2014年普通高等学校招生全国统一考试(四川卷理科)

合集下载

2014年高考真题——理科数学(四川卷)解析版

2014年高考真题——理科数学(四川卷)解析版

2014年普通高等学校招生全国统一考试(四川卷)数 学(理工类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。

满分150分。

考试时间120分钟。

第Ⅰ卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个是符合题目要求的。

1、已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B =( )A 、{1,0,1,2}-B 、{2,1,0,1}--C 、{0,1}D 、{1,0}- 【答案】A 【解析】AB A x x 选,,,,2}.10{-1∴2][-1A 01)2)(x -(x 2--2=∩=∴≤+=2、在6(1)x x +的展开式中,含3x 项的系数为( )A 、30B 、20C 、15D 、10 【答案】C 【解析】C x x x C 选 36222615x)x(1∴15=+=3、为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点( )A 、向左平行移动12个单位长度 B 、向右平行移动12个单位长度C 、向左平行移动1个单位长度D 、向右平行移动2个单位长度 【答案】A 【解析】Ax y x y x x 选得到左移动把).12sin(21)2sin(∴)21(2sin )12sin(+==+=+4、若0a b >>,0c d <<,则一定有( )A 、a b c d >B 、a b c d <C 、a b d c >D 、a b d c<【答案】D 【解析】Dcbd a c b d a c d b a cd c d d c 选.0∴0--∴01-1-,001-1-∴011∴0<<>>>>>>>><<<<5、执行如图的程序框图,如果输入的,x y R ∈,那么输出的S 的最大值为( ) A 、0 B 、1 C 、2 D 、3【答案】C【解析】..2)0,1(2.2,1,0,0.C y x S y x S y x y x 选处取最大值在点,目标函数画出可行区域为三角形的最大值求限制条件为相性规划问题+=+=≤+≥≥6、六个人从左至右排成一行,最左端只能排甲或乙,最右端不能拍甲,则不同的排法共有( )A 、192种B 、216种C 、240种D 、288种 【答案】B【解析】BA A A A A A 选甲不排队尾时,有乙排队首甲排队首时,有分情况.216∴,)2.()1.(441455441555=+7、平面向量(1,2)a =,(4,2)b =,c ma b =+(m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =( )A 、2-B 、1-C 、1D 、2 【答案】D 【解析】Dm m m m m c b a m c b a 选.2∴52208585∴,cos ,cos ).22,4(∴,),2,4(),2,1(=+=+><>=<++=+===8、如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点。

2014年普通高等学校招生全国统一考试理科(四川卷)

2014年普通高等学校招生全国统一考试理科(四川卷)

2014年普通高等学校招生全国统一考试理科(四川卷)参考答案一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。

1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂= A .{1,0,1,2}- B .{2,1,0,1}-- C .{0,1} D .{1,0}- 【答案】A【解析】{|12}A x x =-≤≤,B Z =,故A B ⋂={1,0,1,2}- 2.在6(1)x x +的展开式中,含3x 项的系数为学科网 A .30 B .20 C .15 D .10 【答案】C【解析】含3x 项为24236(1)15x C x x ⋅=3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上 所有的点 A .向左平行移动12个单位长度 B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度 【答案】A【解析】因为1sin(21)sin[2()]2y x x =+=+,故可由函数sin 2y x =的图象上所有的点向左平行移动12个单位长度得到 4.若0a b >>,0c d <<,则一定有 A .a b c d > B .a b c d < C .a b d c > D .a b d c< 【答案】D【解析】由1100c d d c<<⇒->->,又0a b >>,由不等式性质知:0a b d c ->->,所以a bd c< 5.执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为A .0B .1C .2D .3【答案】C【解析】当001x y x y ≥⎧⎪≥⎨⎪+≤⎩时,函数2S x y =+的最大值为2.6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有 A .192种 B .216种 C .240种 D .288种 【答案】B 学科网【解析】当最左端为甲时,不同的排法共有55A 种;当最左端为乙时,不同的排法共有14C 44A 种。

2014四川高考真题数学理(含解析)-(37577)

2014四川高考真题数学理(含解析)-(37577)

2014 年普通高等学校招生全国统一考试(四川卷)数学(理工类)一、选择题:本大题共10 小题,每小题5 分,共50 分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A ={x | x2 -x - 2 ,集合B 为整数集,则A ().A.{-1, 0,1, 2} B.{-2,-1, 0,1} C.{0, 1} D.{-1, 0}2.在x(1+x)6 的展开式中,含x3 项的系数为().A.30 B.20 C.15 D.103.为了得到函数y = sin(2x +1) 的图象,只需把函数y = sin 2x 的图象上所有的点().A.向左平行移动12个单位长度B.向右平行移动12个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度4.若a >b > 0,c <d < 0,则一定有().A.a b>B.a <b C.a b>D.c d c d d ca b<d c5.执行如图 1 所示的程序框图,如果输入的x, y ∈R ,则输出的S的最大值为().A.0 B.1 C.2 D.36.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有().A.192种B.216 种C.240 种D.288 种7.平面向量a = (1, 2),b = (4, 2),c =m a +b(m∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =().A.-2 B.-1 C.1 D.28.如图,在正方体ABCD -A1B1C1D1 中,点O 为线段BD的中点.设点P 在线段CC 上,直线OP1与平面A1BD 所成的角为α,则sinα的取值范围是().A.[ 3 ,1]3 B.[ 6 ,1]3C.[ 6 , 2 2 ]3 3D.[2 2 ,1]39.已知f (x) = ln(1+x) - ln(1-x) ,x∈(-1, 1) .现有下列命题:().①f (-x) =-f (x) ;②2xf ( ) = 2 f (x)x 1;③| f (x) |≥ 2 | x | .其中的所2有正确命题的序号是A.①②③B.②③C.①③D.①②1/ 1510.已知F 是抛物线y =x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA⋅OB = 2(其中2O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是().17 28A.2 B.3 C.D.10二、填空题:本大题共5 小题,每小题5 分,共25 分.11.复数2 2i-=1+i.12.设f (x) 是定义在R 上的周期为2 的函数,当x∈[-1, 1) 时,f (x)⎧- 2 +-≤<4x 2, 1 x 0, =⎨x, 0 ≤x <1,⎩,则3f ( ) =.213.如图,从气球 A 上测得正前方的河流的两岸 B,C 的俯角分别为67 ,30 ,此时气球的高是46m ,则河流的宽度 BC 约等于m .(用46m30°67°四舍五入法将结果精确到个位.参考数据:s i n 6 7≈0 . ,cos 67 ≈ 0.39,sin 37 ≈ 0.60 ,cos 37 ≈ 0.80 , 3 ≈1.73)B C14.设m∈R,过定点A的动直线x +my = 0 和过定点B的动直线mx -y -m + 3 = 0交于点P(x, y) ,则| PA|⋅| PB |的最大值是.15.以A 表示值域为 R 的函数组成的集合,B 表示具有如下性质的函数ϕ(x) 组成的集合:对于函数ϕ,存在一个正数M ,使得函数ϕ(x) 的值域包含于区间[-M,M ] .例如,当ϕ=,(x) 1(x) x3 ϕ=时,ϕ1(x)∈A, 2 (x) B2(x) sin xϕ∈.现有如下命题:①设函数f (x) 的定义域为D ,则“f (x)∈A”的充要条件是“∀b∈R,∃a∈D,f (a) =b ”;②函数f (x)∈B 的充要条件是f (x) 有最大值和最小值;③若函数f (x) ,g(x) 的定义域相同,且f (x)∈A,g(x)∈B ,则f (x) +g(x)∉B ;④若函数f (x) =a ln(x + 2) +x(x >-2,a∈R )有最大值,则f (x)∈B .x +12其中的真命题有.(写出所有真命题的序号)三、解答题:本大题共6 小题,共75 分.解答须写出文字说明,证明过程或演算步骤.16.已知函数πf (x) = sin(3x +) .4(1)求f (x) 的单调递增区间;(2)若α是第二象限角,(α ) = 4 cos(α+π) cos 2αf3 5 4,求cosα-sinα的值.2/ 1517.一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得 10 分,出现两次音乐获得 20 分,出现三次音乐获得 100 分,没有出现音乐则扣除 200 分(即获得 200分).设每次击鼓出现音乐的概率为且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?12,(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.3/ 1518.三棱锥A-BCD及其侧视图、俯视图如图所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN ⊥NP .(1)证明:P 为线段BC 的中点;(2)求二面角A-NP-M 的余弦值.4/ 1519.设等差数列{a }的公差为d ,点(a ,b )在函数f (x) = 2x 的图象上(n∈N* ).n n n(1)若a1 =-2 ,点(a ,4b ) 在函数f (x) 的图象上,求数列{a }的前n 项和8 7 n S ;n(a ,b ) 处的切线在x 轴上的截距为2 1(2)若a1 =1,函数f (x) 的图象在点a-,求数列{ n } 2 2b ln 2n 的前n 项和T .n5/ 15x y2 2+=(a >b > 0)的焦距为 4,其短轴的两个端点与长轴的一个端点构成正20.已知椭圆C: 2 2 1a b三角形.(1)求椭圆C 的标准方程;(2)设F 为椭圆C 的左焦点,T 为直线x =-3上任意一点,过F 作TF 的垂线交椭圆C 于点P,Q.(i)证明:OT 平分线段PQ(其中O 为坐标原点);(ii)当|TF || PQ |最小时,求点T 的坐标.6/ 1521.已知函数f (x) = e x -ax2 -bx -1,其中a,b∈R ,e = 2.71828 为自然对数的底数.(1)设g(x) 是函数f (x) 的导函数,求函数g(x) 在区间[0,1]上的最小值;(2)若f (1) = 0,函数f (x) 在区间(0,1) 内有零点,求a 的取值范围.7/ 152014 年普通高等学校招生全国统一考试(四川卷理科)答案解析一、选择题:本大题共10 小题,每小题5 分,共50 分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.A【解析】A ={x -1 ,所以A , 0,1, 2}2.C【解析】x(1+x)6 =x(1+6x+15x2 +20x3 +15x4 +6x5 +x6),所以含x 项的系数为 1533.Ay =x +=x +,所以只需把y = sin 2x 的图像上所有的点向左平移1sin(2 1) sin 2( )1【解析】2 2个单位4.D∴->->,又a >b > 0, a b 01 1 ∴->->, a b【解析】0 ,∴-c >-d > 0 ,∴<d c d c d c 5.C⎧x⎪⎨y【解析】该程序执行以下运算,已知⎪+x y⎩,求S=2x y+的最大值,作出⎧x⎪⎨y⎪+x y⎩表示的区域如图所示,由图可知,当⎧x =1⎨=⎩y 0时,S = 2 x+y的取最大值,最大值为S = 26.B【解析】最左端排甲,有A5 =种排法,最左端排乙,有4A4 = 96种排法,共有120+96 = 216 种5 1204排法7.D【解析】由题意得c ⋅a c ⋅b a b +8 8m+ 20=⇒m = 5 2 528.B【解析】设正方体的棱长为 1,AC =,1 12 AC =,1 3A O =OC =+=, 11 OC =,1 31 12 2 2 8/ 153 3+- 2 12 2cos∠AOC ==所以 1 13 32⨯2 ,sin3 1+-3 32 2 2 2cos∠AOC ==-AOC =, 11 13 332⨯2,sin6AOC =,所以sinα的范围为13⎡⎤6⎢,1⎥3⎣⎦9.C【解析】①f (-x) = ln(1-x) - ln(1+x) =-f (x) ,成立②左边的x可以取任意值,而右边的x ∈ (-1,1) ,故不成立③作出图像易知成立10.B【解析】依题意,1F ( ,0) ,设4A(x , y ),1 1B x y ,则 2 1 2 1 2 2( , ) x =y , 2x =y ,y2 y2 +y y =,得2 2 1 1 2 2y y =-或1 2 2 y y =,因为A ,B 位于x 轴两侧所以,1 2 1y y =-两面积之和为1 2 21 1 12 1 2 9 S =x y -x y +⨯⨯y =+y +⨯y =+y1 2 2 1 1 1 1 12 2 4 y 8 y 81 1二、填空题:本大题共5 小题,每小题5 分,共25 分.11.-2i【解析】2-2i 2(1-i)2= =-2i 1+i (1+i)(1-i)12. 1【解析】3 1 1f ( ) =f (-) =-4⨯+ 2 =12 2 413.60【解析】AC = 92,14.546AB =,cos 67AB =BC ,AB sin 37 60BC =≈sin 30 sin 37 sin 309/ 15【解析】易得A(0, 0) ,B(1, 3) ,设P(x,y) ,则消去m得:x2 +y2 -x-3y =0,所以点P 在以AB为直径的圆上,PA ⊥PB,所以PA ⨯PB AB22515.①③④【解析】①若对任意的b∈R ,都有∃a∈D,使得f (a) =b ,则f (x) 的值域必为R ;反之f (x) 的值域为,则对任意的R ,b∈R,都有∃a∈D,使得f (a) =b ;②比如函数f (x) =x(-1 <x < 1) 属于B ,但是它既无最大值也无最小值,故错误;③正确;④正确三、解答题:本大题共6 小题,共75 分.解答须写出文字说明,证明过程或演算步骤.π16.已知函数f (x) = sin(3x +) .4(1)求f (x) 的单调递增区间;(2)若α是第二象限角,(α ) = 4 cos(α+π ) cos 2αf3 5 4,求cosα-sinα的值.πππ解:(1)2kπ-k ∈Z2 4 23ππ2kπ-,4 42 2kπ-πkππ,3 4 3 12∴求f (x) 的单调递增区间为⎡2kπ-π2kπ+π⎤∈,,k Z .⎢⎥⎣ 3 4 3 12⎦(2)fα=α+π=α+πα,4( ) sin( ) cos( )cos 2 3 4 5 42 4 2( s i n c o s ) ( c o s s i n ) ( c o s α+α=⋅α-α2 α+α, 2 5 22 5(cos sin )α-α=, α是第二象限角,4∴sinα> cosα5∴cosα-sinα=-.217.一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得 10 分,出现两次音乐获得 20 分,出现三次音乐获得 100 分,没有出现音乐则扣除 200 分(即获得-200分).设每次击鼓出现音乐的概率为各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?12,且10/ 15(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.解:X 可取 10,20,100,-200.1 2⎛ 1 ⎫⎛ 1 ⎫ 3P(X 10) C 1== ⎪ -⎪=13⎝ 2 ⎭⎝ 2 ⎭82 1⎛ 1 ⎫⎛ 1 ⎫ 3P(X = 20) = C ⎪ 1-⎪=23⎝ 2 ⎭⎝ 2 ⎭83 0⎛ 1 ⎫⎛ 1 ⎫ 1P(X =100) = C ⎪ 1-⎪=33⎝ 2 ⎭⎝ 2 ⎭80 3⎛ 1 ⎫⎛ 1 ⎫ 1P(X 200) C 1=-=0 ⎪ -⎪=3⎝ 2 ⎭⎝ 2 ⎭8X 10 20 100 -200P 3 3 1 18 8 8 8 (2)设至少有一盘出现音乐为事件A .一盘中不出现音乐的概率为1 P =P(X =-200) =.83P =P A =-⎛⎪⎫=( ) 11 511⎝ 8 ⎭512.(3)每一盘游戏的期望为:10E(X ) =10⋅P(X =10) + 20⋅P(X = 20) +100⋅P(X =100) + (-200)⋅P(X =-200) =-8 这说明每盘游戏得分是负分,由概率统计的知识可知:若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.18.三棱锥A-BCD及其侧视图、俯视图如图所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN ⊥NP .(1)证明:P 为线段BC 的中点;(2)求二面角A-NP-M 的余弦值.解:(1)由三棱锥A-BCD及其侧视图、俯视图可知,在三棱锥中,平面ABD ⊥平面CBD, AB =AD =BD =CD =CB = 2,设O 为BD的中点,连接OA,OC ,于是OA ⊥BD ,OC ⊥BD ,所以BD ⊥平面OAC ⇒BD ⊥AC,因为M ,N 分别为线段AD ,AB 的中点,所以MN//BD ,11/ 15又 MN ⊥ NP ,故 BD ⊥ NP ,假设 P 不是线段 BC 的中点,则直线 NP 与直线 AC 是平面 ABC 内 相交直线,从而 BD ⊥平面 ABC ,这与 ∠DBC = 60 矛盾,所以 P 是线段 BC 的中点(2)以O 为坐标原点,OB 、OC 、OA 分别为 x 、 y 、 z 轴建立空间直角坐标系,则 A (0, 0, 3) , B,C (0,1, 0) , M (- 1 ,0, 3), (1 ,0, 3)(1, 0, 0)N, 22221 3 P ( , ,0)2 2于是 AN = ( ,0,- 3) , (0, 3 , 3)PN = - , MN = (1, 0, 0) 2 2 2 2设平面 ANP 和平面 NPM 的法向量分别为 m = (x , y , z ) 和 111n = (x , y , z )222由⎧ 1 3 x - z = 0⎪⎧⎪ ⇒ ⎪ ⎨⎨1 12 2 ⎪⎪PN ⋅m = 0 33 ⎩- + =yz ⎪ ⎩ 2211,设 y 1 =1,则 m = ( 3 ,1,1)由 ⎧x = 0 ⎧⎪ ⇒ ⎪ ⎨ ⎨332⎩⎩ PN n ⋅ = 0 - y +z =⎪ ⎪212 2,设 y 2 =1,则 n = (0,1,1) 0 cos2 10 m ⋅n == ⋅ 5m n5 2,所以二面角 A - NP -M 的余弦值 10 5 19.设等差数列{ }a 的公差为 d ,点(a ,b )在函数 f (x ) = 2x 的图象上( n ∈ N * ).nnn(1)若 a 1 = -2 ,点(a ,4b ) 在函数 f (x ) 的图象上,求数列{a }的前 n 项和87nS ;n(a ,b ) 处的切线在 x 轴上的截距为 21a(2)若a1 =1,函数f (x) 的图象在点-,求数列{ n } 2 2b ln 2n 的前n 项和T .nb =,又等差数列{} 【解析】(1)点(a ,b )在函数f (x) = 2x 的图像上,所以 2a 的公差为d ,所ann n n n以b 1 2 2an+1n+==d b 2ann因为点(a8,4b7 ) 在函数f (x) 的图像上,所以b4b = 2a =b ,所以8 d2d == 4 ⇒= 2 ,又87 8 b7a =-,1 2所以n(n -1)S =na + d =-2n +n -n =n -3n2 2n 12( 2 )由 f (x) = 2x ,得到 f '(x ) = x2 l n,函数f (x) 的图像在点(a ,b ) 处的切线方程为2 2by -b2 = (2 ln 2)(x -a2 ) ,所以切线在x 轴上的截距为a a -,得22a=,从而222 2a ln 22 a =n ,b = 2n ,n n得到anbn1=n⋅( )2n1 1 1T =⋅+⋅ 2 +①,1 2 ( ) )nn2 2 212/ 151 1 1 1 1T =⋅+⋅+⋅+n⋅+②,1 ( )2 ( ) ) ( ) ( )2 3 n n 1 n2 2 2 2 2①-②,得1 1 1 1 1 1T =++-n⋅+=-n ++( ) ( ) 1 ( 2)( )2 n 1 n 1 n2 2 2 2 2 21T =-n ++2 ( 2)( )n 1故n2x y2 2+=(a >b > 0)的焦距为 4,其短轴的两个端点与长轴的一个端点构20.已知椭圆 C: 2 2 1a b成正三角形.(1)求椭圆 C 的标准方程;(2)设 F 为椭圆 C 的左焦点,T 为直线x =-3上任意一点,过 F 作 TF 的垂线交椭圆 C 于点 P,Q.(i)证明:OT 平分线段 PQ(其中 O 为坐标原点);(ii)当|TF || PQ |最小时,求点 T 的坐标.解:(1)2c = 4,c = 2a =b, a2 = 3b2 = 4 +b23∴b2 = 2,a2 = 6∴椭圆C 的标准方程:x +y =.2 216 2(2)(i)m - 0 1F(-2, 0), T(-3,m),k ==-m,∴k =FT PQ-3+ 2 m.P Q: y1 (x )m∴=+m⎧=+1() y x m ⎪⎪m ,⎛+⎫++-=3 12 121 x x 6 02⎪⎝m ⎭m m2 2 2, ()m2 + 3 x2 +12x +12 - 6m2 = 0⎨ xy22⎪ += 1⎪⎩ 6 2 ∆ > 0 x + x =P Q12 - 6m2x ⋅ x =PQm2-12 m 2+11144m ()() ()y + y =x + 2 + x + 2 = x + x += PQPQPQ+mmmm m 32PQ 中点⎛ -m ⎫m6 2 ,O T : y = -x + + ⎪ ⎝ m 3 m 3⎭322-6 ⋅⎛- ⎫⎪= 2 m mm 3 3 m 32 + ⎝ ⎭ 2 +∴OT 平分 PQ (ii)TF =-2 + 3 + 0 - m = m +1,222PQ()1 2 6 m m +122 6 m +1 2= 1+=mm3m3 22+2+13 / 15tTF m + 32==PQ m +2 6 12t 2 =()()()2 2m2 m2 m2 m2+ 3 +1 +4 +1 +4 +1 1 1 1 1 1 = = + + + = ()()()24 m +1 24 m +1 24 6 6 m +1 144 6 32 2 2m2 +1 1=当且仅当()24 6 2 1m +时取到等于号,∴(+),m2 +1=2 ,m2 =1,∴T(-3,±1).2m2 1 =421.已知函数f (x) =e x -ax2 -bx -1,其中a,b∈R ,e = 2.71828 为自然对数的底数.(1)设g(x) 是函数f (x) 的导函数,求函数g(x) 在区间[0,1]上的最小值;(2)若f (1) = 0,函数f (x) 在区间(0,1) 内有零点,求a 的取值范围.解:(1)g (x)=f '(x)=e - 2ax -b , g'(x)=e - 2a .因为x∈[0,1],1 ,所以x x①若1a 则2a 所以函数g (x)在区间[0,1]上单增,2g (x)=g ()=-min 0 1 b②若'()()[][]gx=e 1 e<<则1< 2a <e, 于是当0 <x < ln(2a)时,() 2 0,a ,g'x =e x - a <当ln(2a)<x <1时,2 2x-2a>0,ln(2a)ln(2a)1gx,,所以函数在区间上单减,在区间上单增,g x =g ⎣⎡ a ⎦⎤= a - a a -min ln 2 2 2 ln(2 ) b()()③若ea 则2a ()x 2g'x =e - a 所以函数g (x)在区间[0,1]上单减,2g (x)=g ()=e - a -min 1 2 b⎧ -1 1 ba⎪ 2⎪ ⎪1e综上:函数 g (x )在区间[0,1]上的最小值为( )= ⎨ -- < <gx 2a 2a ln(2a ) b a,min2 2 ⎪ ⎪--ee 2a ba ⎪ ⎩2(2)由 f (1)= 0,e - a -b -1= 0,b = e - a -1, 又 f (0) = 0若函数 f (x ) 在区间 (0,1) 内有零点,则函数 f (x ) 在区间(0,1) 内至少有三个单调区间.1由(1)知当 a 或ea函数 f (x ) 在区间(0,1) 上单调,不可能满足条件.若11 ' = - ( ) h x x ln 0,由( )' = - > ⇒ < h x1 e 3< < g (x ) = g ⎡⎣ ( a )⎤⎦ = a - a a - ,令 ( ) ( ) a , min ln 2 2 2 ln(2 ) b h x = x - x ln x -e -1 1< x < e , 2 2 2 ln 2 2xxe14/ 15所以函数h(x) 在区间(1, e)上单增,在区间( e,e) 上单减.3h x =h e = e - e e -e -<即()()()ln 1 0g min x < 0 恒成立.max2于是,函数f (x) 在区间(0,1) 内至少有三个单调区间⎧(0)= 2 -+> 0 ⎧>- 2⎪g e a a e⇔⎨⇒⎨,g (1)=-a +1> 0 a <1⎪⎩⎩又1 e<a <,所以e-2 <a <1.2 2综上,a 的取值范围为(e - 2,1).15/ 15。

2014年全国高考四川省数学(理)试卷及答案【精校版】

2014年全国高考四川省数学(理)试卷及答案【精校版】

2014年普通高等学校招生全国统一考试理科(四川卷)参考答案第I 卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。

1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=A .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}-【答案】A2.在6(1)x x +的展开式中,含3x 项的系数为A .30B .20C .15D .10【答案】C3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点A .向左平行移动12个单位长度B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度【答案】A4.若0a b >>,0c d <<,则一定有A .a b c d > B .a b c d< C .a b d c > D .a b d c < 【答案】D5.执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为A .0B .1C .2D .3【答案】C6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有A .192种B .216种C .240种D .288种【答案】B7.平面向量a=(1,2), b=(4,2), c=ma+b (m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =A .2-B .1-C .1D .2【答案】D8.如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点。

设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是A .B .C .D . 【答案】B9.已知()ln(1)ln(1)f x x x =+--,(1,1)x ∈-。

2014年高考理科数学四川卷-答案

2014年高考理科数学四川卷-答案

【提示】(1)设每盘游戏获得的分数为X ,求出对应的概率,即可求X 的分布列; (2)求出有一盘出现音乐的概率,独立重复试验的概率公式即可得到结论. (3)计算出随机变量的期望,根据统计与概率的知识进行分析即可. 【考点】排列组合,古典概型,分布列,用期望分析问题
18.【答案】(1)由三棱锥A BCD -及其侧视图、俯视图可知,在三棱锥A BCD -中:平面ABD ⊥平面CBD ,
2AB AD BD CD CB =====,设O 为BD 的中点,连接OA ,OC ,
于是OA BD ⊥,OC BD ⊥所以BD ⊥平面OAC ⇒BD AC ⊥,
因为M ,N 分别为线段AD ,AB 的中点,所以//MN BD ,又MN NP ⊥,故BD NP ⊥, 假设P 不是线段BC 的中点,则直线NP 与直线AC 是平面ABC 内相交直线, 从而BD ⊥平面ABC ,这与60DBC ∠=o 矛盾,所以P 为线段BC 的中点.
【提示】(1)用线面垂直的性质和反证法推出结论,
(2)先建空间直角坐标系,再求平面的法向量,即可求出二面角的余弦值.
【提示】(1)求出()f x 的导数得()g x ,再求出()g x 的导数,对它进行讨论,从而判断()g x 的单调性,求出()g x 的最小值;
(2)利用等价转换,若函数()f x 在区间(0,1)内有零点,则函数()f x 在区间(0,1)内至少有三个单调区间,所以()g x 在(0,1)上应有两个不同的零点.
【考点】函数的导函数,极值,最值,函数的零点。

2014年高考理综四川卷(含详细答案)

2014年高考理综四川卷(含详细答案)

理科综合能力测试试卷 第1页(共48页)理科综合能力测试试卷 第2页(共48页)绝密★启用前 2014年普通高等学校招生全国统一考试(四川卷)理科综合 • 物理理科综合考试时间共150分钟,满分300分。

其中,物理110分,化学100分,生物90分。

物理试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。

第Ⅰ卷1至3页,第Ⅱ卷4至6页,共6页。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。

考试结束后,将本试题卷和答题卡一并交回。

第Ⅰ卷(选择题 共42分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。

第Ⅰ卷共7题,每题6分。

每题给出的四个选项中,有的只有一个选项、有的有多个选项符合题目要求 ,全部选对的得6分,选对但不全的得3分,有选错和不选的得0分。

1. 如图所示,甲是远距离输电线路的示意图,乙是发电机输出电压随时间变化的图象,则( )A. 用户用电器上交流电的频率是100 HzB. 发电机输出交流电的电压有效值是500 VC. 输电线的电流只由降压变压器原、副线圈的匝数比决定D. 当用户用电器的总电阻增大时,输电线上损失功率减小2. 电磁波已广泛运用于很多领域,下列关于电磁波的说法符合实际的是 ( )A. 电磁波不能产生衍射现象B. 常用的摇控器通过发出紫外线脉冲信号来摇控电视机C. 根据多普勒效应可以判断遥远天体相对于地球的运动速度D. 光在真空中运动的速度在不同惯性系中测得的数值可能不同3. 如图所示,口径较大、充满水的薄壁圆柱形浅玻璃缸底有一发光小球,则 ( )A. 小球必须位于缸底中心才能从侧面看到小球B. 小球所发的光能从水面任何区域射出C. 小球所发的光从水中进入空气后频率变大D. 小球所发的光从水中进入空气后传播速度变大4. 有一条两岸平直、河水均匀流动、流速恒为v 的大河。

小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直。

去程与回程所用时间的比值为k ,船在静水中的速度大小相同,则小船在静水中的速度大小为( )A.B.C.D.5. 如图所示,甲为 1 s t =时某横波的波形图象,乙为该波传播方向上某一质点的振动图象,距该质点0.5 m x ∆=处质点的振动图象可能是( )A. B.C. D.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________理科综合能力测试试卷 第3页(共48页)理科综合能力测试试卷 第4页(共48页)6. 如图所示,不计电阻的光滑U 形金属框水平放置,光滑、竖直玻璃挡板H 、P 固定在框上,H 、P 的间距很小。

2014年普通高等学校招生全国统一考试数学理试题(四川卷,含答案)

2014年普通高等学校招生全国统一考试数学理试题(四川卷,含答案)

2014年普通高等学校招生全国统一考试理科(四川卷)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。

1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂= A .{1,0,1,2}- B .{2,1,0,1}-- C .{0,1} D .{1,0}- 【答案】A【解析】{|12}A x x =-≤≤,B Z =,故A B ⋂={1,0,1,2}- 2.在6(1)x x +的展开式中,含3x 项的系数为 A .30 B .20 C .15 D .10 【答案】C【解析】含3x 项为24236(1)15x C x x ⋅=3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上 所有的点 A .向左平行移动12个单位长度 B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度 【答案】A【解析】因为1sin(21)sin[2()]2y x x =+=+,故可由函数sin 2y x =的图象上所有的点向左平行移动12个单位长度得到4.若0a b >>,0c d <<,则一定有 A .a b c d > B .a b c d < C .a b d c > D .a b d c< 【答案】D【解析】由1100c d d c<<⇒->->,又0a b >>,由不等式性质知:0a b d c ->->,所以a bd c< 5.执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为A .0B .1C .2D .3 【答案】C【解析】当001x y x y ≥⎧⎪≥⎨⎪+≤⎩时,函数2S x y =+的最大值为2.6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有 A .192种 B .216种 C .240种 D .288种 【答案】B【解析】当最左端为甲时,不同的排法共有55A 种;当最左端为乙时,不同的排法共有14C 44A 种。

2014年普通高等学校招生全国统一考试(四川卷)

2014年普通高等学校招生全国统一考试(四川卷)

绝密★启用前2014年普通高等学校招生全国统一考试(四川卷)理科综合·物理第I卷(选择题共42分)注意事项:必须使用2B铅笔在答题卡上将所选答案对应的标号涂黑。

第I卷共7题,每题6分。

每题给出的四个选项中,有的只有一个选项、有的有多个选项符合题目要求,全部选对的得6分,选对但不全的得3分,有选错的得0分。

1.如图所示,甲是远距离输电线路的示意图,乙是发电机输出电压随时间变化的图像,则A.用户用电器上交流电的频率是100HzB.发电机输出交流电的电压有效值是500VC.输电线的电流只由降压变压器原副线圈的匝数比决定D.当用户用电器的总电阻增大时,输电线上损失的功率减小【答案】D【解析】从图乙得到交流电的频率是50 Hz,变压器在输电过程中不改变交流电的频率,A错误;从图乙得到发电机输出电压的最大值是500 V,所以有效值为2502V,B错误;输电线的电流是由降压变压器的负载电阻和输出电压决定的,C错误;由于变压器的输出电压不变,当用户用电器的总电阻增大时,输出电流减小,根据电流与匝数成反比的关系可知,输电线上的电流减小,由P线=I2线R线可知,输电线上损失的功率减小,选项D正确。

2.电磁波已广泛运用于很多领域。

下列关于电磁波的说法符合实际的是A.电磁波不能产生衍射现象B.常用的遥控器通过发出紫外线脉冲信号来遥控电视机C.根据多普勒效应可以判断遥远天体相对于地球的运动速度D.光在真空中运动的速度在不同惯性系中测得的数值可能不同【答案】C【解析】衍射现象是波的特有现象,A错误;常用的遥控器通过发出红外线脉冲信号来遥控电视机,B错误;遥远天体和地球的距离发生变化时,遥远天体的电磁波由于相对距离发生变化而出现多普勒效应,所以能测出遥远天体相对地球的运动速度,C正确;光在真空中运动的速度在不同惯性系中测得的数值是相同的,即光速不变原理,D错误。

3.如图所示,口径较大、充满水的薄壁圆柱形浅玻璃缸底有一发光小球,则A.小球必须位于缸底中心才能从侧面看到小球B.小球所发的光能从水面任何区域射出C.小球所发的光从水中进入空气后频率变大D.小球所发的光从水中进入空气后传播速度变大【答案】D【解析】光从水中进入空气,只要在没有发生全反射的区域,就可以看到光线射出,所以A、B错误;光的频率是由光源决定的,与介质无关,所以C错误;由v=cn得,光从水中进入空气后传播速度变大,所以D正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年普通高等学校招生全国统一考试(四川卷理科)
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。

1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=
A .{1,0,1,2}-
B .{2,1,0,1}--
C .{0,1}
D .{1,0}-
2.在6(1)x x +的展开式中,含3x 项的系数为
A .30
B .20
C .15
D .10
3.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上
所有的点
A .向左平行移动12个单位长度
B .向右平行移动12
个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度
4.若0a b >>,0x d <<,则一定有
A .a b c d >
B .a b c d <
C .a b d c >
D .a b d c
< 5.执行如图1所示的程序框图,如果输入的[2,2]t ∈-,则输出的S 的最
大值为
A .0
B .1
C .2
D .3
6.六个人从左至右排成一行,最左端只能排甲或乙,学科网最右端不能拍甲,则不同的排法共有
A .192种
B .216种
C .240种
D .288种
7.平面向量(1,2)a =,(4,2)b =,c ma b =+(m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =
A .2-
B .1-
C .1
D .2
8.如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点。

设点P 在线段
1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是
A .
B .
C .3
D .[3
9.已知()ln(1)ln(1)f x x x =+--,(1,1)x ∈-。

现有下列命题:
①()()f x f x -=-;②22()2()1
x f f x x =+;③|()|2||f x x ≥。

其中的所有正确命题的序号是 A .①②③ B .②③ C .①③ D .①②
10.已知F 是抛物线2
y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为
坐标原点),则ABO ∆与AFO ∆面积之和的最小值是
A .2
B .3
C .8
D 二.填空题:本大题共5小题,每小题5分,共25分。

11.复数221i i
-=+ 。

12.设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,
242,10,()
,
01,x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f = 。

13.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67,30,此时气球的高是46m ,则河流的宽度BC 约等于 m 。

(用四
舍五入法将结果精确到个位。

参考数据:
sin 670.92≈,cos670.39≈,
sin 370.60≈,cos370.80≈ 1.73≈)
14.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是 。

15.以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[,]M M -。

例如,当31()x x ϕ=,2()sin x x ϕ=时,1()x A ϕ∈,2()x B ϕ∈。

现有如下命题:
①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b R ∀∈,a D ∃∈,()f a b =”; ②学科网函数()f x B ∈的充要条件是()f x 有最大值和最小值;
③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +∉; ④若函数2()ln(2)1
x f x a x x =+++(2x >-,a R ∈)有最大值,则()f x B ∈。

其中的真命题有 。

(写出所有真命题的序号)
三.解答题:本大题共6小题,共 75分。

解答须写出文字说明,证明过程或演算步骤。

16.已知函数()sin(3)4f x x π
=+。

(1)求()f x 的单调递增区间;
(2)若α是第二象限角,4()cos()cos 2354
f α
παα=+,求cos sin αα-的值。

17.一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得200-分)。

学科网设每次击鼓出现音乐的概率为12
,且各次击鼓出现音乐相互独立。

(1)设每盘游戏获得的分数为X ,求X 的分布列;
(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?
(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了。

请运用概率统计的相关知识分析分数减少的原因。

18.三棱锥A BCD -及其侧视图、俯视图如图所示。

设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN NP ⊥。

(1)证明:P 为线段BC 的中点;
(2)求二面角A NP M --的余弦值。

19.设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上(*n N ∈)。

(1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ;
(2)若11a =,学科网函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-
,求数列{}n n
a b 的前n 项和n T 。

20.已知椭圆C:
22
22
1
x y
a b
+=(0
a b
>>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正
三角形。

(1)求椭圆C的标准方程;
(2)设F为椭圆C的左焦点,T为直线3
x=-上任意一点,过F作TF的垂线交椭圆C于点P,Q。

(i)证明:OT平分线段PQ(其中O为坐标原点);
(ii)当||
||
TF
PQ
最小时,求点T的坐标。

21.已知函数2()1x f x e ax bx =---,其中,a b R ∈, 2.71828e =为自然对数的底数。

(1)设()g x 是函数()f x 的导函数,求函数()g x 在区间[0,1]上的最小值;
(2)若(1)0f =,函数()f x 在区间(0,1)内有零点,求a 的取值范围。

相关文档
最新文档