出的结果是( )m 平方 -m ÷m +2 结果 A .m B .m2C .m +1D .m -1【例3】若2320a a --=,则2526a a +-= . 【例4】下列因式分解错误的是( )A .22()()x y x y x y -=+- B .2269(3)x x x ++=+ C .2()x xy x x y +=+D .222()x y x y +=+【例5】如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行―广‖字,按照这种规律,第5个―广‖字中的棋子个数是________,第n 个―广‖字中的棋子个数是________【例6】给出三个多项式:21212x x +-,21412x x ++,2122x x -.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.【当堂检测】1.分解因式:39a a -= , _____________223=---x x x 2.对于任意两个实数对(a ,b )和(c ,d ),规定:当且仅当a =c 且b =d 时, (a ,b )=(c ,d ).定义运算―⊗‖:(a ,b )⊗(c ,d )=(ac -bd ,ad +bc ).若(1,2)⊗(p ,q )=(5,0),则p = ,q = . 3. 已知a=1.6⨯109,b=4⨯103,则a 2÷2b=( )A. 2⨯107B. 4⨯1014C.3.2⨯105D. 3.2⨯1014 .4.先化简,再求值:22()()(2)3a b a b a b a ++-+-,其中2332a b =--=-,.5.先化简,再求值:22()()()2a b a b a b a +-++-,其中133a b ==-,.第4课时 分式与分式方程【知识梳理】1. 分式概念:若A 、B 表示两个整式,且B 中含有字母,则代数式BA叫做分式. 2.分式的基本性质:(1)基本性质:(2)约分:(3)通分: 3.分式运算4.分式方程的意义,会把分式方程转化为一元一次方程.5.了解分式方程产生增根的原因,会判断所求得的根是否是分式方程的增根. 【思想方法】1.类比(分式类比分数)、转化(分式化为整式)2.检验【例题精讲】1.化简:2222111x x x x x x-+-÷-+2.先化简,再求值: 22224242x x x x x x --⎛⎫÷-- ⎪-+⎝⎭,其中22x =+.3.先化简11112-÷-+x xx )(,然后请你给x 选取一个合适值,再求此时原式的值.4.解下列方程(1)013522=--+x x x x (2)41622222-=-+-+-xx x x x5.一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米,则根据题意所列方程正确的是( )A. B.C. D.【当堂检测】1.当99a =时,分式211a a --的值是.2.当x 时,分式112--x x 有意义;当x 时,该式的值为0.3.计算22()ab ab 的结果为.4. .若分式方程xxk x --=+-2321有增根,则k 为( ) A. 2 B.1 C. 3 D.-25.若分式32-x 有意义,则x 满足的条件是:( ) A .0≠x B .3≥x C .3≠x D .3≤x6.已知x =2008,y =2009,求x yx 4y 5x y x 4xy5x y 2xy x 2222-+-+÷-++的值7.先化简,再求值:4xx 16x )44x x 1x 2x x 2x (2222+-÷+----+,其中22+=x8.解分式方程. (1)22011xx x -=+- (2)x 2)3(x 22x x -=--;(3) 11322xx x -=--- (4)11-x 1x 1x 22=+--第5课时 二次根式【知识梳理】 1.二次根式:(1)定义:____________________________________叫做二次根式. 2.二次根式的化简:3.最简二次根式应满足的条件:(1)被开方数中不含有能开得尽的因数或因式. (2)根号内不含分母 (3)分母上没有根号4.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 5.二次根式的乘法、除法公式:(1)a b=ab a 0b 0⋅≥≥(,)(2)a a=a 0b 0b b≥ (,)6..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式. 【思想方法】 非负性的应用【例题精讲】 【例1】要使式子1x x+有意义,x 的取值范围是( ) A .1x ≠B .0x ≠C .10x x >-≠且D .10x x ≠≥-且【例2】估计132202⨯+的运算结果应在( ). A .6到7之间 B .7到8之间 C .8到9之间D .9到10之间【例3】 若实数x y ,满足22(3)0x y ++-=,则xy 的值是 . 【例4】如图,A ,B ,C ,D 四张卡片上分别写有523π7-,,,四个实数,从中任取两张卡片.A B C D(1)请列举出所有可能的结果(用字母A ,B ,C ,D 表示); (2)求取到的两个数都是无理数的概率.【例5】计算:(1)103130tan 3)14.3(27-+︒---)(π(2)101(1)527232-⎛⎫π-+-+-- ⎪⎝⎭.【例6】先化简,再求值:)1()1112(2-⨯+--a a a ,其中33-=a .【当堂检测】1.计算:(1)01232tan 60(12)+--+-+. (2)cos45°·(-21)-2-(22-3)0+|-32|+121- (3)026312()cos 304sin 6022-++-+.2.如图,实数a 、b 在数轴上的位置,化简222()a b a b ---第6课时 一元一次方程及二元一次方程(组)【知识梳理】1.方程、一元一次方程、二元一次方程(组)和方程(组)的解、解方程(组)的概念及解法,利用方程解决生活中的实际问题.2.等式的基本性质及用等式的性质解方程:等式的基本性质是解方程的依据,在使用时要注意使性质成立的条件 .3.灵活运用代入法、加减法解二元一次方程组.4.用方程解决实际问题:关键是找到―等量关系‖,在寻找等量关系时有时可以借助图表等,在得到方程的解后,要检验它是否符合实际意义.【思想方法】方程思想和转化思想【例题精讲】例1. (1)解方程.x x +--=21152156(2)解二元一次方程组 ⎩⎨⎧=+=+27271523y x y x 解:例2.已知x =-2是关于x 的方程()x m x m -=-284的解,求m 的值.方法1 方法2例3.下列方程组中,是二元一次方程组的是( )A. B. C. D. 例4.在 中,用x 的代数式表示y ,则y=______________. 例5.已知a 、b 、c 满足⎩⎨⎧=+-=-+02052c b a c b a ,则a :b :c= . 例6 .某电厂规定该厂家属区的每户居民如果一个月的用电量不超过 A 度,那么这个月这户只需交 10 元用电费,如果超过 A 度,则这个月除了仍要交 10 元用电费外,超过部分还要按每度 0.5 元交费.①该厂某户居民 2 月份用电 90 度,超过了规定的 A 度,则超过部分应该交电费多少元(用 A 表示)? .②右表是这户居民 3 月、4 月的用电情况和交费情况:根据右表数据,求电厂规定A 度为 .月份 用电量 交电费总数 3月 80度 25元 4月 45度 10元⎪⎩⎪⎨⎧=+=+65115y x y x ⎩⎨⎧-=+=+2102y x y x ⎩⎨⎧==+158xy y x ⎩⎨⎧=+=31y x x 032=-+y x【当堂检测】1.方程x -=52的解是___ ___.2.一种书包经两次降价10%,现在售价a 元,则原售价为_______元.3.若关于x 的方程x k =-153的解是x =-3,则k =_________. 4.若⎩⎨⎧-==11y x ,⎩⎨⎧==22y x ,⎩⎨⎧==c y x 3都是方程ax+by+2=0的解,则c=____. 5.解下列方程(组):(1)()x x -=--3252; (2)....x x +=-0713715023;(3)⎩⎨⎧=+=+832152y x y x ; (4)x x -+=-2114135;6.当x =-2时,代数式x bx +-22的值是12,求当x =2时,这个代数式的值.7.应用方程解下列问题:初一(4)班课外乒乓球组买了两副乒乓球板,若每人付9元,则多了5元,后来组长收了每人8元,自己多付了2元,问两副乒乓球板价值多少?8.甲、乙两人同时解方程组8(1)5 (2)mx ny mx ny +=-⎧⎨-=⎩由于甲看错了方程①中的m ,得到的解是42x y =⎧⎨=⎩,乙看错了方程中②的n ,得到的解是25x y =⎧⎨=⎩,试求正确,m n 的值.第7课时 一元二次方程【知识梳理】1. 一元二次方程的概念及一般形式:ax 2+bx +c =0 (a ≠0)2. 一元二次方程的解法:①直接开平方法②配方法③公式法④因式分解法3.求根公式:当b 2-4ac≥0时,一元二次方程ax 2+bx +c =0 (a ≠0)的两根为4.根的判别式: 当b 2-4ac >0时,方程有 实数根.当b 2-4ac=0时, 方程有 实数根.当b 2-4ac <0时,方程 实数根.【思想方法】1. 常用解题方法——换元法2. 常用思想方法——转化思想,从特殊到一般的思想,分类讨论的思想【例题精讲】例1.选用合适的方法解下列方程:(1) (x-15)2-225=0; (2) 3x 2-4x -1=0(用公式法);(3) 4x 2-8x +1=0(用配方法); (4)x 2+22x=0例2 .已知一元二次方程0437122=-+++-m m mx x m )(有一个根为零,求m 的值.例3.用22cm 长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能否折成面积是32㎝2的矩形呢?为什么?例4.已知关于x 的方程x 2―(2k+1)x+4(k -0.5)=0(1) 求证:不论k 取什么实数值,这个方程总有实数根;(2) 若等腰三角形ABC 的一边长为a=4,另两边的长b .c 恰好是这个方程的两个根,求△ABC 的周长.aac b b x 242-±-=【当堂检测】一、填空1.下列是关于x 的一元二次方程的有_______ ①02x 3x12=-+ ②01x 2=+ ③)3x 4)(1x ()1x 2(2--=- ④06x 5x k 22=++ ⑤021x x 2432=-- ⑥0x 22x 32=-+2.一元二次方程3x 2=2x 的解是 .3.一元二次方程(m-2)x 2+3x+m 2-4=0有一解为0,则m 的值是 .4.已知m 是方程x 2-x-2=0的一个根,那么代数式m 2-m = .5.一元二次方程ax 2+bx+c=0有一根-2,则b ca 4+的值为 .6.关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根, 则k 的取值范围是__________.7.如果关于的一元二次方程的两根分别为3和4,那么这个一元二次方程可以是 .二、选择题:8.对于任意的实数x,代数式x 2-5x +10的值是一个( )A.非负数B.正数C.整数D.不能确定的数9.已知(1-m 2-n 2)(m 2+n 2)=-6,则m 2+n 2的值是( )A.3B.3或-2C.2或-3D. 210.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )(A )x 2+4=0 (B )4x 2-4x +1=0(C )x 2+x +3=0(D )x 2+2x -1=011.下面是李刚同学在测验中解答的填空题,其中答对的是( )A .若x 2=4,则x=2B .方程x(2x-1)=2x-1的解为x=1C .方程x 2+2x+2=0实数根为0个D .方程x 2-2x-1=0有两个相等的实数根12.若等腰三角形底边长为8,腰长是方程x 2-9x+20=0的一个根,则这个三角形的周长是( ) A.16 B.18 C.16或18 D.21三、解下方程:(1)(x+5)(x-5)=7 (2)x(x-1)=3-3x (3)x 2-4x-4=0(4)x 2+x-1=0 (6)(2y-1)2 -2(2y-1)-3=0第8课时 方程的应用(一)【知识梳理】1. 方程(组)的应用;2. 列方程(组)解应用题的一般步骤;3. 实际问题中对根的检验非常重要.【注意点】分式方程的检验,实际意义的检验.【例题精讲】 例1. 足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分.某队打了14场,负5场,共得19分,那么这个队胜了( )A .4场B .5场C .6场D .13场例2. 某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能正确计算出x 、y 的是( )A .⎩⎨⎧x –y= 49y=2(x+1)B .⎩⎨⎧x+y= 49y=2(x+1)C .⎩⎨⎧x –y= 49y=2(x –1)D .⎩⎨⎧x+y= 49y=2(x –1) 例3. 张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意得到的方程是( )1515115151..12121515115151..1212A B x x x x C D x x x x -=-=++-=-=-- 例4.学校总务处和教务处各领了同样数量的信封和信笺,总务处每发一封信都只用一张信笺,教务处每发出一封信都用3张信笺,结果,总务处用掉了所有的信封,•但余下50张信笺,而教务处用掉所有的信笺但余下50个信封,则两处各领的信笺数为x 张,•信封个数分别为y 个,则可列方程组 . 例5. 团体购买公园门票票价如下:购票人数 1~50 51~100 100人以上每人门票(元) 13元 11元 9元今有甲、乙两个旅行团,已知甲团人数少于50人,乙团人数不超过100人.若分别购票,两团共计应付门票费1392元,若合在一起作为一个团体购票,总计应付门票费1080元.(1)请你判断乙团的人数是否也少于50人.(2)求甲、乙两旅行团各有多少人?【当堂检测】1. 某市处理污水,需要铺设一条长为1000m 的管道,为了尽量减少施工对交通所造成的影响,实际施工时,每天比原计划多铺设10米,结果提前5天完成任务.设原计划每天铺设管道xm ,则可得方程 .2. ―鸡兔同笼‖是我国民间流传的诗歌形式的数学题,•―鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔?‖解决此问题,设鸡为x 只,兔为y 只,所列方程组正确的是( )⎩⎨⎧=+=+100236.y x y x A 3636..2410022100x y x y B C x y x y +=+=⎧⎧⎨⎨+=+=⎩⎩⎩⎨⎧=+=+1002436..y x y x D 3.为满足用水量不断增长的需求,某市最近新建甲、乙、•丙三个水厂,这三个水厂的日供水量共计11.8万m 3,•其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万m 3.(1)求这三个水厂的日供水量各是多少万立方米?(2)在修建甲水厂的输水管道的工程中要运走600t 土石,运输公司派出A 型,B •型两种载重汽车,A 型汽车6辆,B 型汽车4辆,分别运5次,可把土石运完;或者A 型汽车3辆,B 型汽车6辆,分别运5次,也可把土石运完,那么每辆A 型汽车,每辆B 型汽车每次运土石各多少吨?(每辆汽车运土石都以准载重量满载)4. 2009年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30km 远的郊区进行抢修.维修工骑摩托车先走,15min 后,抢修车装载所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5倍,求这两种车的速度.5. 某体育彩票经售商计划用45000•元从省体彩中心购进彩票20扎,每扎1000张,已知体彩中心有A 、B 、C 三种不同价格的彩费,进价分别是A •种彩票每张1.5元,B 种彩票每张2元,C 种彩票每张2.5元.(1)若经销商同时购进两种不同型号的彩票20扎,用去45000元,请你设计进票方案;(2)若销售A 型彩票一张获手续费0.2元,B 型彩票一张获手续费0.3元,C 型彩票一张获手续费0.5元.在购进两种彩票的方案中,为使销售完时获得手续费最多,你选择哪种进票方案?(3)若经销商准备用45000元同时购进A 、B 、C 三种彩票20扎,请你设计进票方案.第9课时 方程的应用(二)【知识梳理】1.一元二次方程的应用;2. 列方程解应用题的一般步骤;3. 问题中方程的解要符合实际情况.【例题精讲】 例1. 一个两位数的十位数字与个位数字和是7,把这个两位数加上45后,•结果恰好成为数字对调后组成的两位数,则这个两位数是( )A .16B .25C .34D .61例2. 如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为( )A .1米B .1.5米C .2米D .2.5米例3. 为执行―两免一补‖政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( )A.225003600x = B.22500(1)3600x +=C.22500(1%)3600x += D.22500(1)2500(1)3600x x +++=例4. 某地出租车的收费标准是:起步价为7元,超过3千米以后,每增加1千米,•加收2.4元.某人乘这种出租车从甲地到乙地共付车费19元,•设此人从甲地到乙地经过的路程为x 千米,那么x 的最大值是( )A .11B .8C .7D .5例5. 已知某工厂计划经过两年的时间,•把某种产品从现在的年产量100万台提高到121万台,那么每年平均增长的百分数约是________.按此年平均增长率,预计第4年该工厂的年产量应为_____万台.例6. 某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10000•元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?例7. 幼儿园有玩具若干份分给小朋友,如果每人分3件,那么还余59件.•如果每人分5件,那么最后一个人不少于3件但不足5件,试求这个幼儿园有多少件玩具,有多少个小朋友.【当堂检测】1. 某印刷厂1•月份印刷了书籍60•万册,•第一季度共印刷了200万册,问2、3月份平均每月的增长率是多少?2. 为了营造人与自然和谐共处的生态环境,某市近年加快实施城乡绿化一体化工程,创建国家城市绿化一体化城市.某校甲,乙两班师生前往郊区参加植树活动.已知甲班每天比乙班少种10棵树,甲班种150棵树所用的天数比乙班种120棵树所用的天数多2天,求甲,乙两班每天各植树多少棵?3. A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s 的速度向D移动.⑴ P、Q两点从出发开始到几秒时四边形PBCQ的面积为33 cm2?⑵ P、Q两点从出发开始到几秒时,点P和点Q的距离是10 cm?4. 甲、乙两班学生到集市上购买苹果,苹果的价格如下表所示.甲班分两次共购买苹果70kg(第二次多于第一次),共付出189元,而乙班则一次购买苹果70kg.(1)乙班比甲班少付出多少元?(2)甲班第一次,第二次分别购买苹果多少千克?购苹果数不超过30kg 30kg以下但不超过50kg50kg以上每千克价格3元 2.5元2元第10课时 一元一次不等式(组)【知识梳理】1.一元一次不等式(组)的概念;2.不等式的基本性质;3.不等式(组)的解集和解法.【思想方法】1.不等式的解和解集是两个不同的概念;2.解集在数轴上的表示方法.【例题精讲】 例1.如图所示,O 是原点,实数a 、b 、c 在数轴上对应的点分别为A 、B 、C ,则下列结论错误的是( )A. 0b a >-B. 0ab <C. 0b a <+D. 例2. 不等式112x ->的解集是( ) A.12x >- B.2x >- C.2x <- D.12x <- 例3. 把不等式组21123x x +>-⎧⎨+⎩≤的解集表示在数轴上,下列选项正确的是( )A .B .C .D .例4. 不等式组221x x -⎧⎨-<⎩≤的整数解共有( )A .3个B .4个C .5个D .6个例5. 小明和爸爸妈妈三人玩跷跷板,三人的体重一共为150kg ,爸爸坐在跷跷板的一端,小明体重只有妈妈一半,小明和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地,那么小明的体重应小于( )A. 49kgB. 50kgC. 24kgD. 25kg例6.若关于x 的不等式x -m ≥-1的解集如图所示,则m 等于( )A .0B .1C .2D .3 例7.解不等式组:(1)21113x x x +<⎧⎪⎨-≥⎪⎩ (2)⎪⎩⎪⎨⎧+<+->+)6(3)4(4,5351x x x x43210 B A O C 0)c a (b >-1 0 1- 1 0 1- 1 0 1- 10 1-【当堂检测】1.苹果的进价是每千克3.8元,销售中估计有5%的苹果正常损耗.为避免亏本,商家把售价应该至少定为每千克 元.2. 解不等式723<-x ,将解集在数轴上表示出来,并写出它的正整数解.3. 解不等式组⎪⎩⎪⎨⎧-<+--+≥+224313322x x x x ,并把它的解集在数轴上表示出来.4. 我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:(1)设装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,求y 与x 之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.脐 橙 品 种 A B C 每辆汽车运载量(吨) 6 5 4 每吨脐橙获得(百元) 12 16 10。
2014年中考数学考前指导及知识梳理

中考数学试题分为三种题型,选择题,填空题,解答题。分为基础题、中档题、压轴题三 类。注意各种题型规律。 一、选择填空题知识点: 考点一:实数有关概念:倒数、相反数、绝对值、数轴等。考点二:函数自变量取值范围。分式分 母不为零,二次根式被开方数为非负数。考点三:科学记数法。考点四:因式分解与分式运算。考 点五:特殊角三角函数值、零指数、负指数等运算。考点六:几何基本运算与证明。1、平行线性 质与识别;2、三角形全等与相似,特殊三角形性质与识别;3、平行四边形及特殊平行四边形性质 与识别;4、圆的有关性质及与圆的位置关系,圆中的计算。考点七:统计与概率。考点八:求代 数式的值。注意整体思想、方程根定义等数学方法、概念。考点九:方程及不等式的基本解法。考 点十:一元二次方程根的判别式、根与系数关系。考点十一:相似三角形的识别与性质,注意不相 似三角形的面积比。考点十二:图形与坐标。(注意位似,如学案中的题目)考点十三:图形变换 (平移、轴对称、中心对称、旋转等)考点十四:格点图形中的有关计算(勾股定理、面积等), 图表信息问题。考点十五:函数中 K、a、b、c 等系数的几何意义。特别是反比例函数中 K 的含 义。考点十六:函数图象的平移,对称等。考点十七:图形折叠、勾股定理、相似比例的计算。考 点十八:圆中的几种位置关系判别。圆周长、弧长以及圆、扇形和简单的组合图形的面积。各种几 何图形的面积计算。考点十九:函数性质与图象。 考点二十:其它重要知识,如二次根式、幂运算、位似、轴对称与中心对称、三角形及梯形的中位 线定理等。 二、解答题题型及知识点:(考试时题目顺序有所变化) 19.计算题:零指数公式: a =1(a≠0)负整指数公式: a 算术平方根、三角函数等。 20.解方程(分式方程不忘记检验): 22.解不等式(组); 24.直线型几何证明与计算; 26.解直角三角形题; 21.化简求值: 23.统计与概率题; 25.函数题(一次及反比例函数); 27.阅读理解应用题(方程或不等式、函数等)或探究题:
精品 2014年 中考数学临考知识点强化记忆及中考数学模拟题两套

中考临考前复习资料汇总一、代数知识网络⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧∆⇐*+--=-=-⇒=-的大小。
与如比较:常用的是用平方法,无理数大小的比较方法解运用勾股定理的知识来这两个点,在数轴上如何表示差公式)分母有理化(利用平方二次根式平方根为多少)的平方根为多少,算术方根的区别:(要注意算数平方根与平平方根和立方根无理数等号方向改变)以同一个非零负数,不化(两边同时乘以或除法,注意不等号如何变不等式及不等式组的解验证方,方程有无实数根的一元二次方程,如何配需要验根零,中,需要注意分母不为分式方程在解法的过程)如注意含参数的多项式公式,完全平方公式几个基本公式(平方差完全平方式因式分解或绝对值问题有理数数与式5776--2-52--64------32323222y mxy x x x x ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧<--<<∆<∆=∆>∆⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧∆=====⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧<><>+==-=<>----=+-=++=⎪⎪⎪⎩⎪⎪⎪⎨⎧≠=⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧---++=+=-≠+=来求取值范围。
时,利用轴的两个交点当抛物线与来判断。
程组,用交点方法:联立新的方判断抛物线与直线有无,无交点,有一个交点,有两不同交点;轴有无交点的方法:判断抛物线与线变成顶点式注意:平移时要将抛物关,左同右异左右平移:与对称轴有有关上下平移:与图象的平移:左同右异与对称轴有关轴交点位置确定由抛物线与由开口方向确定符号的确定公式:轴交于两点之间的距离抛物线与选择题填空题角三角形,则轴交于三点构成一个直轴和如果抛物线与轴上,则顶点在轴对称,则图象关于如果几种特殊情况:于对称轴对称,那么它们的横坐标关线上两点的纵坐标相等对称性:如果出现抛物越小,开口越大越大,开口越小;开口大小:的增大而减小随轴右侧,的增大而增大;在对称随,在对称轴左侧,的增大而增大随轴右侧,的增大而减小;在对称随,在对称轴左侧,增减性:有最大值有最小值;最值问题:对称轴:开口向下开口向上;开口方向:顶点坐标:图象性质:双根式:顶点式:一般式:个解析式:二次函数析式,或出规律题型用相似的解法用函数解穿针引线法关系例函数,求函数值大小既有一次函数又有反比常考题:平面坐标系中线是分布在象限内的双曲解析式及图象性质:反比例函数值大小关系哪条直线对应的或其右边来判断点坐标,然后看其左边解,记为两条直线的交解这个方程组,得到的立方程组对两个直线解析式,联值大小:穿针引线法:的如何判断两条直线对应上加下减,左加右减。
2014中考数学知识点总结

2014年中考数学复习资料第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; …等;(4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
2014年中考数学总复习资料

2014年中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp的形式,其中p、q是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.1001……;特定意义的数,如π、45sin°等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a的相反数是 -a;(2)a和b互为相反数a+b=0 2、倒数:(1)实数a(a≠0)的倒数是a1;(2)a和b 互为倒数1ab;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:,0,00,aaaaaa(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n次方根(1)平方根,算术平方根:设a≥0,称a叫a的平方根,a叫a的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a叫实数a的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
2014年度细分行业报告汇集制造行业报告互联网行业报告农林牧渔行业报告三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
实数和数轴上的点是一一对应的关系。
四、实数大小的比较1、在数轴上表示两个数,右边的数总比左边的数大。
2014届中考数学知识点归纳复习4

3.两条平行线间的距离:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做两条平行线间的距离.两条平行线间的距离是一个定值,不随垂线段位置改变而改变,两条平行线间的距离处处相等.4.平行四边形的性质:平行四边形的两组对边分别平行;符号语言表达:平行四边形的两组对边分别相等;四边形ABCD是平行四边形平行四边形的两组对角分别相等;平行四边形的对角线互相平分.5.平行四边形的判定:两组对边分别平行的四边形是平行四边形.两组对边分别相等的四边形是平行四边形.一组对边平行且相等的四边形是平行四边形.两组对角分别相等的四边形是平行四边形.对角线互相平分的四边形是平行四边形.符号语言表达:AB∥CD.BC∥AD⇒四边形ABCD是平行四边形AB=CD,BC=AD⇒四边形ABCD是平行四边形.AB平行且相等CD或BC平行且相等AD⇒四边形ABCD是平行四边形.(6)正三角形、正方形与正六边形();(7)任意四边形();(8)任意三角形().5.n边形的每个内角等都等于120○,则n等于_____.二:【经典考题剖析】1.下面给出四边形ABCD中∠A、∠B、∠C、∠D的度数之比,其中能判别四边形ABCD是平行四边形的是()A.l:2:3:4 B.2:3:2:3 C.2:3:3:2 D.1:2:2:32.以不在同一直线上的三点作平行四边形的三个顶点,则可作出平行四边形()A.1个 B.2个 C.3个 D.4个3.如图,□ABCD中,对角线AC和 BD相交于点O,如果AC=12,BD=10,AB=m,那么m的取值范围是()A.1<m<11;B.2<m<22;C.10<m<12;D.5<m<64.一个正多边形的每个外角都是36○,则这个多边形是_________边形.5.已知一个多边形的内角和是它的外角和的3倍,那么这个多边形的边数是_________.三:【课后训练】1.平行四边形一组对角的平分线()A.在同一条直线上;B.平行;C.相交; D.平行或在同一直线上2.如图,在□ABCD中,如果点M为CD中点,AM与BD相交于点N那么SΔDMN:S□ABCD为()A.1:12 B.1:9 C.1:8 D.1:63.已知□ABCD的周长为30㎝,AB:BC=2:3,那么AB=___________㎝.4.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,如果AC=10,BD=8,AB=x,则x的取值范围是() A.1<x<9;B.2<x<18;C.8<x<10;D.4<x<55.现有一块等腰直角三角形的铁板,通过切割焊接成一个含有45○角的平行四边形,请你设计一种最简单的方案,并说明你的方案正确的理由.6.如图,在平行四边形ABCD中,点E、F 在对角线AC上,且AE=CF,请你以F为一个端点,和图中已标明字母的某一个点连成一条新线段,猜想并证明它和图中已有的某一条线段相等.(只需说明一组线段相等即可)(1)连接_______;(2)猜想________(3)说明理由.7.如图,某村有一块四边形池塘,在它的四个角A、B、C、D处均有一棵大核桃树,此村准备开挖池塘建养鱼池,想使池塘的面积扩大一倍,又保持核桃树不动,并要求扩建后的池塘成平8.已知:如图1―4―7在△ABC中,AB=AC=a,M为底边BC上任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.四:【课后小结】布置作业地纲教后记(注:可编辑下载,若有不当之处,请指正,谢谢!)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数1、0既不是正数也不是负数2、有理数:整数和分数统称有理数3、数轴:规定了原点、正方向和单位长度的直线叫做数轴。
4、在数轴上表示的两个数,右边的数总比左边的数大。
(正数都大于0,负数都小于0,正数大于负数,两个负数,绝对值大的反而小)5、绝对值:表示a的点与原点的距离叫做数a的绝对值,记做│a│。
6、一个正数的绝对值是它本身;零的绝对值是零;一个负数的绝对值是它的相反数。
7、有理数的乘方:求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在a n中,a叫做底数,n叫做指数,a n读作a的n次方,a n看作是a的n次方的结果时,也可读作a的n次幂。
正数的任何次幂都是正数;负数的奇数次幂数负数,负数的偶数次幂是正数。
8、科学记数法一个大于10的数就记成a³10n的形式,其中1≤a<10,n是整数。
像这样的记数法叫做科学记数法。
用科学记数法表示一些绝对值较小的数,即将它们表示成a10n-⨯的形式,其中n是正整数,1≤∣a ∣<10.9、有理数的混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,按照从左至右的顺序进行;如果有括号,就先算小括号里的,再算中括号里的,然后算大括号里的。
近似数和有效数字10、一个近似数,从左边第一个不是0的数字起,到末尾数字为止,所有的数字都叫做这个数的有效数字。
11、平方根记作±a;算术平方根,记作a;12、立方根(3a):任何数(正数、负数或零)的立方根如果存在的话,必定只有一个13、无限不循环小数叫做无理数.如:2、35、π等都是无理数.14、有理数包括整数和分数;有理数与无理数统称为实数;实数与数轴上的点一一对应.整式1、单项式(只有乘法和乘方运算)中的数字因数叫做这个单项式的系数。
2、一个单项式中,所有字母的指数的和叫做这个单项式的次数。
3、多项式(几个单项式的和)的次数不是所有项的次数之和。
4、多项式的每一项都包括它前面的正负号。
5、单项式和多项式统称为整式。
6、所含字母相同,并且相同字母的指数也相等的项叫做同类项。
7、合并同类项:同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变。
8、去括号与填括号法则括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变正负号。
括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项都改变正负号。
所添括号前面是“+”号,括到括号里的各项都不改变正负号。
所添括号前面是“—”号,括到括号里的各项都改变正负号。
9、整式的加减:先去括号,再合并同类项。
10、同底数幂相乘 a m ²a n =a n m +(m 、n 为正整数).11、幂的乘方(a m )n =amn (m 、n 为正整数). 12、积的乘方 (ab )n =a n b n (n 为正整数).13、同底数幂的除法a m ÷a n =a n m -.(m 、n 为正整数,m >n , a ≠0)14、单项式与单项式相乘:要将它们的系数、相同字母的幂分别相乘,对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式.15、单项式与多项式相乘m(a+b+c)=ma+mb+mc16、多项式与多项式相乘(m+n )(a+b )=ma+mb+na+nb17、乘法公式 两数和乘以这两数的差 (a +b )(a -b )=a 2-b 2两数和的平方 (a +b )2=a 2+2ab +b 2.18、整式的除法(略)19、因式分解(把一个多项式化成几个整式的乘积的形式)(先提后用公式)提公因式法:ma +mb +mc=m (a +b +c )公式法:a 2-b 2=(a +b )(a -b );a 2+2ab +b 2=(a +b )2 分式1、分式有意义:分母≠02、分式值为0 ⎩⎨⎧≠=00分母分子 3、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.4、任何不等于零的数的零次幂都等于1. 0a =1(a ≠0).5、任何不等于零的数的-n (n 为正整数)次幂,等于这个数的n 次幂的倒 数.n n a a 1=-(a ≠0,n是正整数)二次根式1、二次根式:形如a (a ≥0)的式子叫做二次根式;a ≥0(a ≥0);2)(a =a (a ≥0).当a ≥0时,a a =2;当a <0时,a a -=2.2、二次根式的乘法:ab b a =⋅(a ≥0,b ≥0). 积的算术平方根ab b a =⋅(a ≥0,b ≥0),3=a ≥0,b >0). 4、二次根式的加减法先将二次根式化简,再把同类二次根式合并.方程与不等式1、解一元一次方程步骤:去分母,去括号,移项,合并同类项,系数化为1易错:移项要没变号;去分母漏乘;去括号漏乘;系数化为1乘反了(分子、分母);2、解二元一次方程组的方法:代入消元法;加减消元法;3、解一元一次不等式注意:在不等式两边都乘以或除以一个负数时,要改变不等号方向;4、解一元一次不等式组口诀:同大取大,同小取小,大小小大中间找,大大小小找不到; 易丢分:忘求整数解5、分式方程转化为整式方程;6、解分式方程勿忘检验:经检验x=。
是原方程的解(经检验x=。
是增根,原方程无解)7、一元二次方程一般形式: 02=++c bx ax (a 、b 、c 是已知数,a ≠0),8、一元二次方程的解法直接开平方法 :42=x , x =±2.因式分解法:(x -1)(x +1)=0,1,121-==x x .2125550,(5)0,0,8;88x x x x x x -+=-+=∴==解: 配方法:0762=--x x ;762=-x x ;32237332+=+⋅⋅-x x ,即 16)3(2=-x ;所以x -3=±4;得1,721-==x x .公式法a 2x +bx +c =0(a ≠0).a ac b b x a ac b b x 24,242221---=-+-=函数1、一次函数图像与性质:2 、求一次函数关系式:待定系数法3、 如果两直线平行,则4、 直线平移规律:上加下减,左加右减5、反比例函数一般式:x ky =(k 是常数,k ≠0)6 、反比例函数图像:双曲线7、反比例函数性质(1) 当k >0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y 随x 的增加而减小;(2) 当k <0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y 随x 的增加而增大.8、反比例函数重要考点,12OCB S k ∆=y9、二次函数一般式:2y ax bx c =++(a ≠0);10、特殊二次函数图像:2y ax =(a ≠0); 2y ax c =+(a ≠0);2y a x b x =+(a ≠0);11、系数与图像的关系:a >0开口向上;a <0;开口向下;a b 与同号,对称轴在y 轴左侧;a b 与异号,对称轴在y 轴右侧(左同右异);c >0与y 轴交点在正半轴上;c <0;与y 轴交点在负半轴上;222b 40,b 4=0,b 40,ac x ac x ac x --- 与轴有2个交点;与轴有1个交点;与轴没有交点;12、2=a(x-h),,),x ;y k h k h +=顶点式顶点(对称轴13、1212=a(x-x )(x-x ),x ;2x x y +=交点式(双根式):对称轴 14、一般个式转化为顶点式:2y ax bx =++c 224()24b ac b a x a a-=++(a ≠0); 顶点(24,24b ac b a a--);对称轴x=2b a -; 2240,,;2440,,;24b ac b a y a ab ac b y a a---- 当图象开口向上,x=时有最小值当a 图象开口向下,x=时有最大值0,,;,220,,;,22b b a y x y x a ab b y x y x a a ---- 当x 时随增大而增大x 时随增大而减小当a x 时随增大而减小x 时随增大而增大相交线平行线和角1、两点之间,线段最短。
2、经过两点有一条直线,并且只有一条直线。
3、1周角=360° 1平角=180° 1°=60′ 1′=60″4、两个角的和等于90°(直角),就说这两个角互为余角,简称互余。
两个角的和等于180°(平角),就说这两个角互为补角,简称互补。
5、对顶角相等。
6、在同一平面内,经过直线外或直线上一点,有且只有一条直线与已知直线垂直。
7、经过已知直线外一点,有且只有一条直线与已知直线平行。
8、(平行线的判定)同位角相等,两直线平行。
内错角相等,两直线平行。
同旁内角互补,两直线平行。
垂直于同一条直线的两条直线互相平行。
如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
9、(平行线的性质)两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补。
平移旋转翻折1、图形平移的特征:平移后的图形与原来的图形的对应线段平行(或在同一条直线上)并且相等,连结对应点的线段平行(或在同一条直线上)且相等;对应角相等,图形的形状与大小都没有发生变化.2、图形的旋转由旋转中心、旋转的方向和旋转的角度决定.3、旋转的特征:图形中每一点都绕着旋转中心按同一旋转方向旋转了同样大小的角度,对应点到旋转中心的距离相等,对应线段相等,对应角相等,图形的形状与大小都没有发生变化.4、旋转对称图形:图形绕着某一定点旋转一定的角度后能与自身重合,这种图形就称为旋转对称图形.5、中心对称:图形绕着中心点旋转180°后能与自身重合,我们把这种图形叫做中心对称图形,这个中心点叫做对称中心.把一个图形绕着某一点旋转180°,如果它能够和另一个图形重合,那么,我们就说这两个图形成中心对称,这个点叫做对称中心,这两个图形中的对应点,叫做关于中心的对称点.6、中心对称图形特征:在成中心对称的两个图形中,连结对称点的线段都经过对称中心,并且被对称中心平分.反过来,如果两个图形的对应点连成的线段都经过某一点,并且都被该点平分,那么这两个图形一定关于这一点成中心对称.三角形⎧⎪⎨⎪⎩锐角三角形1 三角形形状直角三角形钝角三角形180⎧⎪︒⎪⎪⎨⎪⎪⎪⎩三角形两边的和大于第三边,三角形两边的差小于第三边三角形三个内角的和等于2 三角形内角和三角形的一个外角等于和它不相邻的两个内角的和三角形的一个外角大于任何一个和它不相邻的内角直角三角形的两个锐角互余3 n n 2180360-⨯︒⎧⎨︒⎩边形的内角的和等于()多边形内角和与外角和任意多边的外角和等于⎧⎨⎩⎧⎨⎩线段垂直平分线上的点到这条线段两个端点的距离相等4 线段垂直平分线和一条线段两个端点距离相等的点,在这条线段的垂直平分线上角平分线上的点到这个角的两边的距离相等5 角平分线到一个角的两边的距离相同的点,在这个角的平分线上(6060⎧⎪⎪⎪⎪⎨︒⎪⎪⎪︒⎪⎩等腰三角形的两个底角相等等边对等角)如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)等腰三角形顶角平分线底边上的中线和底边上的高互相重合(等腰三角形的三线合一)6 等腰三角形等边三角形的各角都相等,并且每一个角都等于三个角都相等的三角形是等边三角形有一个角等于的等腰三角形是等边三角形7、8、直角三角形两直角边的平方和等于斜边的平方.(勾股定理)9、如果三角形的三边长a 、 b 、 c 有关系: a 2+b 2=c 2,那么这个三角形是直角三角形.(勾股定理的逆定理) 锐角三角函数1、∠A 的正弦:sinA =斜边的对边A ∠,∠A 的余弦:cosA =斜边的邻边A ∠, ∠A 的正切:tanA =的邻边的对边A A ∠∠,∠A 的余切:cotA =的对边的邻边A A ∠∠. 2、0<sinA <1,0<cosA <1.3、在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.4、o o o 1sin 30,sin 456021cos304560,222tan 30tan 451,tan 60o o oo o o =========四边形1、平行四边形的性质平行四边形是中心对称图形,对角线的交点O 就是对称中心.平行四边形的对边平行且相等;对角相等;平行四边形的对角线互相平分.推论:平行线之间的距离处处相等.2、矩形性质矩形是中心对称图形;矩形还是轴对称图形,对称轴为通过对边中点的直线. 矩形的四个内角都是直角;矩形的对角线相等且互相平分.3、菱形性质:菱形是中心对称图形,也是轴对称图形,对称轴为它的所在的直线.菱形的四条边都相等;菱形的对角线互相垂直平分,并且每一条对角线平分一组对角.4、正方形:正方形是中心对称图形,也是轴对称图形.(正方形具有平行四边形矩形菱形的全部性质)5、四边形判定⎧⎪⎪⎪⎪⎪⎧⎧⎪⎪⎨⎪⎪⎪⎩⎨⎨⎧⎪⎪⎨⎪⎪⎩⎩⎪⎪⎪⎪⎪⎪⎩三个角是直角矩形对角线互相平分且相等两组对边分别平行有一个角是直角一组邻边相等矩形两组对边分别相等对角线相等对角线互相垂直四边形一组对边平行且相等平行四边形正方形有一个角是直角一组邻边相等两组对角分别相等菱形对角线互相垂直对角线相等对角线互相平分四条边都相等对角线互相平分且垂直菱形对角线平分每一组对角的四边形 全等与相似1、图形的全等:能够完全重合的两个图形叫做全等图形2、全等三角形的对应边、对应角相等(全等三角形性质)全等三角形判定:边角边 (SAS) :有两边和它们的夹角对应相等的两个三角形全等 角边角 ( ASA):有两角和它们的夹边对应相等的 两个三角形全等角角边(AAS) :有两角和其中一角的对边对应相等的两个三角形全等边边边 (SSS) :有三边对应相等的两个三角形全等斜边、直角边 (HL) :有斜边和一条直角边对应相等的两个直角三角形全等3、两个相似多边形的性质:对应边成比例,对应角相等.4、相似三角形的判定1:两角对应相等,两三角形相似;相似三角形的判定2:两边对应成比例,夹角相等,两三角形相似;相似三角形的判定3:三边对应成比例,两三角形相似;5、相似三角形的性质:两个三角形相似,对应边成比例;对应角相等;对应线段的比等于相似比;周长比等于相似比,面积比等于相似比的平方.6、连结三角形两边中点的线段叫做三角形的中位线,7、三角形的中位线平行于第三边并且等于第三边的一半.8、三角形三条边上的中线交于一点,这个点就是三角形的重心,重心与一边中点的连线的长是对应中线长的31. 9、梯形的中位线平行于两底边,并且等于两底和的一半;梯形面积等于中位线乘高;10、位似:两个多边形不仅相似,而且对应顶点的连线相交于一点,像这样的相似叫做位似,点O 叫做位似中心心。